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Abstract

We have used in situ X-ray scattering and finite element modeling (FEM) to examine the micromechanics of deformation of in

situ formed metallic-glass–matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measure-

ments show that under uniaxial compression the second-phase particles yield at an applied stress of �325 MPa. After yielding, the

particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral

constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the dif-

ference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress

concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of

�1450 MPa, considerably lower than the macroscopic yield stress of the composite (�1725 MPa). Shear bands do not propagate

at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At

the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and sig-

nificant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which

may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Metallic glasses combine some of the advantageous
mechanical properties of metals, such as high strength,

with the processing flexibility of glasses. This makes

them attractive candidates for a variety of load-bearing

applications. The lack of strain hardening, however,
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means that single-phase metallic glasses experience shear

localization, which leads to fracture after only limited

macroscopic plastic deformation. For this reason, con-
siderable effort has been devoted to the development

of two-phase materials consisting of crystalline particles

in a metallic-glass–matrix [1–7]. These second-phase

particles cause the plastic strain to be distributed over

a larger volume of material, delaying the onset of

fracture.

Both in situ composites, in which a crystalline phase

is precipitated from the melt during cooling, and ex situ
composites, in which the reinforcing phase is physically
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added to the metallic glass prior to casting, have been

developed. In situ composites have the advantage of

being able to produce a finer microstructure of the crys-

talline phase, but are quite sensitive to the processing

conditions (particularly the cooling rate) and are specific

to particular amorphous alloy compositions. Ex situ
composites, on the other hand, can be produced from

virtually any bulk amorphous alloy, but only a limited

range of length scales of the microstructure are possible.

We have developed a hybrid process for making

metallic-glass–matrix composites, in which a high-melt-

ing point crystalline phase is precipitated from a meta-

stable crystalline solid solution in a separate step prior

to casting of the composite [5,8]. When the alloy is
heated to cast the composite, the crystalline phase does

not melt, so the particles are retained in the final com-

posite microstructure. By appropriate control of the pre-

cipitation process, we can achieve particle sizes in the

composite ranging from 0.1 to 100 lm. Although to

date, we have used this process to produce Ta-rich par-

ticles in Zr-based metallic glasses, in principle a similar

process could be applied to any amorphous alloy in
which one element shows a solid-state miscibility gap

with a refractory metal such as Ta, W, or Nb.

Unlike conventional metal–matrix composites, the

reinforcing phase in metallic-glass–matrix composites

typically has a lower yield stress than the matrix. During

loading, the particles experience plastic deformation,

while the stronger glass matrix remains elastic. When

the applied stress becomes sufficiently high, plastic
deformation in the matrix occurs by the formation and

propagation of shear bands. Since the initiation of shear

bands depends on the load transfer between the second-

phase particles and the matrix, understanding the details

of this process is important for understanding the mac-

roscopic mechanical behavior of the composites.

Recently, Balch and coworkers [9,10] used high en-

ergy X-ray scattering to measure the lattice strains in
crystalline reinforcements in ex situ metallic-glass–ma-

trix composites during both uniaxial compression and

uniaxial tension. They examined the load transfer be-

tween the amorphous matrix and the second-phase par-

ticles during loading and unloading, and found that the

crystalline particles yielded before the matrix, decreasing

the fraction of the subsequent load transferred to parti-

cles. For composites with small (1–2 lm) Ta particles
loaded in compression, they found that the Ta particles

yielded at an applied stress of �800 MPa. This corre-

sponds to a von Mises effective stress of 1500 MPa,

much larger than that expected for yielding of pure Ta

(�200 MPa). Balch and coworkers attributed the high

yield stress of the particles to their small size and to pos-

sible solid-solution strengthening. For somewhat larger

Ta particles (�9 lm) tested in tension, they observed
yielding at a von Mises stress of 200 MPa, which is more

consistent with the expected value for pure Ta. They
also found that, for samples loaded in tension, the Ta

particles yielded in compression during unloading due

to the large elastic strain stored in the glass matrix.

