
Red Hat Enterprise Linux 6

Developer Guide
An introduction to application development

tools in Red Hat Enterprise Linux 6

Dave Brolley

William Cohen

Roland Grunberg

Aldy Hernandez

Karsten Hopp

Jakub Jelinek

Developer Guide

Jeff Johnston

Benjamin Kosnik

Aleksander Kurtakov

Chris Moller

Phil Muldoon

Andrew Overholt

Charley Wang

Kent Sebastian

Red Hat Enterprise Linux 6 Developer Guide
An introduction to application development tools in Red Hat
Enterprise Linux 6
Edition 0

Author Dave Brolley brolley@redhat.com
Author William Cohen wcohen@redhat.com
Author Roland Grunberg rgrunber@redhat.com
Author Aldy Hernandez aldyh@redhat.com
Author Karsten Hopp karsten@redhat.com
Author Jakub Jelinek jakub@redhat.com
Author Jeff Johnston jjohnstn@redhat.com
Author Benjamin Kosnik bkoz@redhat.com
Author Aleksander Kurtakov akurtako@redhat.com
Author Chris Moller cmoller@redhat.com
Author Phil Muldoon pmuldoon@redhat.com
Author Andrew Overholt overholt@redhat.com
Author Charley Wang cwang@redhat.com
Author Kent Sebastian kent.k.sebastian@gmail.com
Editor Don Domingo ddomingo@redhat.com
Editor Jacquelynn East jeast@redhat.com

Copyright © 2010 Red Hat, Inc. and others.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701

mailto:brolley@redhat.com
mailto:wcohen@redhat.com
mailto:rgrunber@redhat.com
mailto:aldyh@redhat.com
mailto:karsten@redhat.com
mailto:jakub@redhat.com
mailto:jjohnstn@redhat.com
mailto:bkoz@redhat.com
mailto:akurtako@redhat.com
mailto:cmoller@redhat.com
mailto:pmuldoon@redhat.com
mailto:overholt@redhat.com
mailto:cwang@redhat.com
mailto:kent.k.sebastian@gmail.com
mailto:ddomingo@redhat.com
mailto:jeast@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

Developer Guide

This document describes the different features and utilities that make Red Hat Enterprise Linux 6
an ideal enterprise platform for application development. It focuses on Eclipse as an end-to-end
integrated development environment (IDE), but also includes command-line tools and other utilities
outside Eclipse.

v

Preface vii
1. Document Conventions .. vii

1.1. Typographic Conventions .. vii
1.2. Pull-quote Conventions ... viii
1.3. Notes and Warnings .. ix

2. Getting Help and Giving Feedback .. ix
2.1. Do You Need Help? ... ix
2.2. We Need Feedback! ... x

1. Introduction to Eclipse 1
1.1. Understanding Eclipse Projects ... 1
1.2. Help In Eclipse .. 3
1.3. Development Toolkits ... 5

2. The Eclipse Integrated Development Environment (IDE) 7
2.1. User Interface .. 7
2.2. Useful Hints ... 11

2.2.1. The quick access menu ... 11
2.2.2. libhover Plug-in .. 17

3. Libraries and Runtime Support 21
3.1. Version Information ... 21
3.2. Compatibility .. 21

3.2.1. API Compatibility ... 22
3.2.2. ABI Compatibility ... 22
3.2.3. Policy .. 22
3.2.4. Static Linking ... 23

3.3. Library and Runtime Details .. 23
3.3.1. The GNU C Library ... 23
3.3.2. The GNU C++ Standard Library ... 26
3.3.3. Boost .. 28
3.3.4. Qt ... 31
3.3.5. KDE Development Framework .. 32
3.3.6. Python .. 34
3.3.7. Java .. 35
3.3.8. Ruby ... 36
3.3.9. Perl ... 37

4. Compiling and Building 39
4.1. GNU Compiler Collection (GCC) ... 39

4.1.1. GCC Status and Features .. 39
4.1.2. Language Compatibility .. 40
4.1.3. Object Compatibility and Interoperability .. 42
4.1.4. Backwards Compatibility Packages ... 43
4.1.5. Previewing RHEL6 compiler features on RHEL5 .. 43
4.1.6. Running GCC .. 43
4.1.7. GCC Documentation .. 50

4.2. Distributed Compiling .. 50
4.3. Autotools .. 50

4.3.1. Autotools Plug-in for Eclipse ... 51
4.3.2. Configuration Script ... 51
4.3.3. Autotools Documentation ... 52

4.4. Eclipse Built-in Specfile Editor .. 52

5. Debugging 53
5.1. Installing Debuginfo Packages .. 53

Developer Guide

vi

5.2. GDB .. 53
5.2.1. Simple GDB .. 54
5.2.2. Running GDB .. 55
5.2.3. Conditional Breakpoints ... 57
5.2.4. Forked Execution ... 58
5.2.5. Threads .. 58
5.2.6. GDB Variations and Environments .. 58
5.2.7. GDB Documentation .. 58

5.3. Variable Tracking at Assignments .. 59
5.4. Python Pretty-Printers .. 59

6. Profiling 61
6.1. Profiling In Eclipse .. 61
6.2. Valgrind ... 62

6.2.1. Valgrind Tools .. 62
6.2.2. Using Valgrind ... 63
6.2.3. Valgrind Plug-in for Eclipse ... 63
6.2.4. Valgrind Documentation ... 64

6.3. OProfile ... 64
6.3.1. OProfile Tools .. 64
6.3.2. Using OProfile ... 65
6.3.3. OProfile Plug-in For Eclipse .. 65
6.3.4. OProfile Documentation ... 66

6.4. SystemTap .. 66
6.4.1. SystemTap Compile Server .. 67
6.4.2. SystemTap Support for Unprivileged Users .. 67
6.4.3. SSL and Certificate Management ... 68
6.4.4. SystemTap Documentation ... 68

6.5. Eclipse-Callgraph ... 69
6.5.1. Launching a Profile With Eclipse-Callgraph ... 69
6.5.2. The Callgraph View ... 71

6.6. Performance Counters for Linux (PCL) Tools and perf .. 74
6.6.1. Perf Tool Commands ... 75
6.6.2. Using Perf ... 75

6.7. ftrace ... 77
6.7.1. Using ftrace ... 77
6.7.2. ftrace Documentation ... 78

A. Revision History 79

Index 81

vii

Preface
This book describes the some of the more commonly-used programming resources in Red Hat
Enterprise Linux 6. Each phase of the application development process is described as a separate
chapter, enumerating tools that accomplish different tasks for that particular phase.

Note that this is not a comprehensive listing of all available development tools in Red Hat Enterprise
Linux 6. In addition, each section herein does not contain detailed documentation of each tool. Rather,
this book provides a brief overview of each tool, with a short description of updates to the tool in Red
Hat Enterprise Linux 6 along with (more importantly) references to more detailed information.

In addition, this book focuses on Eclipse as an end-to-end integrated development platform. This was
done to highlight the Red Hat Enterprise Linux 6 version of Eclipse and several Eclipse plug-ins.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

Notes and Warnings

ix

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?
If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http://access.redhat.com. Through the customer portal, you can:

http://access.redhat.com

Preface

x

• search or browse through a knowledgebase of technical support articles about Red Hat products.

• submit a support case to Red Hat Global Support Services (GSS).

• access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/
listinfo. Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red_Hat_Enterprise_Linux.

When submitting a bug report, be sure to mention the manual's identifier: doc-Developer_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/

Chapter 1.

1

Introduction to Eclipse
Eclipse is a powerful development environment that provides tools for each phase of the development
process. It is integrated into a single, fully configurable user interface for ease of use, featuring a
pluggable architecture which allows for extension in a variety of ways.

Eclipse integrates a variety of disparate tools into a unified environment to create a rich development
experience. The Valgrind plug-in, for example, allows programmers to perform memory profiling
(normally done through the command line) through the Eclipse user interface. This functionality is not
exclusive only to Eclipse.

Being a graphical application, Eclipse is a welcome alternative to developers who find the command
line interface intimidating or difficult. In addition, Eclipse's built-in Help system provides extensive
documentation for each integrated feature and tool. This greatly decreases the initial time investment
required for new developers to become fluent in its use.

The traditional (i.e. mostly command-line based) Linux tools suite (gcc, gdb, etc) and Eclipse offer
two distinct approaches to programming. Most traditional Linux tools are far more flexible, subtle,
and (in aggregate) more powerful than their Eclipse-based counterparts. These traditional Linux
tools, on the other hand, are more difficult to master, and offer more capabilities than are required by
most programmers or projects. Eclipse, by contrast, sacrifices some of these benefits in favor of an
integrated environment, which in turn is suitable for users who prefer their tools accessible in a single,
graphical interface.

1.1. Understanding Eclipse Projects
Eclipse stores all project and user files in a designated workspace. You can have multiple workspaces
and can switch between each one on the fly. However, Eclipse will only be able to load projects
from the current active workspace. To switch between active workspaces, navigate to File > Switch
Workspace > /path/to/workspace. You can also add a new workspace through the Workspace
Launcher wizard; to open this wizard, navigate to File > Switch Workspace > Other.

Figure 1.1. Workspace Launcher

For information about configuring workspaces, refer to Reference > Preferences > Workspace in the
Workbench User Guide (Help Contents).

Chapter 1. Introduction to Eclipse

2

A project can be imported directly into Eclipse if it contains the necessary Eclipse metafiles. Eclipse
uses these files to determine what kind of perspectives, tools, and other user interface configurations
to implement.

As such, when attempting to import a project that has never been used on Eclipse, it may be
necessary to do so through the New Project wizard instead of the Import wizard. Doing so will create
the necessary Eclipse metafiles for the project, which you can also include when you commit the
project.

Figure 1.2. New Project Wizard

The Import wizard is suitable mostly for projects that were created or previously edited in Eclipse, i.e.
projects that contain the necessary Eclipse metafiles.

Help In Eclipse

3

Figure 1.3. Import Wizard

1.2. Help In Eclipse
Eclipse features a comprehensive internal help library that covers nearly every facet of the Integrated
Development Environment (IDE). Every Eclipse documentation plug-in installs its content to this
library, where it is indexed accordingly. To access this library, use the Help menu.

Chapter 1. Introduction to Eclipse

4

Figure 1.4. Help

To open the main Help menu, navigate to Help > Help Contents. The Help menu displays all the
available content provided by installed documentation plug-ins in the Contents field.

Figure 1.5. Help Menu

 Development Toolkits

5

The tabs at the bottom of the Contents field provides different options for accessing Eclipse
documentation. You can navigate through each "book" by section/header or by simply searching
via the Search field. You can also bookmark sections in each book and access them through the
Bookmarks tab.

The Workbench User Guide documents all facets of the Eclipse user interface extensively. It contains
very low-level information on the Eclipse workbench, perspectives, and different concepts useful in
understanding how Eclipse works. The Workbench User Guide is an ideal resource for users with little
to intermediate experience with Eclipse or IDEs in general. This documentation plug-in is installed by
default.

The Eclipse help system also includes a dynamic help feature. This feature opens a new window
in the workbench that displays documentation relating to a selected interface element. To activate
dynamic help, navigate to Help > Dynamic Help.

Figure 1.6. Dynamic Help

The rightmost window in Figure 1.6, “Dynamic Help” displays help topics related to the Outline view,
which is the selected user interface element.

1.3. Development Toolkits
Red Hat Enterprise Linux 6 supports the primary Eclipse development toolkits for C/C++ (CDT) and
Java (JDT). These toolkits provide a set of integrated tools specific to their respective languages.
Both toolkits supply Eclipse GUI interfaces with the required tools for editing, building, running, and
debugging source code.

Each toolkit provides custom editors for their respective language. Both CDT and JDT also provide
multiple editors for a variety of file types used in a project. For example, the CDT supplies different
editors specific for C/C++ header files and source files, along with a Makefile editor.

Toolkit-supplied editors provide error parsing for some file types (without requiring a build), although
this may not be available on projects where cross-file dependencies exist. The CDT source file

Chapter 1. Introduction to Eclipse

6

editor, for example, provides error parsing in the context of a single file, but some errors may only
be visible when a complete project is built. Other common features among toolkit-supplied editors
are colorization, code folding, and automatic indentation. In some cases, other plug-ins provide
advanced editor features such as automatic code completion, hover help, and contextual search; a
good example of such a plug-in is libhover, which adds these extended features to C/C++ editors
(refer to Section 2.2.2, “libhover Plug-in” for more information).

User interfaces for most (if not all) steps in creating a project's target (inary, file, library, etc) are
provided by the build functionalities of each toolkit. Each toolkit also provides Eclipse with the means
to automate as much of the build process as possible, helping you concentrate more on writing code
than building it. Both toolkits also add useful UI elements for finding problems in code preventing a
build; for example, Eclipse sends compile errors to the Problems view. For most error types, Eclipse
allows you to navigate directly to an error's cause (file and code segment) by simply clicking on its
entry in the Problems view.

As is with editors, other plug-ins can also provide extended capabilities for building a project — the
Autotools plug-in, for example, allows you to add portability to a C/C++ project, allowing other
developers to build the project in a wide variety of environments (for more information, refer to
Section 4.3, “Autotools”).

For projects with executable/binary targets, each toolkit also supplies run/debug functionalities to
Eclipse. In most projects, "run" is simply executed as a "debug" action without interruptions. Both
toolkits tie the Debug view to the Eclipse editor, allowing breakpoints to be set. Conversely, triggered
breakpoints open their corresponding functions in code in the editor. Variable values can also be
explored by clicking their names in the code.

For some projects, build integration is also possible. With this, Eclipse automatically rebuilds a project
or installs a "hot patch" if you edit code in the middle of a debugging session. This allows a more
streamlined debug-and-correct process, which some developers prefer.

The Eclipse Help menu provides extensive documentation on both CDT and JDT. For more
information on either toolkit, refer to the Java Development User Guide or C/C++ Development User
Guide in the Eclipse Help Contents.

Chapter 2.

7

The Eclipse Integrated Development
Environment (IDE)
The entire user interface in Figure 2.1, “Eclipse User Interface (default)” is referred to as the Eclipse
workbench. It is generally composed of a code Editor, Project Explorer window, and several views.
All elements in the Eclipse workbench are configurable, and fully documented in the Workbench User
Guide (Help Contents). Refer to Section 2.2, “Useful Hints” for a brief overview on customizing the
user interface.

Eclipse features different perspectives. A perspective is a set of views and editors most useful to
a specific type of task or project; the Eclipse workbench can contain one or more perspectives.
Figure 2.1, “Eclipse User Interface (default)” features the default perspective for C/C++.

Eclipse also divides many functions into several classes, housed inside distinct menu items. For
example, the Project menu houses functions relating to compiling/building a project. The Window
menu contains options for creating and customizing perspectives, menu items, and other user
interface elements. For a brief overview of each main menu item, refer to Reference > C/C++ Menubar
in the C/C++ Development User Guide or Reference > Menus and Actions in the Java Development
User Guide.

The following sections provide a high-level overview of the different elements visible in the default user
interface of the Eclipse integrated development environment (IDE).

2.1. User Interface
The Eclipse workbench provides a user interface for many features and tools essential for every phase
of the development process. This section provides an overview of Eclipse's primary user interface.

Figure 2.1. Eclipse User Interface (default)

Chapter 2. The Eclipse Integrated Development Environment (IDE)

8

Figure 2.1, “Eclipse User Interface (default)” displays the default workbench for C/C++ projects. To
switch between available perspectives in a workbench, press Ctrl+F8. For some hints on perspective
customization, refer to Section 2.2, “Useful Hints”. The figures that follow describe each basic element
visible in the default C/C++ perspective.

Figure 2.2. Eclipse Editor

The Editor is used to write and edit source files. Eclipse can autodetect and load an appropriate
language editor (e.g. C Editor for files ending in .c) for most types of source files. To configure the
settings for the Editor, navigate to Window > Preferences > language (e.g. Java, C++) >
Code Style.

Figure 2.3. Project Explorer

The Project Explorer View provides a hierarchial view of all project resources (binaries, source files,
etc.). You can open, delete, or otherwise edit any files from this view.

User Interface

9

The View Menu button in the Project Explorer View allows you to configure whether projects or
working sets are the top-level items in the Project Explorer View. A working set is a group of projects
arbitrarily classified as a single set; working sets are handy in organizing related or linked projects.

Figure 2.4. Outline Window

The Outline window provides a condensed view of the code in a source file. It details different
variables, functions, libraries, and other structural elements from the selected file in the Editor, all of
which are editor-specific.

Figure 2.5. Console View

Some functions and plugged-in programs in Eclipse send their output to the Console view. This view's
Display Selected Console button allows you to switch between different consoles.

Figure 2.6. Tasks View

Chapter 2. The Eclipse Integrated Development Environment (IDE)

10

The Tasks view allows you to track specially-marked reminder comments in the code. This view
shows the location of each task comment and allows you to sort them in several ways.

Figure 2.7. Sample of Tracked Comment

Most Eclipse editors track comments marked with //FIXME or //TODO tags. Tracked comments
—i.e. task tags—are different for source files written in other languages. To add or configure task
tags, navigate to Window > Preferences and use the keyword task tags to display the task tag
configuration menus for specific editors/languages.

Figure 2.8. Task Properties

Useful Hints

11

Alternatively, you can also use Edit > Add Task to open the task Properties menu (Figure 2.8, “Task
Properties”). This will allow you to add a task to a specific location in a source file without using a task
tag.

Figure 2.9. Problems View

The Problems view displays any errors or warnings that occurred during the execution of specific
actions such as builds, cleans, or profile runs. To display a suggested "quick fix" to a specific problem,
select it and press Ctrl+1.