In this paper, we examine the micromechanics of

deformation of the in situ formed composite alloys un-

der uniaxial compression using high-energy X-ray scat-
tering and finite element modeling (FEM). We show

that the particles yield at relatively low stresses. The

plastic misfit strain plays a key role, limiting the ability

of the particles to strain harden (due to an increasingly

hydrostatic stress state from the matrix constraint) and

ultimately inducing stress concentrations in the matrix

that cause it to yield at applied stresses significantly low-

er than the macroscopic yield stress of the composite.
2. Experimental and numerical approach

2.1. Sample preparation

Composite alloys of composition (Zr70Cu20-
Ni10)90�xTaxAl10 (x = 6, 8, and 10 at.% Ta) were pre-
pared by arc melting and suction casting. The process

is described in detail elsewhere [5], but the basic steps

are to prepare a metastable Zr–Ta binary ingot, fol-

lowed by melting this ingot together with Cu, Ni, and

Al to make a master alloy ingot for casting. During

the second melting step, some of the Ta precipitates

out to form �10 lm particles. The alloys were suction

cast into a copper mold to form rods 3.2 mm in diame-
ter. For the synchrotron strain measurements, the sam-

ples were machined to cylindrical rods or rectangular

prisms with an aspect ratio of 2:1. The ends of the sam-

ples were polished to ensure parallelism and the surfaces

of all of the samples were mirror polished in order to

minimize scattering from surface scratches.

A typical microstructure for these specimens is shown

in Fig. 1(a). Some of the Ta particles agglomerate during
casting into larger (�50–100 lm) clusters. The volume

fraction of the Ta particles ranges from approximately

2% (for x = 6% Ta) to approximately 6% (for x = 10%

Ta). The composition of the particles, as determined

by electron microprobe analysis, is 93 at.% Ta, 6% Zr,

and 1% Cu + Ni + Al.

2.2. Synchrotron strain measurements

We performed the in situ strain measurements at

beamline 1-ID beamline of the Advanced Photon Source

at Argonne National Laboratory. Using a screw-driven

load cell, we loaded the samples incrementally in uniax-

ial compression from 0 to 1600–1800 MPa and unloaded

back to 0 MPa external stress. The loading was stopped

during the X-ray measurements. We used monochro-
matic 80.72 keV (0.0154 nm) X-rays with a square beam

of 0.1 · 0.1 mm to measure the lattice strains for each



Fig. 1. (a) Backscattered SEM micrograph of 8% Ta containing alloy

and (b) corresponding mesh used in FEM calculations.

Fig. 2. Typical diffraction pattern on digital image plate. The

longitudinal and transverse directions are denoted.
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load. A digital image plate (MAR 345) with a

150 · 150 lm pixel size was positioned 975 mm down-

stream from the sample to record the scattered intensity.

A typical diffraction pattern recorded by the digital im-

age plate is shown in Fig. 2. Because of the small volume

fraction and large particle size, continuous powder rings

are not observed; instead, we see discrete spots, each of
which corresponds to diffraction by a single Ta domain.

As pointed out by Wanner and Dunand [11], the

interplanar spacing of a family of crystallographic

planes can be expressed as

d ¼ k

2 sin 1
2
arctan D

2L

� �� � ; ð1Þ

where k is the X-ray wavelength, D is the diameter of the

powder rings on image plate, and L is the camera length

(the distance between the sample and the image plate).

From Eq. (1), the elastic strain in the Ta particles for

a given externally applied stress can be calculated from

e ¼ ln
d
d0

� �
; ð2Þ
where e is the lattice strain and d0 is unstrained d-

spacing.
Eqs. (1) and (2) assume that the camera length L and

the X-ray wavelength k are known and do not change

during the course of the experiment. However, L can

change if the sample surface is displaced during loading

(due to a Poisson effect, for instance) and the X-ray

wavelength can drift (although this effect is usually

small). For some of our experiments, we accounted for

these uncertainties by attaching an external standard
(Ce2O3 powder) of known d-spacing to the surface of

the sample and calculating the strain from

es ¼
ds � ds

0

ds
0

� 1� Ds

Ds
0

Dc
0

Dc ; ð3Þ

where es is the lattice strain, d0 is the unstrained lattice

spacing of the sample, d is the strained lattice spacing,

Ds
0 and Dc

0 are the reference state diameters of the Debye

rings for the sample and the calibration substance,

respectively, and Ds and Dc are the strained diameters

of the Debye rings for the sample and calibration sub-

stance, respectively [11]. For several samples, we used
both methods (Eqs. (2) and (3)) for calculating the lat-

tice strains. For the most part, the two methods yield

similar results, and our conclusions below are not af-

fected by whether or not a standard was used. However,

the difference can become important for situations

where there is a large plastic strain (resulting in a large

displacement of the sample surface) but the elastic strain

(which is the only strain component measured in X-ray
scattering) is small.