2.2. Useful Hints
Many Eclipse users learn useful tricks and troubleshooting techniques throughout their experience
with the Eclipse user interface. This section highlights some of the more useful hints that users new
to Eclipse may be interested in learning. The Tips and Tricks section of the Workbench User Guide
contains a more extensive list of Eclipse tips.

2.2.1. The quick access menu
One of the most useful Eclipse tips is to use the quick access menu. Typing a word in the quick
access menu will present a list of Views, Commands, Help files and other actions related to that word.
To open this menu, press Ctrl+3.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

12

Figure 2.10. Quick Access Menu

In Figure 2.10, “Quick Access Menu”, clicking Views > Project Explorer will select the Project
Explorer window. Clicking any item from the Commands, Menus, New, or Preferences categories to
run the selected item. This is similar to navigating to or clicking the respective menu options or taskbar
icons. You can also navigate through the quick access menu using the arrow keys.

It is also possible to view a complete list of all keyboard shortcut commands; to do so, press
Shift+Ctrl+L.

The quick access menu

13

Figure 2.11. Keyboard Shortcuts

To configure Eclipse keyboard shortcuts, press Shift+Ctrl+L again while the Keyboard Shortcuts
list is open.

Figure 2.12. Configuring Keyboard Shortcuts

Chapter 2. The Eclipse Integrated Development Environment (IDE)

14

To customize the current perspective, navigate to Window > Customize Perspective. This will opens
the Customize Perspective menu, allowing the visible tool bars, main menu itmes, command groups,
and short cuts to be configured.

The location of each view within the workbench can be customized by clicking on a view's title and
dragging it to a desired location.

Figure 2.13. Customize Perspective Menu

Figure 2.13, “Customize Perspective Menu” displays the Tool Bar Visibility tab. As the name
suggests, this tab allows you to toggle the visibility of the tool bars (Figure 2.14, “Toolbar”).

Figure 2.14. Toolbar

The following figures display the other tabs in the Customize Perspective Menu:

The quick access menu

15

Figure 2.15. Menu Visibility Tab

The Menu Visibility tab configures what functions are visible in each main menu item. For a brief
overview of each main menu item, refer to Reference > C/C++ Menubar in the C/C++ Development
User Guide or Reference > Menus and Actions in the Java Development User Guide.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

16

Figure 2.16. Command Group Availability Tab

Command groups add functions or options to the main menu or tool bar area. Use the Command
Group Availability tab to add or remove a Command group. The Menubar details and Toolbar
details fields display the functions or options added by the Command group to either Main Menu or
Toolbar Area, respectively.

libhover Plug-in

17

Figure 2.17. Shortcuts Tab

The Shortcuts tab configures what menu items are available under the following submenus:

• File > New

• Window > Open Perspective

• Window > Show View

2.2.2. libhover Plug-in
The libhover plug-in for Eclipse provides plug-and-play hover help support for the GNU C Library
and GNU C++ Standard Library. This allows developers to refer to existing documentation on glibc
and libstdc++ libraries within the Eclipse IDE in a more seamless and convenient manner via hover
help and code completion.

For C++ library resources, libhover needs to index the file using the CDT indexer. Indexing parses
the given file in context of a build; the build context determines where header files come from and
how types, macros, and similar items are resolved. To be able to index a C++ source file, libhover
usually requires you to perform an actual build first, although in some cases it may already know
where the header files are located.

The libhover plug-in may need indexing for C++ sources because a C++ member function name
is not enough information to look up its documentation. For C++, the class name and parameter
signature of the function is also required to determine exactly which member is being referenced. This
is because C++ allows different classes to have members of the same name, and even within a class,
members may have the same name but with different method signatures.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

18

In addition, C++ also has type definitions and templated classes to deal with. Such information
requires parsing an entire file and its associated include files; libhover can only do this via
indexing.

C functions, on the other hand, can be referenced in their documentation by name alone. As such,
libhover does not need to index C source files in order to provide hover help or code completion.
Simply choose an appropriate C header file to be included for a selection.

2.2.2.1. Setup and Usage
Hover help for all installed libhover libraries is enabled by default, and it can be disabled per
project. To disable or enable hover help for a particular project, right-click the project name and click
Properties. On the menu that appears, navigate to C/C++ General > Documentation. Check or
uncheck a library in the Help books section to enable or disable hover help for that particular library.

Figure 2.18. Enabling/Disabling Hover Help

Disabling hover help from a particular library may be preferable, particularly if multiple libhover
libraries overlap in functionality. For example, the newlib library (whose libhover library plug-in is
supported in Red Hat Enterprise Linux 6) contains functions whose names overlap with those in the
GNU C library (provided by default); having libhover plugins for both newlib and glibc installed
would mean having to disable one.

When multiple libhover libraries libraries are enabled and there exists a functional overlap between
libraries, the Help content for the function from the first listed library in the Help books section
will appear in hover help (i.e. in Figure 2.18, “Enabling/Disabling Hover Help”, glibc). For code
completion, libhover will offer all possible alternatives from all enabled libhover libraries.

To use hover help, simply hover the mouse over a function name or member function name in the
C/C++ Editor. After a few seconds, libhover will display library documentation on the selected C
function or C++ member function.

libhover Plug-in

19

Figure 2.19. Using Hover Help

To use code completion, select a string in the code and press Ctrl+Space. This will display all
possible functions given the selected string; click on a possible function to view its description.

Figure 2.20. Using Code Completion

20

Chapter 3.

21

Libraries and Runtime Support
Red Hat Enterprise Linux 6 supports the development of custom applications in a wide variety of
programming languages using proven, industrial-strength tools. This chapter describes the runtime
support libraries provided in Red Hat Enterprise Linux 6.

3.1. Version Information
The following table compares the version information for runtime support packages in supported
programming languages between Red Hat Enterprise Linux 6 and Red Hat Enterprise Linux 5.

This is not an exhaustive list. Instead, this is a survey of standard language runtimes, and key
dependencies for software developed on Red Hat Enterprise Linux 6.

Table 3.1. Language and Runtime Library Versions

Package Name 6 5 4

glibc 2.12 2.5 2.3

libstdc++ 4.4 4.1 3.4

boost 1.41 1.33 1.32

java 1.5 (IBM), 1.6 (IBM,
OpenJDK)

1.4, 1.5, and 1.6 1.4

python 2.6 2.4 2.3

php 5.3 5.1 4.3

ruby 1.8 1.8 1.8

httpd 2.2 2.2 2.0

postgresql 8.4 8.1 7.4

mysql 5.1 5.0 4.1

nss 3.12 3.12 3.12

openssl 1.0.0 0.9.8e 0.9.7a

libX11 1.3 1.0

firefox 3.6 3.6 3.6

kdebase 4.3 3.5 3.3

gtk2 2.18 2.10 2.04

3.2. Compatibility
Compatibility specifies the portability of binary objects and source code across different instances of a
computer operating environment. There are two types of compatibility:

Source Compatibility
Source compatibility specifies that code will compile and execute in a consistent and predictable
way across different instances of the operating environment. This type of compatibility is defined
by conformance with specified Application Programming Interfaces (APIs).

Binary Compatibility
Binary Compatibility specifies that compiled binaries in the form of executables and Dynamic
Shared Objects (DSOs) will run correctly across different instances of the operating environment.

Chapter 3. Libraries and Runtime Support

22

This type of compatibility is defined by conformance with specified Application Binary Interfaces
(ABIs).

3.2.1. API Compatibility
Source compatibility enables a body of application source code to be compiled and operate correctly
on multiple instances of an operating environment, across one or more hardware architectures, as
long as the source code is compiled individually for each specific hardware architecture.

Source compatibility is defined by an Application Programming Interface (API), which is a set of
programming interfaces and data structures provided to application developers. The programming
syntax of APIs in the C programming language are defined in header files. These header files
specify data types and programmatic functions. They are available to programmers for use in their
applications, and are implemented by the operating system or libraries. The syntax of APIs are
enforced at compile time, or when the application source code is compiled to produce executable
binary objectcode.

APIs are classified as:

• De facto standards not formally specified but implied by a particular implementation.

• De jure standards formally specified in standards documentation.

In all cases, application developers should seek to ensure that any behavior they depend on is
described in formal API documentation, so as to avoid introducing dependencies on unspecified
implementation specific semantics or even introducing dependencies on bugs in a particular
implementation of an API. For example, new releases of the GNU C library are not guaranteed to be
compatible with older releases if the old behavior violated a specification.

Red Hat Enterprise Linux by and large seeks to implement source compatibility with a variety of
de jure industry standards developed for Unix operating environments. While Red Hat Enterprise
Linux does not fully conform to all aspects of these standards, the standards documents do provide
a defined set of interfaces, and many components of Red Hat Enterprise Linux track compliance with
them (particularly glibc, the GNU C Library, and gcc, the GNU C/C++/Java/Fortran Compiler). There
are and will be certain aspects of the standards which are not implemented as required on Linux.

3.2.2. ABI Compatibility
Binary compatibility enables a single compiled binary to operate correctly on multiple instances of
an operating environment that share a common hardware architecture (whether that architecture
support is implemented in native hardware or a virtualization layer), but a different underlying software
architecture.

Binary compatibility is defined by an Application Binary Interface (ABI). The ABI is a set of runtime
conventions adhered to by all tools which deal with a compiled binary representation of a program.
Examples of such tools include compilers, linkers, runtime libraries, and the operating system itself.
The ABI includes not only the binary file formats, but also the semantics of library functions which are
used by applications.

3.2.3. Policy
Ideally you should rebuild and repackage your applications for each major release. This will allow you
take advantage of new optimizations in the compiler, as well as new features available in the latest
tools.

However, we understand there are times when it is useful to build one set of binaries that can be
deployed on multiple major releases at once. This is especially useful with old code bases that are not

Static Linking

23

compliant to the latest revision of the language standards available in more recent Red Hat Enterprise
Linux releases.

As such, Red Hat advises that you refer to the Red Hat Enterprise Linux 6 Application Compatibility
Specification4 for guidance. This document outlines Red Hat policy and recommendations regarding
backwards compatibility, particularly for specific packages.

3.2.4. Static Linking
Static linking is emphatically discouraged for all Red Hat Enterprise Linux releases. Static linking
causes far more problems than it solves, and should be avoided at all costs.

The main drawback of static linking is that it is only guaranteed to work on the system it was built, and
even so, only until the next release of glibc or libstdc++ (in the case of C++). There is no forward or
backward compatibility with a static build. Furthermore, any security fixes (or general-purpose fixes) in
subsequent updates to the libraries will not be avilable unless the affected statically linked executables
are re-linked.

Additional reasons to avoid static linking include:

• Larger memory footprint.

• Slower application startup time.

• Reduced glibc features with static linking.

• Security measures like load address randomization cannot be used.

• Dynamic loading of shared objects outside of glibc is not supported.

The above are only a handful of reasons why static linking should be avoided. For additional reasons,
see: Static Linking Considered Harmful5.

3.3. Library and Runtime Details

3.3.1. The GNU C Library
The glibc package contains the GNU C Library. This defines all functions specified by the ISO C
standard, POSIX specific features, some Unix derivatives, and GNU-specific extensions. The most
important set of shared libraries in the GNU C Library are the standard C and math libraries.

The GNU C Library defines its functions through specific header files, which you can declare in source
code. Each header file contains definitions of a group of related facilities; for example, the stdio.h
header file defines I/O-specific facilities, while math.h defines functions for computing mathematical
operations.

3.3.1.1. GNU C Library Updates
The Red Hat Enterprise Linux 6 version of the GNU C Library features the following improvements
over its Red Hat Enterprise Linux 5 version:

• Added locales, including:

4 https://www.redhat.com/f/pdf/rhel/RHEL6_App_Compatibility_WP.pdf
5 http://www.akkadia.org/drepper/no_static_linking.html

http://www.akkadia.org/drepper/no_static_linking.html
http://www.akkadia.org/drepper/no_static_linking.html

Chapter 3. Libraries and Runtime Support

24

• bo_CN

• bo_IN

• shs_CA

• ber_DZ

• ber_MA

• en_NG

• fil_PH

• fur_IT

• fy_DE

• ha_NG

• ig_NG

• ik_CA

• iu_CA

• li_BE

• li_NL

• nds_DE

• nds_NL

• pap_AN

• sc_IT

• tk_TM

• Added new interfaces, namely:

• preadv

• preadv64

• pwritev

• pwritev64

• malloc_info

• mkostemp

• mkostemp64

• Added new Linux-specific interfaces, namely:

• epoll_pwait

The GNU C Library

25

• sched_getcpu

• accept4

• fallocate

• fallocate64

• inotify_init1

• dup3

• epoll_create1

• pipe2

• signalfd

• eventfd

• eventfd_read

• eventfd_write

• Added new checking functions, namely:

• asprintf

• dprintf

• obstack_printf

• vasprintf

• vdprintf

• obstack_vprintf

• fread

• fread_unlocked

• open*

• mq_open

For a more detailed list of updates to the GNU C Library, refer to /usr/share/doc/
glibc-version/NEWS . All changes as of version 2.6 apply to the GNU C Library in Red Hat
Enterprise Linux 6. Some of these changes have also been backported to Red Hat Enterprise Linux 5
versions of glibc.

3.3.1.2. GNU C Library Documentation
The GNU C Library is fully documented in the GNU C Library manual; to access this manual locally,
install glibc-devel and run info libc. An upstream version of this book is also available here:

http://www.gnu.org/software/libc/manual/html_mono/libc.html

http://www.gnu.org/software/libc/manual/html_mono/libc.html

Chapter 3. Libraries and Runtime Support

26

3.3.2. The GNU C++ Standard Library
The libstdc++ package contains the GNU C++ Standard Library, which is an ongoing project to
implement the ISO 14882 Standard C++ library.

Installing the libstdc++ package will provide just enough to satisfy link dependencies (i.e. only
shared library files). To make full use of all available libraries and header files for C++ development,
you must install libstdc++-devel as well. The libstdc++-devel package also contains a GNU-
specific implementation of the Standard Template Library (STL).

As the C++ language and runtime implementation has remained stable throughout Red Hat Enterprise
Linuxes 4, 5, and 6, no compatibility libraries are needed for libstdc++. However, combatability
libraries compat-libstdc++-296 for Red Hat Enterprise Linux 2.1 and compat-libstdc++-33
for Red Hat Enterprise Linux 3 are provided for support.

3.3.2.1. GNU C++ Standard Library Updates
The Red Hat Enterprise Linux 6 version of the GNU C++ Standard Library features the following
improvements over its Red Hat Enterprise Linux 5 version:

• Added support for elements of ISO C++ TR1, namely:

• <tr1/array>

• <tr1/complex>

• <tr1/memory>

• <tr1/functional>

• <tr1/random>

• <tr1/regex>

• <tr1/tuple>

• <tr1/type_traits>

• <tr1/unordered_map>

• <tr1/unordered_set>

• <tr1/utility>

• <tr1/cmath>

• Added support for elements of the upcoming ISO C++ standard, C++0x. These elements include:

• <array>

• <chrono>

• <condition_variable>

• <forward_list>

• <functional>

• <initalizer_list>

The GNU C++ Standard Library

27

• <mutex>

• <random,

• <ratio>

• <regex>

• <system_error>

• <thread>

• <tuple>

• <type_traits

• <unordered_map>

• <unordered_set>

• Added support for the -fvisibility command.

• Added the following extensions:

• __gnu_cxx::typelist

• __gnu_cxx::throw_allocator

For more information about updates to libstdc++ in Red Hat Enterprise Linux 6, refer to the C++
Runtime Library section of the following documents:

• GCC 4.2 Release Series Changes, New Features, and Fixes: http://gcc.gnu.org/gcc-4.2/
changes.html

• GCC 4.3 Release Series Changes, New Features, and Fixes: http://gcc.gnu.org/gcc-4.3/
changes.html

• GCC 4.4 Release Series Changes, New Features, and Fixes: http://gcc.gnu.org/gcc-4.4/
changes.html

3.3.2.2. GNU C++ Standard Library Documentation
To use the man pages for library components, install the libstdc++-docs package. This will provide
man page information for nearly all resources provided by the library; for example, to view information
about the vector container, use its fully-qualified component name:

man std::vector

This will display the following information (abbreviated):

std::vector(3) std::vector(3)

NAME
 std::vector -

 A standard container which offers fixed time access to individual
 elements in any order.

http://gcc.gnu.org/gcc-4.2/changes.html
http://gcc.gnu.org/gcc-4.2/changes.html
http://gcc.gnu.org/gcc-4.3/changes.html
http://gcc.gnu.org/gcc-4.3/changes.html
http://gcc.gnu.org/gcc-4.4/changes.html
http://gcc.gnu.org/gcc-4.4/changes.html

Chapter 3. Libraries and Runtime Support

28

SYNOPSIS
 Inherits std::_Vector_base< _Tp, _Alloc >.

 Public Types
 typedef _Alloc allocator_type
 typedef __gnu_cxx::__normal_iterator< const_pointer, vector >
 const_iterator
 typedef _Tp_alloc_type::const_pointer const_pointer
 typedef _Tp_alloc_type::const_reference const_reference
 typedef std::reverse_iterator< const_iterator >

The libstdc++-docs package also provides manuals and reference information in HTML form at
the following directory:

file:///usr/share/doc/libstdc++-docs-version/html/spine.html

The main site for the development of libstdc++ is hosted on gcc.gnu.org8.

3.3.3. Boost
The boost package contains a large number of free peer-reviewed portable C++ source libraries.
These libraries are suitable for tasks such as portable file-systems and time/date abstraction,
serialization, unit testing, thread creation and multi-process synchronization, parsing, graphing, regular
expression manipulation, and many others.

Installing the boost package will provide just enough to satisfy link dependencies (i.e. only shared
library files). To make full use of all available libraries and header files for C++ development, you must
install boost-devel as well.

The boost package is actually a meta-package, containing many library sub-packages. These sub-
packages can also be installed in an a la carte fashion to provide finer inter-package dependency
tracking. The meta-package inclues all of the following sub-packages:

• boost-date-time

• boost-filesystem

• boost-graph

• boost-iostreams

• boost-math

• boost-program-options

• boost-python

• boost-regex

• boost-serialization

• boost-signals

• boost-system

8 http://gcc.gnu.org/libstdc++

http://gcc.gnu.org/libstdc++
http://gcc.gnu.org/libstdc++

Boost

29

• boost-test

• boost-thread

• boost-wave

Not included in the meta-package are packages for static linking or packages that depend on the
underlying Message Passing Interface (MPI) support.

MPI support is provided in two forms: one for the default Open MPI implementation 10 , and another for
the alternate MPICH2 implementation. The selection of the underlying MPI library in use is up to the
user and depends on specific hardware details and user preferences. For more details, please consult
https://fedoraproject.org/wiki/Packaging:MPI for information on MPI Packaging conventions. Please
note that these packages can be installed in parallel, as installed files have unique directory locations.

For Open MPI:

• boost-openmpi

• boost-openmpi-devel

• boost-graph-openmpi

• boost-openmpi-python

For MPICH2:

• boost-mpich2

• boost-mpich2-devel

• boost-graph-mpich2

• boost-mpich2-python

If static linkage cannot be avoided, the boost-static package will install the necessary static
libraries. Both thread-enabled and single-threaded libraries are provided.

3.3.3.1. Boost Updates
The Red Hat Enterprise Linux 6 version of Boost features many packaging improvements and new
features.

Several aspects of the boost package have changed. As noted above, the monolithic boost
package has been augmented by smaller, more discrete sub-packages. This allows for more control
of dependencies by users, and for smaller binary packages when packaging a custom application that
uses Boost.

In addition, both single-threaded and multi-threaded versions of all libraries are packaged. The multi-
threaded versions include the mt suffix, as per the usual Boost convention.

Boost also features the following new libraries:

• Foreach

10 MPI support is not available on IBM System Z machines (where Open MPI is not available).

https://fedoraproject.org/wiki/Packaging:MPI

Chapter 3. Libraries and Runtime Support

30

• Statechart

• TR1

• Typeof

• Xpressive

• Asio

• Bitmap

• Circular Buffer

• Function Types

• Fusion

• GIL

• Interprocess

• Intrusive

• Math/Special Functions

• Math/Statistical Distributions

• MPI

• System

• Accumulators

• Exception

• Units

• Unordered

• Proto

• Flyweight

• Scope Exit

• Swap

• Signals2

• Property Tree

Many of the existing libraries have been improved, bug-fixed, and otherwise enhanced.

3.3.3.2. Boost Documentation
The boost-doc package provides manuals and reference information in HTML form located in the
following directory:

file:///usr/share/doc/boost-doc-version/index.html

Qt

31

The main site for the development of Boost is hosted on boost.org11.

3.3.4. Qt
The qt package provides the Qt (pronounced "cute") cross-platform application development
framework used in the development of GUI programs. Aside from being a popular "widget toolkit", Qt
is also used for developing non-GUI programs such as console tools and servers. Qt was used in the
development of notable projects such as Google Earth, KDE, Opera, OPIE, VoxOx, Skype, VLC media
player and VirtualBox. It is produced by Nokia's Qt Development Frameworks division, which came
into being after Nokia's acquisition of the Norwegian company Trolltech, the original producer of Qt, on
June 17, 2008.

Qt uses standard C++ but makes extensive use of a special pre-processor called the Meta Object
Compiler (MOC) to enrich the language. Qt can also be used in other programming languages via
language bindings. It runs on all major platforms and has extensive internationalization support. Non-
GUI Qt features include SQL database access, XML parsing, thread management, network support,
and a unified cross-platform API for file handling.

Distributed under the terms of the GNU Lesser General Public License (among others), Qt is free
and open source software. The Red Hat Enterprise Linux 6 version of Qt supports a wide range of
compilers, including the GCC C++ compiler and the Visual Studio suite.

3.3.4.1. Qt Updates
Some of the improvements the Red Hat Enterprise Linux 6 version of Qt include:

• Advanced user experience

• Advanced Graphics Effects:options for opacity, drop-shadows, blur, colorization, and other
similar effects

• Animation and State Machine:create simple or complex animations without the hassle of
managing complex code

• Gesture and multi-touch support

• Support for new platforms

• Windows 7, Mac OSX 10.6, and other desktop platforms are now supported

• Added support for mobile development; Qt is optimized for the upcoming Maemo 6 platform,
and will soon be ported to Maemo 5. In addition, Qt now supports the Symbian platform, with
integration for the S60 framework.

• Added support for Real-Time Operating Systems such as QNX and VxWorks

• Improved performance, featuring added support for hardware-accelerated rendering (along with
other rendering updates)

• Updated cross-platform IDE

For more details on updates to Qt included in Red Hat Enterprise Linux 6, refer to the following links:

• http://doc.qt.nokia.com/4.6/qt4-6-intro.html

11 http://boost.org

http://boost.org
http://doc.qt.nokia.com/4.6/qt4-6-intro.html
http://boost.org

Chapter 3. Libraries and Runtime Support

32

• http://doc.qt.nokia.com/4.6/qt4-intro.html

3.3.4.2. Qt Creator
Qt Creator is a cross-platform IDE tailored to the needs of Qt developers. It includes the following
graphical tools:

• An advanced C++ code editor

• Integrated GUI layout and forms designer

• Project and build management tools

• Integrated, context-sensitive help system

• Visual debugger

• Rapid code navigation tools

For more information about Qt Creator, refer to the following link:

http://qt.nokia.com/products/appdev/developer-tools/developer-tools#qt-tools-at-a

3.3.4.3. Qt Library Documentation
The qt-doc package provides HTML manuals and references located in /usr/share/doc/qt4/
html/. This package also provides the Qt Reference Documentation, which is an excellent starting
point for development within the Qt framework.

You can also install further demos and examples from qt-demos and qt-examples. To get an
overview of the capabilities of the Qt framework, refer to /usr/bin/qtdemo-qt4 (provided by qt-
demos).

For more information on the development of Qt, refer to the following online resources:

• Qt Developer Blogs: http://labs.trolltech.com/blogs/

• Qt Developer Zone: http://qt.nokia.com/developer/developer-zone

• Qt Mailing List: http://lists.trolltech.com/

3.3.5. KDE Development Framework
The kdelibs-devel package provides the KDE libraries, which build on Qt to provide a framework
for making application development easier. The KDE development framework also helps provide
consistency accross the KDE desktop environment.

3.3.5.1. KDE4 Architecture
The KDE development framework's architecture in Red Hat Enterprise Linux 6 uses KDE4, which is
built on the following technologies:

Plasma
Plasma replaces KDesktop in KDE4. Its implementation is based on the Qt Graphics View
Framework, which was introduced in Qt 4.2. For more information about Plasma, refer to http://
techbase.kde.org/Development/Architecture/KDE4/Plasma.

http://doc.qt.nokia.com/4.6/qt4-intro.html
http://qt.nokia.com/products/appdev/developer-tools/developer-tools#qt-tools-at-a
http://labs.trolltech.com/blogs/
http://qt.nokia.com/developer/developer-zone
http://lists.trolltech.com/
http://techbase.kde.org/Development/Architecture/KDE4/Plasma
http://techbase.kde.org/Development/Architecture/KDE4/Plasma

KDE Development Framework

33

Sonnet
Sonnet is a multilingual spell-checking application that supports automatic language detection,
primary/backup dictionaries, and other useful features. It replaces kspell2 in KDE4.

KIO
The KIO library provides a framework for network-transparent file handling, allowing users to
easily access files through network-transparent protocols. It also helps provides standard file
dialogs.

KJS/KHTML
KJS and KHTML are fully-fledged JavaScript and HTML engines used by different applications
native to KDE4 (such as konqueror).

Solid
Solid is a hardware and network awareness framework that allows you to develop applications
with hardware interaction features. Its comprehensive API provides the necessary abstraction
to support cross-platform application development. For more information, refer to http://
techbase.kde.org/Development/Architecture/KDE4/Solid.

Phonon
Phonon is a multimedia framework that helps you develop applications with multimedia
functionalities. It facilitates the usage of media capabilities within KDE. For more information, refer
to http://techbase.kde.org/Development/Architecture/KDE4/Phonon.

Telepathy
Telepathy provides a real-time communication and collaboration framework within
KDE4. Its primary function is to tighten integration between different components
within KDE. For a brief overview on the project, refer to http://community.kde.org/Real-
Time_Communication_and_Collaboration.

Akonadi
Akonadi provides a framework for centralizing storage of Parallel Infrastructure Management
(PIM) components. For more information, refer to http://techbase.kde.org/Development/
Architecture/KDE4/Akonadi.

Online Help within KDE4
KDE4 also features an easy-to-use Qt-based framework for adding online help capabilities to
applications. Such capabilities include tooltips, hover-help information, and khelpcenter manuals.
For a brief overview on online help within KDE4, refer to http://techbase.kde.org/Development/
Architecture/KDE4/Providing_Online_Help.

KXMLGUI
KXMLGUI is a framework for designing user interfaces using XML. This framework allows you
to design UI elements based on "actions" (defined by the developer) without having to revise
source code. For more information, refer to http://developer.kde.org/documentation/library/kdeqt/
kde3arch/xmlgui.html.

Strigi
Strigi is a desktop search daemon compatible with many desktop environments and operating
systems. It uses its own jstream system which allows for deep indexing of files. For more
information on the development of Strigi, refer to http://www.vandenoever.info/software/strigi/.

http://techbase.kde.org/Development/Architecture/KDE4/Solid
http://techbase.kde.org/Development/Architecture/KDE4/Solid
http://techbase.kde.org/Development/Architecture/KDE4/Phonon
http://community.kde.org/Real-Time_Communication_and_Collaboration
http://community.kde.org/Real-Time_Communication_and_Collaboration
http://techbase.kde.org/Development/Architecture/KDE4/Akonadi
http://techbase.kde.org/Development/Architecture/KDE4/Akonadi
http://techbase.kde.org/Development/Architecture/KDE4/Providing_Online_Help
http://techbase.kde.org/Development/Architecture/KDE4/Providing_Online_Help
http://developer.kde.org/documentation/library/kdeqt/kde3arch/xmlgui.html
http://developer.kde.org/documentation/library/kdeqt/kde3arch/xmlgui.html
http://www.vandenoever.info/software/strigi/

Chapter 3. Libraries and Runtime Support

34

KNewStuff2
KNewStuff2 is a collaborative data sharing library used by many KDE4 applications. For more
information, refer to http://techbase.kde.org/Projects/KNS2.

3.3.5.2. kdelibs Documentation
The kdelibs-apidocs package provides HTML documentation for the KDE development framework
in /usr/share/doc/HTML/en/kdelibs4-apidocs/. The following links also provide details on
KDE-related programming tasks:

• http://techbase.kde.org/

• http://techbase.kde.org/Development/Tutorials

• http://techbase.kde.org/Development/FAQs

• http://api.kde.org

3.3.6. Python
The python package adds support for the Python programming language. This package provides the
object and cached bytecode files needed to enable runtime support for basic Python programs. It also
contains the python interpreter and the pydoc documentation tool. The python-devel package
contains the libraries and header files needed for developing Python extensions.

Red Hat Enterprise Linux also ships with numerous python-related packages. By convention, the
names of these packages have a python prefix or suffix. Such packages are either library extensions
or python bindings to an existing library. For instance, dbus-python is a Python language binding for
D-Bus.

Note that both cached bytecode (*.pyc/*.pyo files) and compiled extension modules (*.so files) are
incompatible between Python 2.4 (used in Red Hat Enterprise Linux 5) and Python 2.6 (used in Red
Hat Enterprise Linux 6). As such, you will need to rebuild any extension modules you use that are not
part of Red Hat Enterprise Linux.

3.3.6.1. Python Updates
The Red Hat Enterprise Linux 6 version of Python features various language changes. For information
about these changes, refer to the following project resources:

• What's New in Python 2.5: http://docs.python.org/whatsnew/2.5.html

• What's New in Python 2.6: http://docs.python.org/whatsnew/2.6.html

Both resources also contain advice on porting code developed using previous Python versions.

3.3.6.2. Python Documentation
For more information about Python, refer to man python. You can also install python-docs, which
provides HTML manuals and references in the following location:

file:///usr/share/doc/python-docs-version/html/index.html

For details on library and language components, use pydoc component_name. For example, pydoc
math will display the following information about the math Python module:

http://techbase.kde.org/Projects/KNS2
http://techbase.kde.org/
http://techbase.kde.org/Development/Tutorials
http://techbase.kde.org/Development/FAQs
http://api.kde.org
http://docs.python.org/whatsnew/2.5.html
http://docs.python.org/whatsnew/2.6.html

Java

35

Help on module math:

NAME
 math

FILE
 /usr/lib64/python2.6/lib-dynload/mathmodule.so

DESCRIPTION
 This module is always available. It provides access to the
 mathematical functions defined by the C standard.

FUNCTIONS
 acos[...]
 acos(x)

 Return the arc cosine (measured in radians) of x.

 acosh[...]
 acosh(x)

 Return the hyperbolic arc cosine (measured in radians) of x.

 asin(...)
 asin(x)

 Return the arc sine (measured in radians) of x.

 asinh[...]
 asinh(x)

 Return the hyperbolic arc sine (measured in radians) of x.

The main site for the Python development project is hosted on python.org13.

3.3.7. Java
The java-1.6.0-openjdk package adds support for the Java programming language. This
package provides the java interpreter. The java-1.6.0-openjdk-devel package contains the
javac compiler, as well as the libraries and header files needed for developing Java extensions.

Red Hat Enterprise Linux also ships with numerous java-related packages. By convention, the names
of these packages have a java prefix or suffix.

3.3.7.1. Java Documentation
For more information about Java, refer to man java. Some associated utilities also have their own
respective man pages.

You can also install other Java documentation packages for more details about specific Java utilities.
By convention, such documentation packages have the javadoc suffix (e.g. dbus-java-javadoc).

The main site for the development of Java is hosted on http://www.java.com. The main site for the
library runtime of Java is hosted on http://icedtea.classpath.org.

13 http://python.org

http://python.org
http://www.java.com
http://icedtea.classpath.org
http://python.org

Chapter 3. Libraries and Runtime Support

36

3.3.8. Ruby
The ruby package provides the Ruby interpreter and adds support for the Ruby programming
language. The ruby-devel package contains the libraries and header files needed for developing
Ruby extensions.

Red Hat Enterprise Linux also ships with numerous ruby-related packages. By convention, the
names of these packages have a ruby or rubygem prefix or suffix. Such packages are either library
extensions or Ruby bindings to an existing library. For instance, ruby-dbus is a Ruby language
binding for D-Bus.

Examples of ruby-related packages include:

• ruby-flexmock

• rubygem-flexmock

• rubygems

• ruby-irb

• ruby-libguestfs

• ruby-libs

• ruby-qmf

• ruby-qpid

• ruby-rdoc

• ruby-ri

• ruby-saslwrapper

• ruby-static

• ruby-tcltk

For information about updates to the Ruby language in Red Hat Enterprise Linux 6, refer to the
following resources:

• file:///usr/share/doc/ruby-version/NEWS

• file:///usr/share/doc/ruby-version/NEWS-version

3.3.8.1. gem2rpm
When packaging architecture-dependent gems, the gem2rpm tool may not work as expected on a Red
Hat Enterprise Linux 6 default ruby environment. For information on how to work around this, refer to
http://fedoraproject.org/wiki/Packaging/Ruby#Ruby_Gems.

3.3.8.2. Ruby Documentation
For more information about Ruby, refer to man ruby. You can also install ruby-docs, which provides
HTML manuals and references in the following location:

file:///usr/share/doc/ruby-docs-version/

http://fedoraproject.org/wiki/Packaging/Ruby#Ruby_Gems

Perl

37

The main site for the development of Ruby is hosted on http://www.ruby-lang.org. The http://www.ruby-
doc.org site also contains Ruby documentation.

3.3.9. Perl
The perl package adds support for the Perl programming language. This package provides Perl core
modules, the Perl Language Interpreter, and the PerlDoc tool.

Red Hat also provides various perl modules in package form; these packages are named with the
perl-* prefix. These modules provide stand-alone applications, language extensions, Perl libraries,
and external library bindings.

3.3.9.1. Perl Updates
Red Hat Enterprise Linux 6.0 ships with perl-5.10.1. If you are running an older system, rebuild or
alter external modules and applications accordingly in order to ensure optimum performance.

For a full list of the differences between the Perl versions refer to the following documents:

• Perl 5.10 delta: http://perldoc.perl.org/perl5100delta.html

• Perl 5.10.1 delta: http://perldoc.perl.org/perl5101delta.html

3.3.9.2. Installation
Perl's capabilities can be extended by installing additional modules. These modules come in the
following forms:

Official Red Hat RPM
The official module packages can be installed with yum or rpm from the Red Hat Enterprise Linux
repositories. They are installed to /usr/share/perl5 and either /usr/lib/perl5 for 32bit
architectures or /usr/lib64/perl5 for 64bit architectures.

Modules from CPAN
Use the cpan tool provided by the perl-CPAN package to install modules directly from the CPAN
website. They are installed to /usr/local/share/perl5 and either /usr/local/lib/perl5
for 32bit architectures or /usr/local/lib64/perl5 for 64bit architectures.