One advantage of high-energy X-ray scattering is the

ability to perform in situ transmission experiments on

bulk samples. Since the X-ray wavelength is small, the

crystallographic planes that satisfy the Bragg conditions
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are nearly parallel to the incident beam; for the Ta

(2 1 1) planes examined here, the Bragg angle (2h) is

6.5�. Therefore, with a two-dimensional detector the lat-

tice strain for the longitudinal (parallel to loading axis)

and transverse (perpendicular to loading axis) directions

can be simultaneously measured along with the strain
for all angles /. We assume that under uniaxial loading

the strains in the two transverse directions are identical,

allowing us to determine the full three-dimensional

strain state of the sample.

For an unstrained sample (or one in a state of hydro-

static strain), the powder rings appear as circles on the

digital image plate since the d-spacing is the same for

all angles / (assuming that the detector is orthogonal
to the incident X-ray beam). When a uniaxial stress is

applied to the sample, the rings are distorted into ellipses

due to the dependence of the strain state on /. The semi-

axes of the ellipse can be taken as the longitudinal and

transverse strain directions due to the small Bragg angle.

In order to obtain reliable strain measurements, the

semi-axes of the ellipses must be measured accurately.

We accomplished this by using a data analysis proce-
dure similar to that used by Wanner and Dunand [11],

in which the diameter of the ring for all angles / are

plotted against sin2/. Plotted in this way, the data fall

on a line; and a least-squares fit to the data allows deter-

mination of the semi-axes of the ellipse.

We chose the Ta {2 1 1} reflection for calculating the

strain in the Ta particles since it is a strong peak and not

significantly convoluted with the scattering ‘‘halo’’ from
the amorphous matrix. For some specimens, we also

examined the Ta {1 1 0} and {3 1 0} peaks and find no

significant differences in the measured lattice strains.

This allows us to assume that the particles behave in

an elastically isotropic manner.
2.3. Finite element modeling

X-ray scattering only provides information on the

strain state of the particles. To examine the strain state

of the amorphous matrix, we built a two-dimensional

plane-strain computational model using the FEM. To

create a mesh that captures the morphology and dimen-

sions of the microstructure, we used the mesh-generating

program ppm2oof [12] together with scanning electron

micrographs of the microstructure, as illustrated in
Fig. 1.

We conducted the FEM calculations by assigning a

series of compressive load increments in the top bound-
Table 1

Constitutive properties of Ta particles and glass matrix for FEM calculation

Material ry (MPa) E (GPa)

Ta particles 350 185 [22]

Zr-based glass matrix 1750 85 [2]
ary of the mesh and constraining the bottom nodes in

the direction of loading. A symmetry plane was enforced

on the left side of the mesh by fixing the displacement of

nodes in a direction perpendicular to the loading axis.

The resolution scheme is based on a Lagrangian frame-

work using an explicit time integration algorithm. Fur-
ther details on the implementation of this method [13].

A small-deformation plasticity model with non-linear

isotropic hardening was chosen to model the constitu-

tive behavior of the Ta-rich particles. In this model,

the closed-form of the strain hardening curve is related

to the plastic strain, ep, by:

gðepÞ ¼ ry 1þ ep

ep0

� �1=n

; ð4Þ

where ep0 is the reference plastic strain, ep is the plastic
strain, n is the hardening exponent and ry is the yield

stress at the onset of plastic deformation under uniaxial

loading. In this expression, the plastic strain is given by

[14]:

ep ¼
ffiffiffi
2

3

r
�
Z t

0

ffiffiffiffiffiffiffiffiffi
_epij _e

p
ij

q
dt: ð5Þ

Rate hardening effects are small under quasi-static load-

ing and therefore are neglected.