Third party module package
Third party modules are installed to /usr/share/perl5/vendor_perl and either /usr/lib/
perl5/vendor_perl for 32bit architectures or /usr/lib64/perl5/vendor_perl for 64bit
architectures.

Custom module package / manually installed module
These should be placed in the same directories as third party modules. That is, /usr/share/
perl5/vendor_perl and either /usr/lib/perl5/vendor_perl for 32bit architectures or /
usr/lib64/perl5/vendor_perl for 64bit architectures.

Warning

If an official version of a module is already installed, installing its non-official version can create
conflicts in the /usr/share/man directory.

http://www.ruby-lang.org
http://www.ruby-doc.org
http://www.ruby-doc.org
http://perldoc.perl.org/perl5100delta.html
http://perldoc.perl.org/perl5101delta.html

Chapter 3. Libraries and Runtime Support

38

3.3.9.3. Perl Documentation
The perldoc tool provides documentation on language and core modules. To learn more about a
module, use perldoc module_name. For example, perldoc CGI will display the following information
about the CGI core module:

NAME
 CGI - Handle Common Gateway Interface requests and responses

SYNOPSIS
 use CGI;

 my $q = CGI->new;

[...]

DESCRIPTION
 CGI.pm is a stable, complete and mature solution for processing and preparing HTTP requests
 and responses. Major features including processing form submissions, file uploads, reading
 and writing cookies, query string generation and manipulation, and processing and preparing
 HTTP headers. Some HTML generation utilities are included as well.

[...]

PROGRAMMING STYLE
 There are two styles of programming with CGI.pm, an object-oriented style and a function-
oriented style. In the object-oriented style you create one or more CGI objects and then use
 object methods to create the various elements of the page. Each CGI object starts out with
 the list of named parameters that were passed to your CGI script by the server.

[...]

For details on Perl functions, use perldoc -f function_name. For example, perldoc -f split wil
display the following indormation about the split function:

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split Splits the string EXPR into a list of strings and returns that list. By default,
 empty leading fields are preserved, and empty trailing ones are deleted. (If all fields are
 empty, they are considered to be trailing.)

In scalar context, returns the number of fields found. In scalar and void context it splits
 into the @_ array. Use of split in scalar and void context is deprecated, however, because
 it clobbers your subroutine arguments.

If EXPR is omitted, splits the $_ string. If PATTERN is also omitted, splits on whitespace
 (after skipping any leading whitespace). Anything matching PATTERN is taken to be
 a delimiter separating the fields. (Note that the delimiter may be longer than one
 character.)

[...]

Current PerlDoc documentation can be found on perldoc.perl.org19.

Core and external modules are documented on the Comprehensive Perl Archive Network20.

19 http://perldoc.perl.org/
20 http://www.cpan.org/

http://perldoc.perl.org/
http://www.cpan.org/
http://perldoc.perl.org/
http://www.cpan.org/

Chapter 4.

39

Compiling and Building
Red Hat Enterprise Linux 6 includes many packages used for software development, inluding tools for
compiling and building source code. This chapter discusses several of these packages and tools used
to compile source code.

4.1. GNU Compiler Collection (GCC)
The GNU Compiler Collection (GCC) is a set of tools for compiling a variety of programming
languages (including C, C++, ObjectiveC,ObjectiveC++, Fortran, and Ada) into highly optimized
machine code. These tools include various compilers (like gcc and g++), run-time libraries (like
libgcc, libstdc++, libgfortran, and libgomp), and miscellaneous other utilities.

4.1.1. GCC Status and Features
GCC for Red Hat Enterprise Linux 6 is based on the 4.4.x release series and includes several bug
fixes, enhancements, and backports from upcoming releases (including the GCC 4.5). However, GCC
4.5 was not considered sufficiently mature for an enterprise distribution when RHEL6 features were
frozen.

This standardization means that as updates to the 4.4 series become available (4.4.1, 4.4.2, ect),
they will be incorporated into the compiler included with RHEL6 as updates. Red Hat may import
additional backports and enhancements from upcoming releases outside the 4.4 series that won't
break compatibility within the Enterprise Linux release. Occassionally, code that was not compliant
to standards may fail to compile or its functionality may change in the process of fixing bugs or
maintaining standards compliant behavior.

Since the previous release of Red Hat Enterprise Linux, GCC has had three major releases: 4.2.x,
4.3.x, and 4.4.x. A selective summary of the expansive list of changes follows.

• The inliner, dead code elimination routines, compile time, and memory usage codes are now
improved. This release also features a new register allocator, instruction scheduler, and software
pipeliner.

• Version 3.0 of the OpenMP specification is now supported for the C, C++, and Fortran compilers.

• Experimental support for the upcoming ISO C++ standard (C++0x) is included. This has support
for auto/inline namespaces, character types, and scoped enumerations. To enable this, use the
compiler options -std=c++0x (which disables GNU extensions) or -std=gnu++0x.

For a more detailed list of the status of C++0x improvements, refer to:

http://gcc.gnu.org/gcc-4.4/cxx0x_status.html

• GCC now incorporates the Variable Tracking at Assignments (VTA) infrastructure. This allows GCC
to better track variables during optimizations so that it can produce improved debugging information
(i.e. DWARF) for the Gnome Debugger, SystemTap, and other tools. For a brief overview of VTA,
refer to Section 5.3, “Variable Tracking at Assignments”.

With VTA you can debug optimized code drastically better than with previous GCC releases, and
you do not have to compile with -O0 to provide a better debugging experience.

• Fortran 2008 is now supported, while support for Fortran 2003 is extended.

For a more detailed list of improvements in GCC, refer to:

http://gcc.gnu.org/gcc-4.4/cxx0x_status.html

Chapter 4. Compiling and Building

40

• Updates in the 4.2 Series: http://gcc.gnu.org/gcc-4.2/changes.html

• Updates in the 4.3 Series: http://gcc.gnu.org/gcc-4.3/changes.html

• Updates in the 4.4 Series: http://gcc.gnu.org/gcc-4.4/changes.html

In addition to the changes introduced via the GCC 4.4 rebase, the Red Hat Enterprise Linux 6 version
of GCC also features several fixes and enhancements backported from upstream sources (i.e. version
4.5 and beyond). These improvements include the following (among others):

• Improved DWARF3 debugging for debugging optimized C++ code.

• Fortran optimization improvements.

• More accurate instruction length information for ix86, Intel 64 and AMD64, and s390.

• Intel Atom support

• POWER7 support

• C++ raw string support, u/U/u8 string literal support

4.1.2. Language Compatibility
Application Binary Interfaces specified by the GNU C, C++, Fortran and Java Compiler include:

• Calling conventions. These specify how arguments are passed to functions and how results are
returned from functions.

• Register usage conventions. These specify how processor registers are allocated and used.

• Object file formats. These specify the representation of binary object code.

• Size, layout, and alignment of data types. These specify how data is laid out in memory.

• Interfaces provided by the runtime environment. Where the documented semantics do not change
from one version to another they must be kept available and use the same name at all times.

The default system C compiler included with Red Hat Enterprise Linux 6 is largely compatible with the
C99 ABI standard. Deviations from the C99 standard in GCC 4.4 are tracked online3.

In addition to the C ABI, the Application Binary Interface for the GNU C++ Compiler specifies the
binary interfaces needed to support the C++ language, such as:

• Name mangling and demangling

• Creation and propagation of exceptions

• Formatting of run-time type information

• Constructors and destructors

• Layout, alignment, and padding of classes and derived classes

• Virtual function implementation details, such as the layout and alignment of virtual tables

3 http://gcc.gnu.org/gcc-4.4/c99status.html

http://gcc.gnu.org/gcc-4.2/changes.html
http://gcc.gnu.org/gcc-4.3/changes.html
http://gcc.gnu.org/gcc-4.4/changes.html
http://gcc.gnu.org/gcc-4.4/c99status.html
http://gcc.gnu.org/gcc-4.4/c99status.html

Language Compatibility

41

The default system C++ compiler included with Red Hat Enterprise Linux 6 conforms to the C++ ABI
defined by the Itanium C++ ABI (1.86)4.

Although every effort has been made to keep each version of GCC compatibile with previous releases,
some incompatibilities do exist.

ABI incompatibilities between RHEL6 and RHEL5
The following is a list of known incompatibilities between the Red Hat Enterprise Linux 6 and 5
toolchains.

• Passing/returning structs with flexible array members by value changed in some cases on Intel 64
and AMD64.

• Passing/returning of unions with long double members by value changed in some cases on Intel 64
and AMD64.

• Passing/returning structs with complex float member by value changed in some cases on Intel 64
and AMD64.

• Passing of 256-bit vectors on x86, Intel 64 and AMD64 platforms changed when -mavx is used.

• There have been multiple changes in passing of _Decimal{32,64,128} types and aggregates
containing those by value on several targets.

• Packing of packed char bitfields changed in some cases.

ABI incompatibilities between RHEL5 and RHEL4
The following is a list of known incompatibilities between the Red Hat Enterprise Linux 5 and 4
toolchains.

• There have been changes in the library interface specified by the C++ ABI for thread-safe
initialization of function-scope static variables.

• On Intel 64 and AMD64, the medium model for building applications where data segment
exceeds 4GB, was redesigned to match the latest ABI draft at the time. The ABI change results in
incompatibility among medium model objects.

The compiler flag -Wabi can be used to get diagnostics indicating where these constructs appear in
source code, though it will not catch every single case. This flag is especially useful for C++ code to
warn whenever the compiler generates code that is known to be incompatible with the vendor-neutral
C++ ABI.

Excluding the incompatibilities listed above, the GCC C and C++ language ABIs are mostly ABI
compatible. The vast majority of source code will not encounter any of the known issues, and can be
considered compatible.

Compatible ABIs allow the objects created by compiling source code to be portable to other systems.
In particular, for Red Hat Enterprise Linux, this allows for upward compatibility. Upward compatibility is
defined as the ability to link shared libraries and objects, created using a version of the compilers in a
particular RHEL release, with no problems. This includes new objects compiled on subsequent RHEL
releases.

4 http://www.codesourcery.com/cxx-abi/

http://www.codesourcery.com/cxx-abi/
http://www.codesourcery.com/cxx-abi/

Chapter 4. Compiling and Building

42

The C ABI is considered to be stable, and has been so since at least RHEL3 (again, barring any
incompatibilities mentioned in the above lists). Libraries built on RHEL3 and later can be linked to
objects created on a subsequent environment (RHEL4, RHEL5, and RHEL6).

The C++ ABI is considered to be stable, but less stable than the C ABI, and only as of RHEL4
(corresponding to GCC version 3.4 and above.). As with C, this is only an upward compatibility.
Libraries built on RHEL4 and above can be linked to objects created on a subsequent environment
(RHEL5, and RHEL6).

To force GCC to generate code compatible with the C++ ABI in RHEL releases prior to RHEL4, some
developers have used the -fabi-version=1 option. This practice is not recommended. Objects
created this way are indistinguishable from objects conforming to the current stable ABI, and can be
linked (incorrectly) amongst the different ABIs, especially when using new compilers to generate code
to be linked with old libraries that were built with tools prior to RHEL4.

Warning

The above incompatibilities make it incredibly difficult to maintain ABI shared library sanity
between releases, especially if when developing custom libraries with multiple dependencies
outside of the core libraries. Therefore, if shared libraries are developed, it is highly recommend
that a new version is built for each Red Hat Enterprise Linux release.

4.1.3. Object Compatibility and Interoperability
Two items that are important are the changes and enhancements in the underlying tools used by the
compiler, and the compatibility between the different versions of a language's compiler.

Changes and new features in tools like ld (distributed as part of the binutils package) or in the
dynamic loader (ld.so, distributed as part of the glibc package) can subtly change the object files
that the compiler produces. These changes mean that object files moving to the current release of Red
Hat Enterprise Linux from previous releases may loose functionality, behave differently at runtime, or
otherwise interoperate in a diminished capacity. Known problem areas include:

• ld --build-id

In RHEL6 this is passed to ld by default, whereas RHEL5 ld doesn't recognize it.

• as .cfi_sections support

In RHEL6 this directive allows .debug_frame, .eh_frame or both to be emitted from .cfi*
directives. In RHEL5 only .eh_frame is emitted.

• as, ld, ld.so, and gdb STB_GNU_UNIQUE and %gnu_unique_symbol support

In RHEL6 more debug information is generated and stored in object files. This information relies
on new features detailed in the DWARF standard, and also on new extensions not yet standardized.
In RHEL5, tools like as, ld, gdb, objdump, and readelf may not be prepared for this new
information and may fail to interoperate with objects created with the newer tools. In addition,
RHEL5 produced object files do not support these new features; these object files may be handled
by RHEL6 tools in a sub-optimal manner.

An outgrowth of this enhanced debug information is that the debuginfo packages that ship with
system libraries allow you to do useful source level debugging into system libraries if they are
installed. Refer to Section 5.1, “Installing Debuginfo Packages” for more information on debuginfo
packages.

Backwards Compatibility Packages

43

Object file changes, such as the ones listed above, may interfere with the portable use of prelink.

4.1.4. Backwards Compatibility Packages
Several packages are provided to serve as an aid for those moving source code or executables from
older versions of Red Hat Enterprise Linux to the current release. These packages are intended to
be used as a temporary aid in transitioning sources to newer compilers with changed behavior, or
as a convenient way to otherwise isolate differences in the system environment from the compile
environment.

Note

Please be advised that Red Hat may remove these packages in future Red Hat Enterprise Linux
releases.

The following packages provide compatibility tools for compiling Fortran or C++ source code on the
current release of Red Hat Enterprise Linux 6 as if one was using the older compilers on Red Hat
Enterprise Linux 4:

• compat-gcc-34

• compat-gcc-34-c++

• compat-gcc-34-g77

The following package provides a compatibility runtime library for Fortran exectuables compiled on
Red Hat Enterprise Linux 5 to run without recompilation on the current release of Red Hat Enterprise
Linux 6:

• compat-libgfortran-41

Please note that backwards compatibility library packages are not provided for all supported system
libraries, just the system libraries pertaining to the compiler and the C/C++ standard libraries.

For more information about backwards compatibility library packages, refer to the Application
Compatibility section of the Red Hat Enterprise Linux 6 Migration Guide.

4.1.5. Previewing RHEL6 compiler features on RHEL5
On Red Hat Enterprise Linux 5, we have included the package gcc44 as an update. This is a backport
of the RHEL6 compiler to allow users running RHEL5 to compile their code with the RHEL6 compiler
and experiment with new features and optimizations before upgrading their systems to the next major
release. The resulting binary will be forward compatible with RHEL6, so one can compile on RHEL5
with gcc44 and run on RHEL5, RHEL6, and above.

The RHEL5 gcc44 compiler will be kept reasonably in step with the GCC 4.4.x that we ship with
RHEL6 to ease transition. Though, to get the latest features, it is recommended RHEL6 is used for
development. The gcc44 is only provided as an aid in the conversion process.

4.1.6. Running GCC
To compile using GCC tools, first install binutils and gcc; doing so will also install several
dependencies.

Chapter 4. Compiling and Building

44

In brief, the tools work via the gcc command. This is the main driver for the compiler. It can be used
from the command line to pre-process or compile a source file, link object files and libraries, or perform
a combination thereof. By default, gcc takes care of the details and links in the provided libgcc
library.

The compiler functions provided by GCC are also integrated into the Eclipse IDE as part of the CDT.
This presents many advantages, particularly for developers who prefer a graphical interface and
fully integrated environment. For more information about compiling in Eclipse, refer to Section 1.3, “
Development Toolkits”.

Conversely, using GCC tools from the command-line interface consumes less system resources. This
also allows finer-grained control over compilers; GCC's command-line tools can even be used outside
of the graphical mode (runlevel 5).

4.1.6.1. Simple C Usage
Basic compilation of a C language program using GCC is easy. Start with the following simple
program:

hello.c

#include <stdio.h>

int main ()
{
 printf ("Hello world!\n");
 return 0;
}

The following procedure illustrates the compilation process for C in its most basic form.

Procedure 4.1. Compiling a 'Hello World' C Program
1. Compile hello.c into an executable with:

gcc hello.c -o hello

Ensure that the resulting binary hello is in the same directory as hello.c.

2. Run the hello binary, i.e. hello.

4.1.6.2. Simple C++ Usage
Basic compilation of a C++ language program using GCC is similar. Start with the following simple
program:

hello.cc

#include <iostream>

using namespace std;

int main(void)
{
 cout << "Hello World!" << endl;
 return 0;

Running GCC

45

}

The following procedure illustrates the compilation process for C++ in its most basic form.

Procedure 4.2. Compiling a 'Hello World' C++ Program
1. Compile hello.cc into an executable with:

g++ hello.cc -o hello

Ensure that the resulting binary hello is in the same directory as hello.cc.

2. Run the hello binary, i.e. hello.

4.1.6.3. Simple Multi-File Usage
To use basic compilation involving multiple files or object files, start with the following two source files:

one.c

#include <stdio.h>
void hello()
{
 printf("Hello world!\n");
}

two.c

extern void hello();

int main()
{
 hello();
 return 0;
}

The following procedure illustrates a simple, multi-file compilation process in its most basic form.

Procedure 4.3. Compiling a Program with Muiltiple Source Files
1. Compile one.c into an executable with:

gcc -c one.c -o one.o

Ensure that the resulting binary one.o is in the same directory as one.c.

2. Compile two.c into an executable with:

gcc -c two.c -o two.o

Ensure that the resulting binary two.o is in the same directory as two.c.

3. Compile the two object files one.o and two.o into a single executable with:

gcc one.o two.o -o hello

Ensure that the resulting binary hello is in the same directory as one.o and two.o.

4. Run the hello binary, i.e. hello.

Chapter 4. Compiling and Building

46

4.1.6.4. Recommended Optimization Options
Different projects require different optimization options. There is no one-size-fits-all approach when it
comes to optimization, but here are a few guidelines to keep in mind.

Instruction selection and tuning
It is very important to chose the correct architecture for instruction scheduling. By default GCC
produces code is optimized for the most common processors, but if the CPU on which your code will
run is known, the corresponding -mtune= option to optimize the instruction scheduling, and -march=
option to optimize the instruction selection should be used.

The option -mtune= optimizes instruction scheduling to fit your architecture by tuning everything
except the ABI and the available instruction set. This option will not chose particular instructions,
but instead will tune your program in such a way that executing on a particular architecture will be
optimized. For example, if an Intel Core2 CPU will predominantly be used, choose -march=core2.
If the wrong choice is made, the program will still run, but not optimally on the given architecture. The
architecture on which the program will most likely run should always be chosen.

The option -march= optimizes instruction selection. As such, it is important to choose correctly as
choosing incorrectly will cause your program to fail. This option selects the instruction set used when
generating code. For example, if the program will be run on an AMD K8 core based CPU, choose -
march=k8. Specifying the architecture with this option will imply -mtune=.

The -mtune= and -march= commands should only be used for tuning and selecting instructions
within a given architecture, not to generate code for a different architecture (also known as cross-
compiling). For example, this is not to be used to generate PowerPC code from an Intel 64 and
AMD64 platform.

For a complete list of the available options for both -march= and -mtune=, refer to the GCC
documention available here: GCC 4.4.4 Manual: Hardware Models and Configurations5

General purpose optimization flags
The compiler flag -O2 is a good middle of the road option to generate fast code. It produces the best
optimized code when the resulting code size is not large. Use this when unsure what would best suit.

When code size is not an issue, -O3 is preferrable. This option produces code that is slightly larger
but runs faster because of a more frequent inline of functions. This is ideal for floating point intensive
code.

The other general purpose optimization flag is -Os. This flag also optimizes for size, and produces
faster code in situations where a smaller footprint will increase code locality, thereby reducing cache
misses.

Use -frecord-gcc-switches when compiling objects. This records the options used to build
objects into objects themselves. After an object is built, it determines which set of options were used
to build it. The set of options are then recorded in a section called .GCC.command.line within the
object and can be examined with the following:

$ gcc -frecord-gcc-switches -O3 -Wall hello.c -o hello
$ readelf --string-dump=.GCC.command.line hello

5 http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Submodel-Options.html#Submodel-Options

http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Submodel-Options.html#Submodel-Options
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Submodel-Options.html#Submodel-Options

Running GCC

47

String dump of section '.GCC.command.line':
 [0] hello.c
 [8] -mtune=generic
 [17] -O3
 [1b] -Wall
 [21] -frecord-gcc-switches

It is very important to test and try different options with a representative data set. Often, different
modules or objects can be compiled with different optimization flags in order to produce optimal
results. Refer to Section 4.1.6.5, “Using Profile Feedback to Tune Optimization Heuristics.” for
additional optimization tuning.

4.1.6.5. Using Profile Feedback to Tune Optimization Heuristics.
During the transformation of a typical set of source code into an executable, tens of hundreds of
choices must be made about the importance of speed in one part of code over another, or code size
as opposed to code speed. By default, these choices are made by the compiler using reasonable
heuristics, tuned over time to produce the optimum runtime performance. However, GCC also has
a way to teach the compiler to optimize executables for a specific machine in a specific production
environment. This feature is called profile feedback.

Profile feedback is used to tune optimizations such as:

• Inlining

• Branch prediction

• Instruction scheduling

• Inter-procedural constant propagation

• determining of hot or cold functions

Profile feedback compiles a program first to generate a program that is run and analyzed and then a
second time to optimize with the gathered data.

Procedure 4.4. Using Profile Feedback
1. Step One

The application must be instrumented to produce profiling information by compiling it with -
fprofile-generate.

2. Step Two
Run the application to accumulate and save the profiling information.

3. Step Three
Recompile the application with -fprofile-use.

Step three will use the profile information gathered in step one to tune the compiler's heuristics while
optimizing the code into a final executable.

Procedure 4.5. Compiling a Program with Profiling Feedback
1. Compile source.c to include profiling instrumentation:

gcc source.c -fprofile-generate -O2 -o executable

2. Run executable to gather profiling information:

./executable

Chapter 4. Compiling and Building

48

3. Recompile and optimize source.c with profiling information gathered in step one:

gcc source.c -fprofile-use -O2 -o executable

Multiple data collection runs, as seen in step two, will accumulate data into the profiling file instead
of replacing it. This allows the executable in step two to be run multiple times with additional
representative data in order to collect even more information.

The executable must run with representative levels of both the machine being used and a respective
data set large enough for the input needed. This ensures optimal results are achieved.

By default, GCC will generate the profile data into the directory where step one was performed. To
generate this information elsewhere, compile with -fprofile-dir=DIR where DIR is the preferred
output directory.

Warning

The format of the compiler feedback data file changes between compiler versions. It is imperative
that the program compilation is repeated with every new version of the compiler.

4.1.6.6. Using 32-bit compilers on a 64-bit host
On a 64-bit host, GCC will build executables that can only run on 64-bit hosts. However, GCC can be
used to build executables that will run both on 64-bit hosts and on 32-bit hosts.

To build 32-bit binaries on a 64-bit host, first install 32-bit versions of any supporting libraries the
executable may need. This must at least include supporting libraries for glibc and libgcc, and
possibly for libstdc++ if the program is a C++ program. On Intel 64 and AMD64, this can be done
with:

yum install glibc-devel.i686 libgcc.i686 libstdc++-devel.i686

There may be cases where it is useful to to install additional 32-bit libraries that a program may need.
For example, if a program uses the db4-devel libraries to build, the 32-bit version of these libraries
can be installed with:

yum install db4-devel.i686

Note

The .i686 suffix on the x86 platform (as opposed to x86-64) specifies a 32-bit version of the
given package. For PowerPC architectures, the suffix is ppc (as opposed to ppc64).

After the 32-bit libraries have been installed, the -m32 option can be passed to the compiler and
linker to produce 32-bit executables. Provided the supporting 32-bit libraries are installed on teh 64-bit
system, this executable will be able to run on both 32-bit systems and 64-bit systems.

Procedure 4.6. Compiling a 32-bit Program on a 64-bit Host
1. On a 64-bit system, compile hello.c into a 64-bit executable with:

gcc hello.c -o hello64

2. Ensure that the resulting executable is a 64-bit binary:

Running GCC

49

$ file hello64
hello64: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), dynamically linked
 (uses shared libs), for GNU/Linux 2.6.18, not stripped
$ ldd hello64
linux-vdso.so.1 => (0x00007fff242dd000)
libc.so.6 => /lib64/libc.so.6 (0x00007f0721514000)
/lib64/ld-linux-x86-64.so.2 (0x00007f0721893000)

The command file on a 64-bit executable will include ELF 64-bit in its output, and ldd will
list /lib64/libc.so.6 as the main C library linked.

3. On a 64-bit system, compile hello.c into a 32-bit executable with:

gcc -m32 hello.c -o hello32

4. Ensure that the resulting executable is a 32-bit binary:

$ file hello32
hello32: ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux), dynamically
 linked (uses shared libs), for GNU/Linux 2.6.18, not stripped
$ ldd hello32
linux-gate.so.1 => (0x007eb000)
libc.so.6 => /lib/libc.so.6 (0x00b13000)
/lib/ld-linux.so.2 (0x00cd7000)

The command file on a 32-bit executable will include ELF 32-bit in its output, and ldd will
list /lib/libc.so.6 as the main C library linked.

If you have not installed the 32-bit supporting libraries you will get an error similar to this for C code:

$ gcc -m32 hello32.c -o hello32
/usr/bin/ld: crt1.o: No such file: No such file or directory
collect2: ld returned 1 exit status

A similar error would be triggered on C++ code:

$ g++ -m32 hello32.cc -o hello32-c++
In file included from /usr/include/features.h:385,
 from /usr/lib/gcc/x86_64-redhat-linux/4.4.4/../../../../include/c++/4.4.4/x86_64-redhat-
linux/32/bits/os_defines.h:39,
 from /usr/lib/gcc/x86_64-redhat-linux/4.4.4/../../../../include/c++/4.4.4/x86_64-redhat-
linux/32/bits/c++config.h:243,
 from /usr/lib/gcc/x86_64-redhat-linux/4.4.4/../../../../include/c++/4.4.4/iostream:39,
 from hello32.cc:1:
/usr/include/gnu/stubs.h:7:27: error: gnu/stubs-32.h: No such file or directory

These errors indicate that the supporting 32-bit libraries have not been properly installed as explained
at the beginning of this section.

It is important to note that even if 32-bit binaries can run on 64-bit systems, it is preferrable to have
64-bit binaries unless otherwise needed. In order to run 32-bit binaries on 64-bit systems, the system
must import additional 32-bit shared libraries that must be loaded in tandem with the 64-bit libraries
(for example glibc). This causes additional memory usage on such systems. It is always preferrable to
have 64-bit binaries for 64-bit systems and 32-bit binaries for 32-bit systems.

Chapter 4. Compiling and Building

50

Also important is to note that building with -m32 will in not adapt or convert a program to resolve any
issues arising from 32/64-bit incompatibilities. For tips on writing portable code and converting from
32-bits to 64-bits, see the paper entitled Porting to 64-bit GNU/Linux Systems in the Proceedings of
the 2003 GCC Developers Summit6.

4.1.7. GCC Documentation
For more information about GCC compilers, refer to the man pages for cpp, gcc, g++, gcj, and
gfortran.

the following online user manuals are also available:

• GCC 4.4.4 Manual7

• GCC 4.4.4 GNU Fortran Manual8

• GCC 4.4.4 GCJ Manual9

• GCC 4.4.4 CPP Manual10

• GCC 4.4.4 GNAT Reference Manual11

• GCC 4.4.4 GNAT User's Guide12

• GCC 4.4.4 GNU OpenMP Manual13

The main site for the development of GCC is gcc.gnu.org14.

4.2. Distributed Compiling
Red Hat Enterprise Linux 6 also supports distributed compiling. This involves transforming one
compile job into many smaller jobs; these jobs are distributed over a cluster of machines, which
speeds up build time (particularly for programs with large codebases). The distcc package provides
this capability.

To set up distributed compiling, install the following packages:

• distcc

• distcc-server

For more information about distributed compiling, refer to the man pages for distcc and distccd.
The following link also provides detailed information about the development of distcc:

http://code.google.com/p/distcc

4.3. Autotools
GNU Autotools is a suite of command-line tools that allow developers to build applications on different
systems, regardless of the installed packages or even Linux distribution. These tools aid developers
in creating a configure script. This script runs prior to builds and creates the top-level Makefiles
needed to build the application. The configure script may perform tests on the current system,
create additional files, or run other directives as per parameters provided by the builder.

6 http://www.linux.org.uk/~ajh/gcc/gccsummit-2003-proceedings.pdf
14 http://gcc.gnu.org

http://www.linux.org.uk/~ajh/gcc/gccsummit-2003-proceedings.pdf
http://www.linux.org.uk/~ajh/gcc/gccsummit-2003-proceedings.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gfortran
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcj
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/cpp
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gnat_rm
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gnat_ugn_unw
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/libgomp
http://gcc.gnu.org
http://code.google.com/p/distcc
http://www.linux.org.uk/~ajh/gcc/gccsummit-2003-proceedings.pdf
http://gcc.gnu.org

Autotools Plug-in for Eclipse

51

The Autotools suite's most commonly-used tools are:

autoconf
Generates the configure script from an input file (e.g. configure.ac)

automake
Creates the Makefile for a project on a specific system

autoscan
Generates a preliminary input file (i.e. configure.scan), which can be edited to create a final
configure.ac to be used by autoconf

All tools in the Autotools suite are part of the Development Tools group package. You can install
this package group to install the entire Autotools suite, or simply use yum to install any tools in the
suite as you wish.

4.3.1. Autotools Plug-in for Eclipse
The Autotools suite is also integrated into the Eclipse IDE via the Autotools plug-in. This plug-in
provides an Eclipse graphical user interface for Autotools, which is suitable for most C/C++ projects.

As of Red Hat Enterprise Linux 6, this plug-in only supports two templates for new C/C++ projects:

• An empty project

• A "hello world" application

The empty project template is used when importing projects into the C/C++ Development Toolkit that
already support Autotools. Future updates to the Autotools plug-in will include additional graphical user
interfaces (e.g. wizards) for creating shared libraries and other complex scenarios.

The Red Hat Enterprise Linux 6 version of the Autotools plug-in also does not integrate git or
mercurial into Eclipse. As such, Autotools projects that use git repositories will need to be
checked out outside the Eclipse workspace. Afterwards, you can specify the source location for such
projects in Eclipse. Any repository manipulation (e.g. commits, updates) will need to be done via the
command line.

4.3.2. Configuration Script
The most crucial function of Autotools is the creation of the configure script. This script tests
systems for tools, input files, and other features it can use in order to build the project 15. The
configure script generates a Makefile which allows the make tool to build the project based on the
system configuration.

To create the configure script, create an input file and feed it to an Autotools utility to create
theconfigure script. This input file is typically configure.ac or Makefile.am; the former is
usually processed by autoconf, while the latter is fed to automake.

If a Makefile.am input file is available, the automake utility creates a Makefile template (i.e.
Makefile. in), which may refer to information collected at configuration time. For example, the
Makefile may need to link to a particular library if and only if that library is already installed. When
the configure script runs, automake will use the Makefile. in templates to create a Makefile.

15 For information about tests that configure can perform, refer to the following link:
http://www.gnu.org/software/autoconf/manual/autoconf.html#Existing-Tests

http://www.gnu.org/software/autoconf/manual/autoconf.html#Existing-Tests

Chapter 4. Compiling and Building

52

If a configure.ac file is available instead, then autoconf will automatically create the configure
script based on the macros invoked by configure.ac. To create a preliminary configure.ac, use
the autoscan utility and edit the file accordingly.

4.3.3. Autotools Documentation
Red Hat Enterprise Linux 6 includes man pages for autoconf, automake, autoscan and most tools
included in the Autotools suite. In addition, the Autotools community provides extensive documentation
on autoconf and automake on the following websites:

• http://www.gnu.org/software/autoconf/manual/autoconf.html

• http://www.gnu.org/software/autoconf/manual/automake.html

The following is an online book describing the use of Autotools. Although the above online
documentation is the recommended and most up to date information on Autotools, this book is a good
alternative and introduction.

• http://sourceware.org/autobook/

For information on how to create Autotools input files, refer to:

• http://www.gnu.org/software/autoconf/manual/autoconf.html#Making-configure-Scripts

• http://www.gnu.org/software/autoconf/manual/automake.html#Invoking-Automake

The following upstream example also illustrates the use of Autotools in a simple hello program:

• http://www.gnu.org/software/hello/manual/hello.html

The Autotools Plug-in For Eclipse whitepaper also provides more detail on the Red Hat Enterprise
Linux 6 release of the Autotools plug-in. This whitepaper also includes a "by example" case study to
walk you through a typical use-case for the plug-in. Refer to the following link for more information:

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Autotools_Plug-In_for_Eclipse/
index.html

4.4. Eclipse Built-in Specfile Editor
The Specfile Editor Plug-in for Eclipse provides useful features to help developers manage .spec
files. This plug-in allows users to leverage several Eclipse GUI features in editing .spec files, such as
auto-completion, highlighting, file hyperlinks, and folding.

In addition, the Specfile Editor Plug-in also integrates the rpmlint tool into the Eclipse interface.
rpmlint is a command-line tool that helps developers detect common RPM package errors. The
richer visualization offered by the Eclipse interface helps developers quickly detect, view, and correct
mistakes reported by rpmlint.

The Specfile Editor for Eclipse is provided by the eclipse-rpm-editor package. For more
information about this plug-in, refer to Specfile Editor User Guide in the Eclipse Help Contents.

http://www.gnu.org/software/autoconf/manual/autoconf.html
http://www.gnu.org/software/autoconf/manual/automake.html
http://sourceware.org/autobook/
http://www.gnu.org/software/autoconf/manual/autoconf.html#Making-configure-Scripts
http://www.gnu.org/software/autoconf/manual/automake.html#Invoking-Automake
http://www.gnu.org/software/hello/manual/hello.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Autotools_Plug-In_for_Eclipse/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Autotools_Plug-In_for_Eclipse/index.html

Chapter 5.

53

Debugging
Useful, well-written software generally goes through different phases of application development,
and mistakes can occur in each phase. Some phases come with their own set of mechanisms to
detect certain mistakes; during compilation, for example, most compilers perform elementary semantic
analysis, making sure objects such as variables and functions are adequately described.

The error-checking mechanisms of each application development phase helps catch simple and
obvious mistakes in code. The debugging phase helps catch more subtle errors; ones that fell through
the cracks during routine code inspection.

5.1. Installing Debuginfo Packages
Red Hat Enterprise Linux also provides -debuginfo packages for all architecture-dependent RPMs
included in the operating system. A -debuginfo package contains accurate debugging information
for its corresponding package. To install the -debuginfo package of a package (i.e. typically
packagename-debuginfo), use the following command:

debuginfo-install packagename

Note

Attempting to debug a package without having its -debuginfo equivalent installed may fail,
although GDB will try to provide any helpful diagnostics it can.