The elastic properties and constitutive model param-

eters for the two phases used as input to the finite ele-
ment model are listed in Table 1. We assume that the

constitutive behavior of the Zr-based amorphous matrix

is elastic-perfectly plastic with a yield stress correspond-

ing to the maximum stress before failure of the single-

phase glass. Since we cannot make single-phase amor-

phous alloys of the same composition as the matrix

without precipitating out some Ta particles, we assumed

a yield stress of 1750 MPa. This is consistent with the re-
ported yield stress for amorphous alloys of similar com-

position [15,16].

The properties of the Ta particles are more problem-

atic, due to the significant level of Zr in solid solution

and the effect of the grain size. We have tested Ta-rich

alloys of similar composition to the particles (Ta–7%

Zr) in uniaxial compression and find that the yield stress

is 335 ± 50 MPa, compared to 120 MPa for pure Ta [17].
For the FEM model, we used a yield stress of 350 MPa,

which is consistent with our measurement and which

gives reasonable agreement with the scattering data (as

shown below). To model the strain hardening behavior,

we used power-law parameters for pure Ta [17,18].

However, the particles are not pure Ta, so this choice
s

m ep0 N

0.34 [22] 0.00556 [18] 0.61 [17]

0.38 [2] – –
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may not accurately capture the strain hardening behav-

ior, as we discuss in more detail below. In the FEM re-

sults presented below, we only consider the average

value of each component of the stress tensor over all

the elements constituting the Ta particles. The von

Mises effective stress for the Ta particles was calculated
on the basis of the average values of the stress. To ac-

count for any dynamical effects that might occur in the

mesh during unloading, an appropriate amount of

numerical viscosity was added.
Fig. 3. Measured {2 1 1} lattice strain for Ta particles during uniaxial

compression. The predicted elastic strain using the Eshelby equivalent

inclusion method is also shown. Loading and unloading is indicated by

the upward and downward arrows, respectively.
3. Results and discussion

3.1. Thermal residual strains

A difference in coefficients of thermal expansion be-

tween the matrix and the particles causes residual strains

to develop during cooling. The magnitude of these

strains can be calculated using the Eshelby equivalent

inclusion method [19,20]. We assume that any stresses

that might develop above the glass transition tempera-
ture (673 K) can be accommodated by viscous flow in

the supercooled liquid, and that no plastic flow occurs

below the glass transition. We calculate the thermal

strains in the Ta particles for the 6%, 8%, and 10% Ta

alloys to be �141, �139, and �133 le, respectively,

and the corresponding residual stresses to be �76,

�75, and �72 MPa, respectively. (We use ‘‘le’’ to refer

to a strain of 1 · 10�6.) Under the assumption that the
Ta particles are essentially spherical, the thermal resid-

ual strain is hydrostatic. In the data presented below,

this thermal strain is simply added to the measured

strains of the particles in the composites. The thermal

residual stress in the glassy matrix is less than 10 MPa

(tensile) for all the alloys and we neglect it in what

follows.

3.2. Deformation of Ta particles during loading

The applied stress vs. lattice strain for the Ta particles

measured from the bcc-Ta 2 1 1 peak during a loading–

unloading cycle is shown in Fig. 3. The strains in the

longitudinal (parallel to the loading axis) and transverse

(perpendicular to the loading axis) directions are shown

along with the predicted elastic strain calculated using
the Eshelby equivalent inclusion method [20].

For applied stresses below 325 MPa (compressive),

the measured lattice strains in both directions are linear,

indicating elastic loading of the particles. At approxi-

mately 325 MPa applied stress, the particles yield, which

causes increased load transfer to the amorphous matrix

and a corresponding decrease in the fraction of load

transferred to the particles. The glass matrix remains
elastic since it has a much higher yield strength

(�1750 MPa) than the Ta particles (�350 MPa). This
creates a plastic mismatch strain between the particles

and the matrix, resulting in a stress that we refer to as

the plastic misfit stress. The plastic misfit stress increases

the load transfer to the matrix. At an applied stress of

�1450 MPa, the lattice stress–strain curve changes slope

again for both the longitudinal and transverse direc-

tions, indicating an increase in the fraction of the load

being transferred to the Ta particles. This increase in
load transfer to the particles is caused by yielding in

the glass matrix and is discussed in more detail below.