5.2. GDB
Fundamentally, like most debuggers, GDB manages the execution of compiled code in a very closely
controlled environment. This environment makes possible the following fundamental mechanisms
necessary to the operation of GDB:

• Inspect and modify memory within the code being debugged (e.g. reading and setting variables).

• Control the execution state of the code being debugged, principally whether it's running or stopped.

• Detect the execution of particular sections of code (e.g. stop running code when it reaches a
specified area of interest to the programmer).

• Detect access to particular areas of memory (e.g. stop running code when it accesses a specified
variable).

• Execute portions of code (from an otherwise stopped program) in a controlled manner.

• Detect various programmatic asynchronous events such as signals.

The operation of these mechanisms rely mostly on information produced by a compiler. For example,
to view the value of a variable, GDB has to know:

• The location of the variable in memory

• The nature of the variable

This means that displaying a double-precision floating point value requires a very different process
from displaying a string of characters. For something complex like a structure, GDB has to know

Chapter 5. Debugging

54

not only the characteristics of each individual elements in the structure, but the morphology of the
structure as well.

GDB requires the following items in order to fully function:

Debug Information
Much of GDB's operations rely on a program's debug information. While this information generally
comes from compilers, much of it is necessary only while debugging a program, i.e. it is not
used during the program's normal execution. For this reason, compilers do not always make that
information available by default — GCC, for instance, must be explicitly instructed to provide this
debugging information with the -g flag.

To make full use of GDB's capabilities, it is highly advisable to make the debug information
available first to GDB. GDB can only be of very limited use when run against code with no
available debug information.

Source Code
One of the most useful features of GDB (or any other debugger) is the ability to associate events
and circumstances in program execution with their corresponding location in source code. This
location normally refers to a specific line or series of lines in a source file. This, of course, would
require that a program's source code be available to GDB at debug time.

5.2.1. Simple GDB
GDB literally contains dozens of commands. This section describes the most fundamental ones.

br (breakpoint)
The breakpoint command instructs GDB to halt execution upon reaching a specified point in the
execution That point can be specified a number of ways, but the most common are just as the line
number in the source file, or the name of a function. Any number of breakpoints can be in effect
simultaneously. This is frequently the first command issued after starting GDB.

r (run)
The run command starts the execution of the program. If run is executed with any arguments,
those arguments are passed on to the executable as if the program has been started normally.
Users normally issue this command after setting breakpoints.

Before an executable is started, or once the executable stops at, for example, a breakpoint, the state
of many aspects of the program can be inspected. The following commands are a few of the more
common ways things can be examined.

p (print)
The print command displays the value of the argument given, and that argument can be almost
anything relevant to the program. Usually, the argument is simply the name of a variable of any
complexity, from a simple single value to a structure. An argument can also be an expression valid
in the current language, including the use of program variables and library functions, or functions
defined in the program beingtested.

bt (backtrace)
The backtrace displays the chain of function calls used up until the exectuion was terminated.
This is useful for investigating serious bugs (such as segmentation faults) with elusive causes.

l (list)
When execution is stopped, the list command shows the line in the source code corresponding
to where the program stopped.

Running GDB

55

The execution of a stopped program can be resumed in a number of ways. The following are the most
common.

c (continue)
The continue command simply restarts the execution of the program, which will continue to
execute until it encounters a breakpoint, runs into a specified or emergent condition (e.g. an error),
or terminates.

n (next)
Like continue, the next command also restarts execution; however, in addition to the stopping
conditions implicit in the continue command, next will also halt execution at the next sequential
line of code in the current source file.

s (step)
Like next, the step command also halts execution at each sequential line of code in the current
source file. However, if execution is currently stopped at a source line containing a function call,
GDB stops execution after entering the function call (rather than executing it).

fini (finish)
Like the aforementioned commands, the finish command resumes executions, but halts when
execution returns from a function.

Finally, two essential commands:

q (quit)
This terminates the execution.

h (help)
The help command provides access to its extensive internal documentation. The command
takes arguments: help breakpoint (or h br), for example, shows a detailed description
of the breakpoint command. Refer to the help output of each command for more detailed
information.

5.2.2. Running GDB
This section will describe a basic execution of GDB, using the following simple program:

hello.c

#include <stdio.h>

 char hello[] = { "Hello, World!" };

 int
 main()
 {
 fprintf (stdout, "%s\n", hello);
 return (0);
 }

The following procedure illustrates the debugging process in its most basic form.

Procedure 5.1. Debugging a 'Hello World' Program
1. Compile hello.c into an executable with the debug flag set, as in:

gcc -g -o hello hello.c

Chapter 5. Debugging

56

Ensure that the resulting binary hello is in the same directory as hello.c.

2. Run gdb on the hello binary, i.e. gdb hello.

3. After several introductory comments, gdb will display the default GDB prompt:

(gdb)

4. Some things can be done even before execution is started. The variable hello is global, so it can
be seen even before the main procedure starts:

 gdb) p hello
 $1 = "Hello, World!"
 (gdb) p hello[0]
 $2 = 72 'H'
 (gdb) p *hello
 $3 = 72 'H'
 (gdb)

Note that the print targets hello[0] and *hello require the evaluation of an expression, as
does, for example, *(hello + 1):

 (gdb) p *(hello + 1)
 $4 = 101 'e'

5. Next, list the source:

 (gdb) l
 1 #include <stdio.h>
 2
 3 char hello[] = { "Hello, World!" };
 4
 5 int
 6 main()
 7 {
 8 fprintf (stdout, "%s\n", hello);
 9 return (0);
 10 }

The list reveals that the fprintf call is on line 8. Apply a breakpoint on that line and resume
the code:

 (gdb) br 8
 Breakpoint 1 at 0x80483ed: file hello.c, line 8.
 (gdb) r
 Starting program: /home/moller/tinkering/gdb-manual/hello

 Breakpoint 1, main () at hello.c:8
 8 fprintf (stdout, "%s\n", hello);

6. Finally, use the “next” command to step past the fprintf call, executing it:

Conditional Breakpoints

57

 (gdb) n
 Hello, World!
 9 return (0);

The following sections describe more complex applications of GDB.

5.2.3. Conditional Breakpoints
In many real-world cases, a program may perform its task well during the first few thousand times;
it may then start crashing or encountering errors during its eight thousandth iteration of the task.
Debugging programs like this can be difficult, as it is hard to imagine a programmer with the patience
to issue a continue command thousands of times just to get to the iteration that crashed.

Situations like this are common in real life, which is why GDB allows programmers to attach conditions
to a breakpoint. For example, consider the following program:

simple.c

 #include <stdio.h>

 main()
 {
 int i;

 for (i = 0;; i++) {
 fprintf (stdout, "i = %d\n", i);
 }
 }

To set a conditional breakpoint at the GDB prompt:

 (gdb) br 8 if i == 8936
 Breakpoint 1 at 0x80483f5: file iterations.c, line 8.
 (gdb) r

With this condition, the program execution will eventually stop with the following output:

 i = 8931
 i = 8932
 i = 8933
 i = 8934
 i = 8935

 Breakpoint 1, main () at iterations.c:8
 8 fprintf (stdout, "i = %d\n", i);

Inspect the breakpoint information (using info br) to review the breakpoint status:

 (gdb) info br
 Num Type Disp Enb Address What

Chapter 5. Debugging

58

 1 breakpoint keep y 0x080483f5 in main at iterations.c:8
 stop only if i == 8936
 breakpoint already hit 1 time

5.2.4. Forked Execution
Among the more challenging bugs that can confront programmers is where one program (the
parent) makes an independent copy of itself (a fork) that creates a child process which, in turn, fails.
Debugging the parent process may or may not be useful—the only way to get to the bug may be by
debugging the child process, but doing a gdb child isn't always possible.

To address this, GDB allows programmers to continue following the parent process after a fork, or to
follow a child process.

Note

This capability is not supported by all architectures for which GDB is built, but even under those
circumstances using GDB to follow a fork can still be possible. In such architectures, GDB can
attach itself to a process that is already running, allowing a second instance of GDB to attach to a
forked child process.

5.2.5. Threads
In most cases, a forked program immediately uses one of the variations of the exec function to start
a completely independent executable. In the same manner, threads use multiple paths of execution,
occurring simultaneously in the same executable. This can provide a whole new range of debugging
challenges, such as setting a breakpoint for a particular thread that won't interrupt the execution of any
other thread. GDB supports threaded debugging (but not in all architectures for which GDB can be
built).

5.2.6. GDB Variations and Environments
GDB normally uses a command-line interface, a CLI, but it also includes what's called a “machine
interface,” the MI. Internally, Eclipse invokes GDB using the MI but a number of other applications
similarly use MI to provide different user interfaces.

Emacs, oddly enough, also supports GDB. It offers a collection of major modes that provide an
interface to GDB. For more information on this, refer to info emacs; additional information on this is
also available from the following link:

http://www.gnu.org/software/emacs/manual/html_mono/emacs.html#GDB-Graphical-Interface

5.2.7. GDB Documentation
GDB is a very mature application, literally decades in the making, and is extremely well documented.
The most convenient way to access that documentation, and the way most likely to provide
documentation on the version of GDB actually installed, is through info gdb; this provides access
to the GDB info file included in the GDB installation. In addition, man gdb offers more concise GDB
information.

Red Hat also provides extensive GDB documentation on the following link:

http://sources.redhat.com/gdb/current/onlinedocs/gdb.html

http://www.gnu.org/software/emacs/manual/html_mono/emacs.html#GDB-Graphical-Interface
http://sources.redhat.com/gdb/current/onlinedocs/gdb.html

Variable Tracking at Assignments

59

Note

Not all documented characteristics will apply to all instances of GDB because it is still in active
development, and as such the capabilities vary (to some extent) depending on the platform and
target for which it is built.

5.3. Variable Tracking at Assignments
Variable Tracking at Assignments (VTA) is a new infrastructure included in GCC used to improve
variable tracking during optimizations. This allows GCC to produce more precise, meaningful, and
useful debugging information for GDB, SystemTap, and other debugging tools.

When GCC compiles code with optimizations enabled, variables are renamed, moved around, or even
removed altogether. As such, optimized compiling can cause a debugger to report that some variables
have been "optimized out". With VTA enabled, optimized code is internally annotated to ensure that
optimization passes to transparently keep track of each variable's value, regardless of whether the
variable is moved or removed.

VTA's benefits are more pronounced when debugging applications with inlined functions. Without
VTA, optimization could completely remove some arguments of an inlined function, preventing the
debugger from inspecting its value. With VTA, optimization will still happen, and appropriate debugging
information will be generated for any missing arguments.

VTA is enabled by default when compiling code with optimizations and debugging information enabled.
To disable VTA during such builds, add the -fno-var-tracking-assignments. In addition, the
VTA infrastructure includes the new gcc option -fcompare-debug. This option tests code compiled
by GCC with debug information and without debug information: the test passes if the two binaries
are identical. This test ensures that executable code is not affected by any debugging options, which
further ensures that there are no hidden bugs in the debug code. Note that -fcompare-debug adds
significant cost in compilation time. Refer to man gcc for details about this option.

For more information about the infrastructure and development of VTA, refer to A Plan to Fix Local
Variable Debug Information in GCC, available at the following link:

http://gcc.gnu.org/wiki/Var_Tracking_Assignments

A slide deck version of this whitepaper is also available at http://people.redhat.com/aoliva/papers/vta/
slides.pdf.

5.4. Python Pretty-Printers
The GDB command print outputs comprehensive debugging information for a target application.
GDB aims to provide as much debugging data as it can to users; however, this means that for highly
complex programs the amount of data can become very cryptic.

In addition, GDB does not provide any tools that help decipher GDB print output. GDB does not
even empower users to easily create tools that can help decipher program data. This makes the
practice of reading and understanding debugging data quite arcane, particularly for large, complex
projects.

For most developers, the only way to customize GDB print output (and make it more meaningful)
is to revise and recompile GDB. However, very few developers can actually do this. Further, this
practice will not scale well, particularly if the developer needs to also debug other programs that are
heterogenous and contain equally complex debugging data.

http://gcc.gnu.org/wiki/Var_Tracking_Assignments
http://people.redhat.com/aoliva/papers/vta/slides.pdf
http://people.redhat.com/aoliva/papers/vta/slides.pdf

Chapter 5. Debugging

60

To address this, the Red Hat Enterprise Linux 6 version of GDB is now compatible with Python pretty-
printers. This allows the retrieval of more meaningful debugging data by leaving the introspection,
printing, and formatting logic to a third-party Python script.

Compatibility with Python pretty-printers gives you the chance to truly customize GDB output as you
see fit. This makes GDB a more viable debugging solution to a wider range of projects, since you now
have the flexibility to adapt GDB output as needed, and with greater ease. Further, developers with
intimate knowledge of a project and a specific programming language are best qualified in deciding
what kind of output is meaningful, allowing them to improve the usefulness of that output.

The Python pretty-printers implementation allows users to automatically inspect, format, and print
program data according to specification. These specifications are written as rules implemented via
Python scripts. This offers the following benefits:

Safe
To pass program data to a set of registered Python pretty-printers, the GDB development team added
hooks to the GDB printing code. These hooks were implemented with safety in mind: the built-in
GDB printing code is still intact, allowing it to serve as a default fallback printing logic. As such, if
no specialized printers are available, GDB will still print debugging data the way it always did. This
ensures that GDB is backwards-compatible; users who have no need of pretty-printers can still
continue using GDB.

Highly Customizable
This new "Python-scripted" approach allows users to distill as much knowledge as required into
specific printers. As such, a project can have an entire library of printer scripts that parses program
data in a unique manner specific to its user's needs. There is no limit to the number of printers a user
can build for a specific project; what's more, being able to customize debugging data script by script
offers users an easier way to re-use and re-purpose printer scripts — or even a whole library of them.

Easy to Learn
The best part about this approach is its lower barrier to entry. Python scripting is quite easy to learn
(in comparison, at least) and has a large library of free documentation available online. In addition,
most programmers already have basic to intermediate experience in Python scripting, or in scripting in
general.

The GDB and Python Pretty-Printers whitepaper provides more details on this feature. This whitepaper
also includes details and examples on how to write your own Python pretty-printer as well as how to
import it into GDB. Refer to the following link for more information:

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/
GDB_and_Python_Pretty_Printers/

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/GDB_and_Python_Pretty_Printers/
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/GDB_and_Python_Pretty_Printers/

Chapter 6.

61

Profiling
Developers profile programs to focus attention on the areas of the program that have the largest
impact on performance. The types of data collected include what section of the program consumes the
most processor time, and where memory is allocated. Profiling collects data from the actual program
execution. Thus, the quality of the data collect is influenced by the actual tasks being performed by the
program. The tasks performed during profiling should be represenative of actual use; this ensures that
problems arising from realistic use of the program are addressed during development.

Red Hat Enterprise Linux 6 includes a number of different tools (Valgrind, OProfile, perf, and
SystemTap) to collect profiling data. Each tool is suitable for performing specific types of profile runs,
as described in the following sections.

6.1. Profiling In Eclipse
To launch a profile run, navigate to Run > Profile. This will open the Profile As dialogue, from which
you can select a tool for a profile run.

Figure 6.1. Profile As

To configure each tool for a profile run, navigate to Run > Profile Configuration. This will open the
Profile Configuration menu.

Chapter 6. Profiling

62

Figure 6.2. Profile Configuration

For more information on configuring and performing a profile run with each tool in Eclipse, refer
to Section 6.2.3, “Valgrind Plug-in for Eclipse ”, Section 6.3.3, “OProfile Plug-in For Eclipse ”, and
Section 6.5, “ Eclipse-Callgraph”.

6.2. Valgrind
Valgrind is an instrumentation framework for building dynamic analysis tools that can be used to
profile applications in detail. Valgrind tools are generally used to automatically detect many memory
management and threading problems. The Valgrind suite also includes tools that allow you to build
new profiling tools to suit your needs.

Valgrind provides instrumentation for user-space binaries to check for errors such as use of
uninitialized memory, improper allocation/freeing of memory, and improper arguments for systemcalls.
Its profiling tools can be used by normal users on most binaries; however, compared to other profilers,
Valgrind profile runs are significantly slower. To profile a binary, Valgrind rewrites its executable and
instruments the rewritten binary. Valgrind's tools are most useful for looking for memory-related
issues in user-space programs; it is not suitable for debugging time-specific issues or kernel-space
instrumentation/debugging.

6.2.1. Valgrind Tools
The Valgrind suite is composed of the following tools:

memcheck
This tool detects memory management problems in programs by checking all reads from
and writes to memory and intercepting all system calls to malloc, new, free, and delete.
Memcheck is perhaps the most used Valgrind tool, as memory management problems can be
difficult to detect using other means. Such problems often remain undetected for long periods,
eventually causing crashes that are difficult to diagnose.

Using Valgrind

63

cachegrind
Cachegrind is a cache profiler that accurately pinpoints sources of cache misses in code by
performing a detailed simulation of the I1, D1 and L2 caches in the CPU. It shows the number
of cache misses, memory references, and instructions accruing to each line of source code;
Cachegrind also provides per-function, per-module, and whole-program summaries, and can
even show counts for each individual machine instructions.

callgrind
Like cachegrind, callgrind can model cache behavior. However, the main purpose of
callgrind is to record callgraphs data for the executed code.

massif
Massif is a heap profiler; it measures how much heap memory a program uses, providing
information on heap blocks, heap administration overheads, and stack sizes. Heap profilers
are useful in finding ways to reduce heap memory usage. On systems that use virtual memory,
programs with optimized heap memory usage are less likely to run out of memory, and may be
faster as they require less paging.

helgrind
In programs that use the POSIX pthreads threading primitives, Helgrind detects synchronisation
errors. Such errors are:

• Misuses of the POSIX pthreads API

• Potential deadlocks arising from lock ordering problems

• Data races (i.e. accessing memory without adequate locking)

Valgrind also allows you to develop your own profiling tools. In line with this, Valgrind includes the
lackey tool, which is a sample that can be used as a template for generating your own tools.