Yielding in polycrystalline metals can be described

using the von Mises criterion, so to further examine

yielding of the particles, we calculated the von Mises

effective stress from the measured strains. In the lattice

strain measurements, the principal strains e2 (parallel

to loading axis) and e1 = e3 (perpendicular to loading
axis) correspond to the measured longitudinal and

transverse strains, respectively. From the measured prin-

cipal strains, the principal stresses in the particles can be

calculated from [21]:

r1 ¼ r3 ¼
E

1þ m
e1 þ

mE
ð1þ mÞð1� 2mÞ ðe1 þ e2 þ e3Þ; ð6aÞ

r2 ¼
E

1þ m
e2 þ

mE
ð1þ mÞð1� 2mÞ ðe1 þ e2 þ e3Þ; ð6bÞ

where r2 is the principal stress in the longitudinal direc-

tion and r1 and r3 are the principal stresses in the trans-

verse directions. Eqs. (6a) and (6b) are based on

isotropic elasticity; this is a reasonable approximation

for Ta, and, as described above, the lattice strains are

independent of the reflection chosen to calculate them.
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From the principal stresses, the von Mises effective

stress, reff, can be calculated by

reff ¼
1ffiffiffi
2

p ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2
h i1=2

: ð7Þ

Fig. 4 shows the von Mises effective stress of the Ta

particles vs. the applied stress for an 8% Ta alloy loaded
in uniaxial compression, calculated from the lattice

strains shown in Fig. 3. For applied stresses below

325 MPa, the von Mises stress increases linearly, which

is consistent with elastic loading in the particles. At an

applied stress of �325 MPa (which corresponds to a

von Mises stress of 400 MPa), the von Mises stress

exhibits a change in its slope indicating that the Ta par-

ticles have yielded. Following yielding, the von Mises
stress remains relatively constant indicating an absence

of work hardening. For applied stresses greater than

1450 MPa, the von Mises stress increases with increasing

applied stress as the surrounding glass matrix yields.

The apparent lack of work hardening exhibited by

the particles can be attributed to the plastic misfit strain

that develops between the particles and the matrix. After

yielding, under an assumption of constant-volume plas-
tic deformation the effective Poisson�s ratio of the parti-

cles becomes approximately 0.5. In contrast, the glass

matrix, which remains elastic, has a Poisson�s ratio of

0.38. As a result of this difference, the particles are con-

strained from expanding in the transverse directions.

The constraint of the particles by the matrix leads to

the development of compressive stresses in the trans-

verse directions. Fig. 5 shows the measured principal
stresses in the longitudinal direction (r2) and the trans-

verse directions (r1 and r3) obtained using Eqs. (6a)

and (6b) and which were used to calculate the von Mises

effective stress shown in Fig. 4. For applied stresses be-

low 325 MPa (elastic loading of particles), the compres-
Fig. 4. von Mises effective stress vs. applied stress for a loading–

unloading cycle of an 8% Ta alloy.

Fig. 5. Principal stresses as a function of applied stress for an 8% Ta

alloy (a) during loading and (b) unloading in uniaxial compression.

The principal stress r2 is along the loading axis and the r1 and r3 are
perpendicular to the loading axis. Yielding in the particles and the

glass matrix is marked by the dashed lines in (a) and tensile yielding is

marked in (b).
sive stress in the longitudinal direction increases linearly

while the transverse stresses remain nearly constant.
After the particles yield, the stresses in the transverse

directions become increasingly compressive due to the

constraining effect of the matrix on the particles.

Fig. 5(a) shows that the differences between the principal

stresses (e.g., r2 � r1) remain nearly constant with

increasing applied stress (up to �1450 MPa). Therefore,

the von Mises stress of the particles remains unchanged

over this range.



Fig. 6. Lattice strain in transverse direction for a 10% Ta alloy that

has been subjected to four loading–unloading cycles.