6.2.2. Using Valgrind
The valgrind package and its dependencies install all the necessary tools for performing a Valgrind
profile run. To profile a program with Valgrind, use:

valgrind --tool=toolname program

Refer to Section 6.2.1, “Valgrind Tools” for a list of arguments for toolname. In addition to the suite
of Valgrind tools, none is also a valid argument for toolname; this argument allows you to run a
program under Valgrind without performing any profiling. This is useful for debugging or benchmarking
Valgrind itself.

You can also instruct Valgrind to send all of its information to a specific file. To do so, use the option --
log-file=filename. For example, to check the memory usage of the executable file hello and
send profile information to output, use:

valgrind --tool=memcheck --log-file=output hello

Refer to Section 6.2.4, “Valgrind Documentation” for more information on Valgrind, along with other
available documentation on the Valgrind suite of tools.

6.2.3. Valgrind Plug-in for Eclipse
The Valgrind plug-in for Eclipse (documented herein) integrates several Valgrind tools into Eclipse.
This allows Eclipse users to seamlessly include profiling capabilities into their workflow. At present, the
Valgrind plug-in for Eclipse supports three Valgrind tools:

Chapter 6. Profiling

64

• Memcheck

• Massif

• Cachegrind

The Valgrind plug-in for Eclipse is provided by the eclipse-valgrind package. For more
information about this plug-in, refer to Valgrind Integration User Guide in the Eclipse Help Contents.

6.2.4. Valgrind Documentation
For more extensive information on Valgrind, refer to man valgrind. Red Hat Enterprise Linux 6 also
provides a comprehensive Valgrind Documentation book, available as PDF and HTML in:

• file:///usr/share/doc/valgrind-version/valgrind_manual.pdf

• file:///usr/share/doc/valgrind-version/html/index.html

The Valgrind Integration User Guide in the Eclipse Help Contents also also provides detailed
information on the setup and usage of the Valgrind plug-in for Eclipse. This guide is provided by the
eclipse-valgrind package.

6.3. OProfile
OProfile is a system-wide Linux profiler, capable of running at low overhead. It consists of a kernel
driver and a daemon for collecting raw sample data, along with a suite of tools for parsing that data
into meaningful information. OProfile is generally used by developers to determine which sections of
code consume the most amount of CPU time, and why.

During a profile run, OProfile uses the processor's performance monitoring hardware. Valgrind rewrites
the binary of an application, and in turn instruments it. OProfile, on the other hand,simply profiles a
running application as-is. It sets up the performance monitoring hardware to take a sample every x
number of events (e.g. cache misses or branch instructions). Each sample also contains information
on where it occurred in the program.

OProfile's profiling methods consume less resources than Valgrind. However, OProfile requires root
privileges. OProfile is useful for finding "hot-spots" in code, and looking for their causes (e.g. poor
cache performance, branch mispredictions).

Using OProfile involves starting the OProfile daemon (oprofiled), running the program to be
profiled, collecting the system profile data, and parsing it into a more understandable format. OProfile
provides several tools for every step of this process.

6.3.1. OProfile Tools
The most useful OProfile commands include the following:

opcontrol
This tool is used to start/stop the OProfile daemon and configure a profile session.

opreport
The opreport command outputs binary image summaries, or per-symbol data, from OProfile
profiling sessions.

opannotate
The opannotate command outputs annotated source and/or assembly from the profile data of an
OProfile session.

Using OProfile

65

oparchive
The oparchive command generates a directory populated with executable, debug, and OProfile
sample files. This directory can be moved to another machine (via tar), where it can be analyzed
offline.

opgprof
Like opreport, the opgprof command outputs profile data for a given binary image from an
OProfile session. The output of opgprof is in gprof format.

For a complete list of OProfile commands, refer to man oprofile. For detailed information on
each OProfile command, refer to its corresponding man page. Refer to Section 6.3.4, “OProfile
Documentation” for other available documentation on OProfile.

6.3.2. Using OProfile
The oprofile package and its dependencies install all the necessary utilities for performing an
OProfile profile run. To instruct the OProfile to profile all the application running on the system and
to group the samples for the shared libraries with the application using the library, run the following
command as root:

opcontrol --no-vmlinux --separate=library --start

You can also start the OProfile daemon without collecting system data. To do so, use the option --
start-daemon instead. The --stop option halts data collection, while the --shutdown terminates
the OProfile daemon.

Use opreport, opannotate, or opgprof to display the collected profiling data. By default, the data
collected by the OProfile daemon is stored in /var/lib/oprofile/samples/.

6.3.3. OProfile Plug-in For Eclipse
The OProfile suite of tools provide powerful call profiling capabilities; as a plug-in, these capabilities
are well ported into the Eclipse user interface. The OProfile Plug-in provides the following benefits:

Targeted Profiling
The OProfile Plug-in will allow Eclipse users to profile a specific binary, include related shared
libraries/kernel modules, and even exclude binaries. This produces very targeted, detailed usage
results on each binary, function, and symbol, down to individual line numbers in the source code.

User Interface Fully Integrated into CDT
The plug-in displays enriched OProfile results through Eclipse, just like any other plug-in. Double-
clicking on a source line in the results brings users directly to the corresponding line in the Eclipse
editor. This allows users to build, profile, and edit code through a single interface, making profiling
a convenient experience for Eclipse users. In addition, profile runs are launched and configured the
same way as C/C++ applications within Eclipse.

Fully Customizable Profiling Options
The Eclipse interface allows users to configure their profile run using all options available in the
OProfile command-line utility. The plug-in supports event configuration based on processor debugging
registers (i.e. counters), as well as interrupt-based profiling for kernels or processors that don't support
hardware counters.

Chapter 6. Profiling

66

Ease of Use
The OProfile Plug-in provides generally useful defaults for all options, usable for a majority of profiling
runs. In addition, it also features a "one-click profile" that executes a profile run using these defaults.
Users can profile applications from start to finish, or select specific areas of code through a manual
control dialog.

The OProfile plug-in for Eclipse is provided by the eclipse-oprofile package. For more
information about this plug-in, refer to OProfile Integration User Guide in the Eclipse Help Contents
(also provided by eclipse-profile).

6.3.4. OProfile Documentation
For a more extensive information on OProfile, refer to man oprofile. Red Hat Enterprise
Linux 6 also provides two comprehensive guides to OProfile in file:///usr/share/doc/
oprofile-version/:

OProfile Manual
A comprehensive manual with detailed instructions on the setup and use of OProfile is found at
file:///usr/share/doc/oprofile-version/oprofile.html

OProfile Internals
Documentation on the internal workings of OProfile, useful for programmers interested
in contributing to the OProfile upstream, can be found at file:///usr/share/doc/
oprofile-version/internals.html

The OProfile Integration User Guide in the Eclipse Help Contents also provides detailed information
on the setup and usage of the OProfile plug-in for Eclipse. This guide is provided by the eclipse-
oprofile package.

6.4. SystemTap
SystemTap is a useful instrumentation platform for probing running processes and kernel activity on
the Linux system. To execute a probe:

1. Write SystemTap scripts that specify which system events (e.g. virtual file system reads, packet
transmissions) should trigger specified actions (e.g. print, parse, or otherwise manipulate data).

2. SystemTap translates the script into a C program, which it compiles into a kernel module.

3. SystemTap loads the kernel module to perform the actual probe.

SystemTap scripts are useful for monitoring system operation and diagnosing system issues with
minimal intrusion into the normal operation of the system. You can quickly instrument running system
test hypotheses without having to recompile and re-install instrumented code. To compile a SystemTap
script that probes kernel-space, SystemTap uses information from three different kernel information
packages:

• kernel-variant-devel-version

• kernel-variant-debuginfo-version

• kernel-variant-debuginfo-common-version

These kernel information packages must match the kernel to be probed. In addition, to compile
SystemTap scripts for multiple kernels, the kernel information packages of each kernel must also be
installed.

SystemTap Compile Server

67

The following sections describe new SystemTap features available in the Red Hat Enterprise Linux 6
release.

6.4.1. SystemTap Compile Server
SystemTap in Red Hat Enterprise Linux 6 supports a compile server and client deployment. With this
setup, the kernel information packages of all client systems in the network are installed on just one
compile server host (or a few). When a client system attempts to compile a kernel module from a
SystemTap script, it remotely accesses the kernel information it needs from the centralized compile
server host.

A properly configured and maintained SystemTap compile server host offers the following benefits:

• The system administrator can verify the integrity of kernel information packages before making the
packages available to users.

• The identity of a compile server can be authenticated using the Secure Socket Layer (SSL). SSL
provides an encrypted network connection that prevents eavesdropping or tampering during
transmission.

• Individual users can run their own servers and authorize them for their own use as trusted.

• System administrators can authorize one or more servers on the network as trusted for use by all
users.

• A server that has not been explicitly authorized is ignored, preventing any server impersonations
and similar attacks.

6.4.2. SystemTap Support for Unprivileged Users
For security purposes, users in an enterprise setting are rarely given privileged (i.e. root or sudo)
access to their own machines. In addition, full SystemTap functionality should also be restricted to
privileged users, as this can provide the ability to completely take control of a system.

SystemTap in Red Hat Enterprise Linux 6 features a new option to the SystemTap client: --
unprivileged. This option allows an unprivileged user to run stap. Of course, several restrictions
apply to unprivileged users that attempt to run stap.

Note

An unprivileged user is a member of the group stapusr but is not a member of the group
stapdev (and is not root).

Before loading any kernel modules created by unprivileged users, SystemTap verifies the integrity
of the module using standard digital (cryptographic) signing techniques. Each time the --
unprivileged option is used, the server checks the script against the constraints imposed for
unprivileged users. If the checks are successful, the server compiles the script and signs the resulting
module using a self-generated certificate. When the client attempts to load the module, staprun first
verifies the signature of the module by checking it against a database of trusted signing certificates
maintained and authorized by root.

Once a signed kernel module is successfully verified, staprun is assured that:

• The module was created using a trusted systemtap server implementation.

Chapter 6. Profiling

68

• The module was compiled using the --unprivileged option.

• The module meets the restrictions required for use by an unprivileged user.

• The module has not been tampered with since it was created.

6.4.3. SSL and Certificate Management
SystemTap in Red Hat Enterprise Linux 6 implements authentication and security via certificates and
public/private key pairs. It is the responsibility of the system administrator to add the credentials (i.e.
certificates) of compile servers to a database of trusted servers. SystemTap uses this database to
verify the identity of a compile server that the client attempts to access. Likewise, SystemTap also
uses this method to verify kernel modules created by compile servers using the --unprivileged
option.

6.4.3.1. Authorizing Compile Servers for Connection
The first time a compile server is started on a server host, the compile server automatically generates
a certificate. This certificate verifies the compile server's identity during SSL authentication and module
signing.

In order for clients to access the compile server (whether on the same server host or from a client
machine), the system administrator must add the compile server's certificate to a database of trusted
servers. Each client host intending to use compile servers maintains such a database. This allows
individual users to customize their database of trusted servers, which can include a list of compile
servers authorized for their own use only.

6.4.3.2. Authorizing Compile Servers for Module Signing (for
Unprivileged Users)
Unprivileged users can only load signed, authorized SystemTap kernel modules. For modules to
be recognized as such, they have to be created by a compile server whose certificate appears in a
database of trusted signers; this database must be maintained on each host where the module will be
loaded.

6.4.3.3. Automatic Authorization
Servers started using the stap-server initscript are automatically authorized to receive connections
from all clients on the same host.

Servers started by other means are automatically authorized to receive connections from clients on
the same host run by the user who started the server. This was implemented with convenience in
mind; users are automatically authorized to connect to a server they started themselves, provided that
both client and server are running on the same host.

Whenever root starts a compile server, all clients running on the same host automatically recognize
the server as authorized. However, Red Hat advises that you refrain from doing so.

Similarly, a compile server initiated through stap-server is automatically authorized as a trusted
signer on the host in which it runs. If the compile server was initiated through other means, it is not
automatically authorized as such.

6.4.4. SystemTap Documentation
For more detailed information about SystemTap, refer to the following books (also provided by Red
Hat):

 Eclipse-Callgraph

69

• SystemTap Beginner's Guide

• SystemTap Tapset Reference

• SystemTap Language Reference (documentation supplied by IBM)

The SystemTap Beginner's Guide and SystemTap Tapset Reference are also available locally when
you install the systemtap package:

• file:///usr/share/doc/systemtap-version/SystemTap_Beginners_Guide/
index.html

• file:///usr/share/doc/systemtap-version/SystemTap_Beginners_Guide.pdf

• file:///usr/share/doc/systemtap-version/tapsets/index.html

• file:///usr/share/doc/systemtap-version/tapsets.pdf

The Section 6.4.1, “SystemTap Compile Server”, Section 6.4.2, “SystemTap Support for Unprivileged
Users”, and Section 6.4.3, “ SSL and Certificate Management” sections are excerpts from the
SystemTap Support for Unprivileged Users and Server Client Deployment whitepaper. This whitepaper
also provides more details on each feature, along with a case study to help illustrate their application
in a real-world environment.

6.5. Eclipse-Callgraph
Red Hat Enterprise Linux 6 also includes the Eclipse-Callgraph plug-in, which provides a visual
function trace of a program. This allows you to view a visualization of selected (or even all) functions
used by the profiled application.

Eclipse-Callgraph uses SystemTap to perform a comprehensive function trace within a program.
As such, you will need to install SystemTap along with the required kernel information packages.
For more information about SystemTap, refer to Section 6.4, “SystemTap ” and other SystemTap
documentation provided by Red Hat.

This plug-in allows you to profile C/C++ projects directly within the Eclipse IDE, providing various
runtime details such as:

• The relationship between function calls

• Number of times each function was called

• Time taken by each instance of a function (relative to the program's execution time)

• Time taken by all instances of a function (relative to program's execution time)

6.5.1. Launching a Profile With Eclipse-Callgraph
To profile an application with Eclipse-Callgraph, simply right-click on a project and navigate to Profile
As > Function callgraph. This will open a dialogue from which you can select an executable to
profile.

Chapter 6. Profiling

70

Figure 6.3. Eclipse-Callgraph Profile

After selecting an executable to profile, Eclipse-Callgraph will ask which files to probe. By default, all
source files in the project will be selected.

The Callgraph View

71

Figure 6.4. Selecting Files to Probe

6.5.2. The Callgraph View
The Callgraph view's toolbar allows you to select a perspective and perform other functions. To play a
visual representation of a function trace, click the View Menu button then navigate to Goto. This menu
will allow you to pause, step through, or mark each function as it executes.

Figure 6.5. View > Goto

You can also save or load a profile run through the View Menu. To do either, navigate to File under
the View Menu; this will display different options relating to saving and loading profile runs.

Chapter 6. Profiling

72

Figure 6.6. Radial View

The Radial View displays all functions branching out from main(), with each function represented as
a node. A purple node means that the program terminates at the function. A green node signifies that
the function call has nested functions, whereas gray nodes signify no nest functions. Double-clicking
on a node will show its parent (colored pink) and children. The lines connecting different nodes also
display how many times main() called each function.

The left window of the Radial View lists all of the functions shown in the view. This window also allows
you to view nested functions, if any. A green bullet point means the program either starts or terminates
at that function.

Figure 6.7. Tree View

The Tree View is similar to the Radial View, except that it only displays all descendants of a selected
node (Radial View only displays functions one call depth away from a selected node). The top left of

The Callgraph View

73

Tree View also includes a thumbnail viewer to help you navigate through different call depths of the
function tree.

Figure 6.8. Level View

Level View displays all function calls and any nested function calls branching out from a selected
node. However, Level View groups all functions of the same call depth together, giving a clearer
visualization of a program's function call execution sequences. Level View also lets you navigate
through different call depths using the thumbnail viewer's More nodes above and More nodes below
buttons.

Figure 6.9. Thumbnail Viewer

Chapter 6. Profiling

74

Figure 6.10. Aggregate View

The Aggregate View depicts all functions as boxes; the size of each box represents a function's
execution time relative to the total running time of the program. Darker-colored boxes represent
functions that are called more times relative to others; for example, in Figure 6.10, “Aggregate View”,
the CallThisThirtyTimes function is called the most number of times (150).

Figure 6.11. Collapse Mode

The Callgraph view's toolbar also features a Collapse Mode button. This groups all identical
functions (i.e. those with identical names and call histories) together into one node. Doing so can be
helpful in reducing screen clutter for programs where many functions get called multiple times.

Go to Code
To navigate to a function in the code from any view, press Ctrl while double-clicking on its node.
Doing so will open the corresponding source file in the Eclipse editor and highlight the function's
declaration in the source.

6.6. Performance Counters for Linux (PCL) Tools and perf
Performance Counters for Linux (PCL) is a new kernel-based subsystem that provides a framework
for collecting and analyzing performance data. These events will vary based on the performance
monitoring hardware and the software configuration of the system. Red Hat Enterprise Linux 6
includes this kernel subsystem to collect data and the user-space tool perf to analyze the collected
performance data.

The PCL subsystem can be used to measure hardware events, including retired instructions and
processor clock cycles. It can also measure software events, including major page faults and context

Perf Tool Commands

75

switches. For example, PCL counters can compute the Instructions Per Clock (IPC) from a process's
counts of instructions retired and processor clock cycles. A low IPC ratio indicates the code makes
poor use of the CPU. Other hardware events can also be used to diagnose poor CPU performance.