Fig. 7. von Mises effective stress vs. applied stress for a 10% Ta alloy

that has undergone four loading–unloading cycles.
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For applied compressive stresses greater than

1450 MPa, both the von Mises stress (Fig. 4) and the

principal stresses (Fig. 5(a)) exhibit a change in slope.

In particular, the transverse stresses become less com-

pressive. We attribute this to yielding in the matrix,

which effectively removes the lateral constraint on the
particles. Thus, once the matrix has yielded, the von

Mises stress in the particles can increase and the parti-

cles can strain harden.

3.3. Deformation of Ta particles during unloading

Upon unloading, the compressive elastic strains in

the Ta particles (Figs. 3 and 5(b)) and the corresponding
von Mises stress (Fig. 4) relax. The strains become quite

small and the von Mises stress nearly zero when the ap-

plied compressive stress reaches 1175 MPa, but at this

stress, the amorphous matrix still has considerable

stored elastic strain energy. Thus, further reductions in

the applied stress cause a reversal of the strain state of

the particles, into tension. As Fig. 3 shows, the tensile

strain in the particles is elastic down to an applied stress
of approximately 800 MPa, at which point the unload-

ing curve deviates from linearity. This indicates tensile

yielding of the particles at a von Mises stress of 500–

600 MPa, somewhat lower than the maximum flow

stress in compression (�700 MPa). Ordinarily for such

a load reversal (compression followed by tension) one

would expect that the flow stress in compression would

become the yield stress in tension. The relatively low va-
lue of the yield stress in tension suggests that some other

factor is in play. It may be that the relatively large

hydrostatic tension stress affects the yield stress in ten-

sion. In any event, when the applied stress is completely

removed, the Ta particles are left with a large residual

tensile strain (�3800 le) in the longitudinal direction.

3.4. Cyclic loading/unloading

The residual strains that develop in the Ta particles

after unloading can be seen more clearly by examining

the lattice strain for a specimen subjected to several

loading–unloading cycles. Fig. 6 shows the measured

lattice strain of the Ta particles in the longitudinal direc-

tion for a 10% Ta alloy during four loading–unloading

cycles; the corresponding von Mises stresses are shown
in Fig. 7. The residual strain in the particles after

unloading is dependent on the maximum applied stress

during compressive loading. For the first loading cycle,

the particles yield at an applied compressive stress of

�300 MPa, and there is little or no strain hardening

apparent up to the maximum applied compressive stress

of 500 MPa. When the specimen is unloaded, the elastic

compressive strain is released and a small elastic tensile
residual strain builds up in the particles; the correspond-

ing residual von Mises stress is approximately 150 MPa.
Since the particles did not yield in tension during the

first cycle, upon reloading there is no hysteresis and

the loading curve for the second cycle initially follows

the unloading curve from the first cycle. The applied
stress at which the particles yield in compression during

the second cycle is higher than that of the first cycle, but

the corresponding von Mises stresses at the yield points

are approximately the same. The larger applied stress

necessary for compressive yielding in the second loading

cycle is due to the residual tensile stress that is present in

the particles after unloading in the first cycle, which

must be overcome by the applied compressive stress.
For the second loading cycle, the maximum applied

stress is �800 MPa, which causes the particles to yield

in tension during unloading and creates a larger residual

tensile strain compared to the first unloading cycle.

Because the particles yield in tension during the sec-

ond unloading, the loading path for the third cycle does
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not coincide with the unloading path from the second

cycle. The strain hardening due to tensile yielding affects

the plastic deformation of the particles when they are re-

loaded in compression. The von Mises stress at yield is

approximately constant (at 300–400 MPa), although

not enough data points were collected to determine this
conclusively. The flow stress, however, is significantly

larger for the later cycles. For the last two loading–

unloading cycles, the maximum applied stresses are in-

creased, which increases the magnitude of the residual

tensile strain. The hysteresis between the loading and

unloading curves increases as the maximum applied

stress increases.

3.5. Finite element modeling and shear band initiation

Fig. 8 shows the von Mises effective stress calculated

using FEM along with experimental results for an 8%

Ta alloy. In the elastic region, the agreement is good.

The von Mises stress at which the particles yield, how-

ever, is lower for the FEM calculations (�300 MPa)

than that observed experimentally (�350 MPa). It is
likely that the discrepancy is due to the constitutive

parameters used for the model (Table 1), which, as de-

scribed above, are subject to some uncertainty. The dis-

crepancy might also be due to the two-dimensional

nature of the FEM model. The plane strain model

changes the constraint on the particles, and, in particu-

lar, changes the transverse stress in the out-of-plane

direction.
After the particles yield, FEM results indicate greater

strain hardening than that which we observe experimen-

tally. This discrepancy has two possible origins. The first

relates to the plane-strain nature of the model. For the

experimental results, the transverse principal stresses
Fig. 8. von Mises effective stress as a function of applied stress

calculated from synchrotron strain measurements (solid squares) and

FEM (hollow squares). The arrows indicate the loading and unloading

directions.
are assumed to be equal to each other since the particles

are essentially equiaxial. In the FEM model, the trans-

verse stresses are not equal to each other. As a result,

the stress state predicted by FEM is less hydrostatic

after particle yielding. This leads to greater work hard-

ening than is experimentally observed. A second possi-
bility is that the strain-hardening behavior assumed

(from data for pure Ta) is inappropriate for these parti-

cles, which have significant alloy content.

At an applied compressive stress of 1450 MPa, the

von Mises stress for the FEM calculations and the strain

measurements both show a change in slope. As de-

scribed above, we attribute this change in slope to yield-

ing in the glass matrix. Interestingly, however, this
yielding occurs at an applied stress that is significantly

lower than 0.2% offset yield stress of the composite al-

loys, which is 1700 MPa (Fig. 9).

To better understand yielding of the matrix and the

composite, recall from above that plastic deformation

of Ta particles while the amorphous matrix is still elastic

leads to the development of a plastic misfit strain in both

phases. This misfit strain creates a significant stress con-
centration around the particles. Fig. 10 shows von Mises

effective stress calculated using FEM for a single spher-

ical Ta particle embedded in an amorphous matrix.

(This simple system was chosen to eliminate the effects

of shape anisotropy and the stress fields from other par-

ticles.) Even at applied stresses several hundred MPa be-

low the yield stress of the matrix, the presence of the

plastically deforming particle creates local stress concen-
trations that exceed the von Mises yield stress of the ma-

trix. Note that although we have chosen a von Mises

criterion for the matrix for convenience, we reach the

same conclusion if we apply other yield criteria, such

as Mohr–Coulomb.
Fig. 9. Stress–strain curve for an 8% Ta alloy loaded in uniaxial

compression. The strain was measured using a strain gauge attached to

the sample. The 0.2% offset yield stress is noted along with the region

where localized yielding occurs in the glass matrix.



Fig. 10. Contour maps of von Mises effective stress for a single particle (white) embedded in an amorphous matrix. The images show the results for

successive displacement steps increasing from (b) through (e). The light colored areas correspond to regions in the matrix where the von Mises stress

is greater than 1750 MPa (the matrix yield stress). The corresponding stress for the contour maps is noted on the stress–strain curve (a).

Fig. 11. Contour map of von Mises effective stress for an 8% Ta alloy.

Note that the von Mises stress in certain regions of the matrix around

the particles is much lower than the average matrix stress.
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Single-phase metallic glasses show behavior that is

essentially elastic-perfectly plastic; that is, the yield

stress and the flow stress are the same, because shear

bands, once initiated, can propagate unhindered

through the material. In the case of the composite mate-

rials, yielding of the matrix begins at �1450 MPa, but

this apparently does not initiate large-scale yielding of

the composite. The FEM results in Fig. 10 suggest a pos-
sible explanation. At applied stresses below the yield

stress of the matrix, the matrix yield criterion is only sat-

isfied in the regions immediately around the particles.

Thus, if a shear band initiates at the particle and prop-

agates away, it will quickly encounter a region where

the yield criterion is not satisfied and the shear stress

is insufficient to sustain shear band propagation. This

situation is exacerbated for systems of multiple particles,
in which the stress state is highly inhomogeneous and

there can even be regions where the von Mises stress is

lower than the applied stress (Fig. 11). In addition to
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reducing the driving force for shear band propagation,

under these conditions the plane of maximum shear

stress can deviate locally from 45�, creating an opportu-

nity for shear bands to be deflected. We expect that it is

more difficult for shear bands to propagate under these

conditions, and that this may explain why the compos-
ites can exhibit significant plastic strains prior to failure.

It is sometimes assumed for metallic-glass–matrix

composites that it is a mismatch in the elastic properties

of the matrix and reinforcement that causes shear band

initiation. In the present case, however, where the yield

stress of the particles is much lower than that of the ma-

trix, this elastic misfit strain never creates a stress con-

centration in the amorphous matrix large enough to
cause shear band initiation. Rather, it is the misfit strain

that develops as a result of plastic deformation of the

particles that is the primary source of stress concentra-
Fig. 12. (a) Calculated von Mises effective stress in the Ta particles vs.

applied stress for an 8% Ta alloy. The yield strength of the particles

was assumed to be (i) 250 MPa, (ii) 350 MPa, (iii) 450 MPa, and (iv)

550 MPa in the FEM calculations. (b) The applied stress at which

localized yielding occurs in the glass matrix vs. the yield stress of the Ta

particles.
tion in the matrix. This observation suggests that the

localized yielding in the glass matrix should be depen-

dent on the yield stress of the Ta particles. If the yield

stress of the particles is increased, then the applied stress

at which the plastic misfit stress becomes sufficiently

large to cause yielding in the matrix will also be in-
creased. We have examined this effect with FEM.

Fig. 12 shows the calculated von Mises effective stress

for particles with different yield strengths as a function

of applied stress for an 8% Ta alloy. Notice that the

stress level at which a change in slope of the von Mises

curves, indicative of yielding of the matrix, increases

with increasing particle strength. This highlights the

importance of yielding of the Ta particles on the devel-
opments of stress concentrations in the glass matrix. The

initiation of shear bands in the matrix is dependent on

the plastic misfit stress rather than the elastic mismatch

between the phases.

While we cannot readily vary the yield stress of the

second-phase particles in the composites in the as-cast

state, the particles can be work hardened by subjecting

the composite to a loading–unloading cycle such as that
shown in Fig. 7. If the composite is loaded in compres-

sion to a stress significantly higher than the yield stress

of the second-phase particles but lower than the yield

stress of the matrix, upon unloading the particles will

yield in tension and work harden This will increases

the yield stress of the particles thus increase the applied

stress at which shear bands initiate in the matrix.

Whether this effect translates into an increased macro-
scopic yield stress of the composite would be an interest-

ing direction for future investigations.
4. Conclusions

We have examined the micromechanics of deforma-

tion of in situ formed metallic-glass–matrix composites
using synchrotron X-ray scattering and finite element

modeling. For compressive loading, the particles yield

at an applied stress of �325 MPa, while the glass ma-

trix remains elastic. After yielding, the particles experi-

ence little work hardening due to an increasingly

hydrostatic stress state arising from the plastic misfit

strain with the matrix. The misfit strain also creates

stress concentrations in the matrix, leading to the initi-
ation of shear bands at an applied stress significantly

lower than the macroscopic yield stress of the compos-

ite alloys. Unloading of the composite causes the par-

ticles to yield in tension, causing strain hardening,

increasing the flow stress of the particles upon subse-

quent reloading and possibly increasing the yield stress

of the composite.

For the matrix, modeling results indicate that shear
band initiation is not due to a mismatch in elastic

properties with the particles. Rather, yielding occurs
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due to the development of stress concentrations result-

ing from the plastic misfit strain. At an applied stress

of �1425 MPa, the yield criterion of the matrix is sat-

isfied near the particles, leading to localized yielding by

shear banding. At higher stresses approaching the mac-

roscopic yield stress of the composite (�1725 MPa), the
yield criterion is satisfied in larger regions of the ma-

trix, allowing for macroscopic yielding. The presence

of the particles creates a highly inhomogeneous stress

distribution in the matrix, which may hinder shear

band propagation and delay the onset of failure. Final-

ly, we have found that the yield stress of the particles

can be effectively increased by subjecting the composite

to multiple loading cycles, which might provide a
means to increase the yield stress of the composite

alloys.
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