Performance counters can also be configured to record samples. The relative frequency of samples
can be used to identify which regions of code have the greatest impact on performance.

6.6.1. Perf Tool Commands
Useful perf commands include the following:

perf stat
This perf command provides overall statistics for common performance events, including
instructions executed and clock cycles consumed. Options allow selection of events other than the
default measurement events.

perf record
This perf command records performance data into a file which can be later analyzed using perf
report.

perf report
This perf command reads the performance data from a file and analyzes the recorded data.

perf list
This perf command lists the events available on a particular machine. These events will vary
based on the performance monitoring hardware and the software configuration of the system.

Use perf help to obtain a complete list of perf commands. To retrieve man page information on
each perf command, use perf help command.

6.6.2. Using Perf
Using the basic PCL infrastructure for collecting statistics or samples of program execution is relatively
straightforward. This section provides simple examples of overall statistics and sampling.

To collect statistics on make and its children, use the following command:

perf stat -- make all

The perf command will collect a number of different hardware and software counters. It will then print
the following information:

Performance counter stats for 'make all':

 244011.782059 task-clock-msecs # 0.925 CPUs
 53328 context-switches # 0.000 M/sec
 515 CPU-migrations # 0.000 M/sec
 1843121 page-faults # 0.008 M/sec
 789702529782 cycles # 3236.330 M/sec
 1050912611378 instructions # 1.331 IPC
 275538938708 branches # 1129.203 M/sec
 2888756216 branch-misses # 1.048 %
 4343060367 cache-references # 17.799 M/sec
 428257037 cache-misses # 1.755 M/sec

 263.779192511 seconds time elapsed

Chapter 6. Profiling

76

The perf tool can also record samples. For example, to record data on the make command and its
children, use:

perf record -- make all

This will print out the file in which the samples are stored, along with the number of samples collected:

[perf record: Woken up 42 times to write data]
[perf record: Captured and wrote 9.753 MB perf.data (~426109 samples)]

You can then analyze perf.data to determine the relative frequency of samples. The report output
includes the command, object, and function for the samples. Use perf report to output an analysis
of perf.data. For example, the following command produces a report of the executable that
consumes the most time:

perf report --sort=comm

The resulting output:

Samples: 1083783860000
#
Overhead Command
........
#
 48.19% xsltproc
 44.48% pdfxmltex
 6.01% make
 0.95% perl
 0.17% kernel-doc
 0.05% xmllint
 0.05% cc1
 0.03% cp
 0.01% xmlto
 0.01% sh
 0.01% docproc
 0.01% ld
 0.01% gcc
 0.00% rm
 0.00% sed
 0.00% git-diff-files
 0.00% bash
 0.00% git-diff-index

The column on the left shows the relative frequency of the samples. This output shows that make
spends most of this time in xsltproc and the pdfxmltex. To reduce the time for the make to
complete, focus on xsltproc and pdfxmltex. To list of the functions executed by xsltproc, run:

perf report -n --comm=xsltproc

This would generate:

comm: xsltproc
Samples: 472520675377
#
Overhead Samples Shared Object Symbol
........
#
 45.54%215179861044 libxml2.so.2.7.6 [.] xmlXPathCmpNodesExt

ftrace

77

 11.63%54959620202 libxml2.so.2.7.6 [.] xmlXPathNodeSetAdd__internal_alias
 8.60%40634845107 libxml2.so.2.7.6 [.] xmlXPathCompOpEval
 4.63%21864091080 libxml2.so.2.7.6 [.] xmlXPathReleaseObject
 2.73%12919672281 libxml2.so.2.7.6 [.] xmlXPathNodeSetSort__internal_alias
 2.60%12271959697 libxml2.so.2.7.6 [.] valuePop
 2.41%11379910918 libxml2.so.2.7.6 [.] xmlXPathIsNaN__internal_alias
 2.19%10340901937 libxml2.so.2.7.6 [.] valuePush__internal_alias

6.7. ftrace
The ftrace framework provides users with several tracing capabilities, accessible through an
interface much simpler than SystemTap's. This framework uses a set of virtual files in the debugfs file
system; these files enable specific tracers. The ftrace function tracer simply outputs each function
called in the kernel in real time; other tracers within the ftrace framework can also be used to
analyze wakeup latency, task switches, kernel events, and the like.

You can also add new tracers for ftrace, making it a flexible solution for analyzing kernel events.
The ftrace framework is useful for debugging or analyzing latencies and performance issues that
take place outside of user-space. Unlike other profilers documented in this guide, ftrace is a built-in
feature of the kernel.

6.7.1. Using ftrace
The Red Hat Enterprise Linux 6 kernels have been configured with the CONFIG_FTRACE=y option.
This option provides the interfaces needed by ftrace. To use ftrace, mount the debugfs file
system as follows:

mount -t debugfs nodev /sys/kernel/debug

All the ftrace utilities are located in /sys/kernel/debug/tracing/. View the /sys/kernel/
debug/tracing/available_tracers file to find out what tracers are available for your kernel:

cat /sys/kernel/debug/tracing/available_tracers

power wakeup irqsoff function sysprof sched_switch initcall nop

To use a specific tracer, write it to /sys/kernel/debug/tracing/current_tracer. For
example, wakeup traces and records the maximum time it takes for the highest-priority task to be
scheduled after the task wakes up. To use it:

echo wakeup > /sys/kernel/debug/tracing/current_tracer

To start or stop tracing, write to /sys/kernel/debug/tracing/tracing_on, as in:

echo 1 > /sys/kernel/debug/tracing/tracing_on (enables tracing)

echo 0 > /sys/kernel/debug/tracing/tracing_on (disables tracing)

The results of the trace can be viewed from the following files:

/sys/kernel/debug/tracing/trace
This file contains human-readable trace output.

/sys/kernel/debug/tracing/trace_pipe
This file contains the same output as /sys/kernel/debug/tracing/trace, but is meant to
be piped into a command. Unlike /sys/kernel/debug/tracing/trace, reading from this file
consumes its output.

Chapter 6. Profiling

78

6.7.2. ftrace Documentation
The ftrace framework is fully documented in the following files:

• ftrace - Function Tracer: file:///usr/share/doc/kernel-doc-version/Documentation/
trace/ftrace.txt

• function tracer guts: file:///usr/share/doc/kernel-doc-version/Documentation/
trace/ftrace-design.txt

79

Appendix A. Revision History
Revision 1.0 Thu Oct 08 2009 Don Domingo ddomingo@redhat.com

draft push

mailto:ddomingo@redhat.com

80

81

Index

Symbols
.spec file

specfile Editor
compiling and building, 52

A
added locales

GNU C Library
libraries and runtime support, 24

advantages
Python pretty-printers

debugging, 60
Aggregate view

profiling
Eclipse-Callgraph, 74

Akonadi
KDE Development Framework

libraries and runtime support, 33
architecture, KDE4

KDE Development Framework
libraries and runtime support, 32

authorizing compile servers for connection
SSL and certificate management

SystemTap, 68
automatic authorization

SSL and certificate management
SystemTap, 68

Autotools
compiling and building, 50

B
backtrace

tools
GNU debugger, 54

Boost
libraries and runtime support, 28

boost-doc
Boost

libraries and runtime support, 30
breakpoint

fundamentals
GNU debugger, 54

breakpoints (conditional)
GNU debugger, 57

build integration
development toolkits

Eclipse, 6
building

compiling and building, 39

C
C++ Standard Library, GNU

libraries and runtime support, 26
C++0x, added support for

GNU C++ Standard Library
libraries and runtime support, 26

C/C++ Development Toolkit
development toolkits

Eclipse, 5
cachegrind

tools
Valgrind, 63

Callgraph
plug-in for Eclipse

Eclipse-Callgraph, 69
Callgraph View

profiling
Eclipse-Callgraph, 71

callgrind
tools

Valgrind, 63
CDT

development toolkits
Eclipse, 5

certificate management
SSL and certificate management

SystemTap, 68
checking functions (new)

GNU C Library
libraries and runtime support, 25

Code Completion
libhover

libraries and runtime support, 19
Collapse mode

profiling
Eclipse-Callgraph, 74

Command Group Availability Tab
integrated development environment

Eclipse, 16
commands

fundamentals
GNU debugger, 54

profiling
Valgrind, 62

tools
Performance Counters for Linux (PCL) and
perf, 75

commonly-used commands
Autotools

compiling and building, 51
compatibility

libraries and runtime support, 21
compile server

Index

82

SystemTap, 67
compiling a C Hello World program

usage
GCC, 44

compiling a C++ Hello World program
usage

GCC, 45
compiling and building

Autotools, 50
commonly-used commands, 51
configuration script, 51
documentation, 52
plug-in for Eclipse, 51
templates (supported), 51

distributed compiling, 50
GNU Compiler Collection, 39

documentation, 50
required packages, 43
usage, 43

introduction, 39
required packages, 50
specfile Editor, 52

plug-in for Eclipse, 52
conditional breakpoints

GNU debugger, 57
configuration script

Autotools
compiling and building, 51

configuring keyboard shortcuts
integrated development environment

Eclipse, 13
connection authorization (compile servers)

SSL and certificate management
SystemTap, 68

Console View
user interface

Eclipse, 9
Contents (Help Contents)

Help system
Eclipse, 4

continue
tools

GNU debugger, 55
Customize Perspective Menu

integrated development environment
Eclipse, 14

D
debugfs file system

profiling
ftrace, 77

debugging
debuginfo-packages, 53

installation, 53

GNU debugger, 53
fundamental mechanisms, 53
GDB, 53
requirements, 54

introduction, 53
Python pretty-printers, 59

advantages, 60
debugging output (formatted), 59
documentation, 60
pretty-printers, 59

variable tracking at assignments (VTA), 59
debugging a Hello World program

usage
GNU debugger, 55

debugging output (formatted)
Python pretty-printers

debugging, 59
debuginfo-packages

debugging, 53
default

user interface
Eclipse, 7

development toolkits
Eclipse, 5

distributed compiling
compiling and building, 50

documentation
Autotools

compiling and building, 52
Boost

libraries and runtime support, 30
GNU C Library

libraries and runtime support, 25
GNU C++ Standard Library

libraries and runtime support, 27
GNU Compiler Collection

compiling and building, 50
GNU debugger, 58
Java

libraries and runtime support, 35
KDE Development Framework

libraries and runtime support, 34
OProfile

profiling, 66
Perl

libraries and runtime support, 38
profiling

ftrace, 78
Python

libraries and runtime support, 34
Python pretty-printers

debugging, 60
Qt

libraries and runtime support, 32

83

Ruby
libraries and runtime support, 36

SystemTap
profiling, 68

Valgrind
profiling, 64

DTK (development toolkits)
development toolkits

Eclipse, 5
Dynamic Help

Help system
Eclipse, 5

E
Eclipse

development toolkits, 5
build integration, 6
C/C++ Development Toolkit, 5
CDT, 5
DTK (development toolkits), 5
hot patch, 6
Java Development Toolkit, 5
JDT, 5

Help system, 3
Contents (Help Contents), 4
Dynamic Help, 5
Menu (Help Menu), 4
Workbench User Guide, 5

integrated development environment, 7
Command Group Availability Tab, 16
configuring keyboard shortcuts, 13
Customize Perspective Menu, 14
IDE (integrated development environment),
7
Keyboard Shortcuts Menu, 13
menu (Main Menu), 7
Menu Visibility Tab, 15
perspectives, 7
Quick Access Menu, 12
Shortcuts Tab, 17
Tool Bar Visibility, 14
useful hints, 11
user interface, 7
workbench, 7

introduction, 1
libhover

libraries and runtime support, 17
profiling, 61
projects, 1

New Project Wizard, 2
technical overview, 1
workspace (overview), 1
Workspace Launcher, 1

user interface

Console View, 9
default, 7
Editor, 8
Outline Window, 9
Problems View, 11
Project Explorer, 8
quick fix (Problems View), 11
Tasks Properties, 10
Tasks View, 9
tracked comments, 10
View Menu (button), 9

Eclipse-Callgraph
plug-in for Eclipse, 69

Callgraph, 69
profiling, 69

profiling
Aggregate view, 74
Callgraph View, 71
Collapse mode, 74
Go to Code, 74
Level view, 73
Radial view, 72
SystemTap, 69
Thumbnail viewer, 73
Tree view, 72
usage, 69

Editor
user interface

Eclipse, 8
Emacs and GDB

GNU debugger, 58
execution (forked)

GNU debugger, 58

F
feedback

contact information for this manual, x
finish

tools
GNU debugger, 55

forked execution
GNU debugger, 58

formatted debugging output
Python pretty-printers

debugging, 59
framework (ftrace)

profiling
ftrace, 77

ftrace
profiling, 77

debugfs file system, 77
documentation, 78
framework (ftrace), 77
usage, 77

Index

84

function tracer
profiling

ftrace, 77
fundamental commands

fundamentals
GNU debugger, 54

fundamental mechanisms
GNU debugger

debugging, 53
fundamentals

GNU debugger, 54

G
gcc

GNU Compiler Collection
compiling and building, 39

GCC C
usage

compiling a C Hello World program, 44
GCC C++

usage
compiling a C++ Hello World program, 45

GDB
GNU debugger

debugging, 53
gem2rpm

Ruby
libraries and runtime support, 36

glibc
libraries and runtime support, 23

GNU C Library
libraries and runtime support, 23

GNU C++ Standard Library
libraries and runtime support, 26

GNU Compiler Collection
compiling and building, 39

GNU debugger
conditional breakpoints, 57
debugging, 53
documentation, 58
Emacs and GDB, 58
execution (forked), 58
forked execution, 58
fundamentals, 54

breakpoint, 54
commands, 54
halting an executable, 55
inspecting the state of an executable, 54
starting an executable, 54

interfaces (CLI and machine), 58
thread and threaded debugging, 58
tools, 54

backtrace, 54
continue, 55

finish, 55
help, 55
list, 54
next, 55
print, 54
quit, 55
step, 55

usage, 55
debugging a Hello World program, 55

variations and environments, 58
Go to Code

profiling
Eclipse-Callgraph, 74

H
halting an executable

fundamentals
GNU debugger, 55

header files
GNU C Library

libraries and runtime support, 23
helgrind

tools
Valgrind, 63

help
getting help, ix
tools

GNU debugger, 55
Help system

Eclipse, 3
hints

integrated development environment
Eclipse, 11

host (compile server host)
compile server

SystemTap, 67
hot patch

development toolkits
Eclipse, 6

Hover Help
libhover

libraries and runtime support, 18

I
IDE (integrated development environment)

integrated development environment
Eclipse, 7

indexing
libhover

libraries and runtime support, 17
inspecting the state of an executable

fundamentals
GNU debugger, 54

85

installation
debuginfo-packages

debugging, 53
integrated development environment

Eclipse, 7
interfaces (added new)

GNU C Library
libraries and runtime support, 24

interfaces (CLI and machine)
GNU debugger, 58

introduction
compiling and building, 39
debugging, 53
Eclipse, 1
libraries and runtime support, 21
profiling, 61

SystemTap, 66
ISO 14482 Standard C++ library

GNU C++ Standard Library
libraries and runtime support, 26

ISO C++ TR1 elements, added support for
GNU C++ Standard Library

libraries and runtime support, 26

J
Java

libraries and runtime support, 35
Java Development Toolkit

development toolkits
Eclipse, 5

JDT
development toolkits

Eclipse, 5

K
KDE Development Framework

libraries and runtime support, 32
KDE4 architecture

KDE Development Framework
libraries and runtime support, 32

kdelibs-devel
KDE Development Framework

libraries and runtime support, 32
kernel information packages

profiling
SystemTap, 66

Keyboard Shortcuts Menu
integrated development environment

Eclipse, 13
KHTML

KDE Development Framework
libraries and runtime support, 33

KIO

KDE Development Framework
libraries and runtime support, 33

KJS
KDE Development Framework

libraries and runtime support, 33
KNewStuff2

KDE Development Framework
libraries and runtime support, 34

KXMLGUI
KDE Development Framework

libraries and runtime support, 33

L
Level view

profiling
Eclipse-Callgraph, 73

libhover
libraries and runtime support, 17

libraries
runtime support, 21

libraries and runtime support
Boost, 28

boost-doc, 30
documentation, 30
message passing interface (MPI), 29
meta-package, 28
MPICH2, 29
new libraries, 29
Open MPI, 29
sub-packages, 28
updates, 29

C++ Standard Library, GNU, 26
compatibility, 21
glibc, 23
GNU C Library, 23

added new interfaces, 24
checking functions (new), 25
documentation, 25
header files, 23
interfaces (added new), 24
Linux-specific interfaces (added), 24
locales (added), 24
updates, 23

GNU C++ Standard Library, 26
C++0x, added support for, 26
documentation, 27
ISO 14482 Standard C++ library, 26
ISO C++ TR1 elements, added support for,
26
libstdc++-devel, 26
libstdc++-docs, 27
Standard Template Library, 26
updates, 26

introduction, 21

Index

86

Java, 35
documentation, 35

KDE Development Framework, 32
Akonadi, 33
documentation, 34
KDE4 architecture, 32
kdelibs-devel, 32
KHTML, 33
KIO, 33
KJS, 33
KNewStuff2, 34
KXMLGUI, 33
Phonon, 33
Plasma, 32
Solid, 33
Sonnet, 33
Strigi, 33
Telepathy, 33

libhover, 17
Code Completion, 19
Eclipse, 17
Hover Help, 18
indexing, 17
usage, 18

libstdc++, 26
Perl, 37

documentation, 38
module installation, 37
updates, 37

Python, 34
documentation, 34
updates, 34

Qt, 31
documentation, 32
meta object compiler (MOC), 31
Qt Creator, 32
qt-doc, 32
updates, 31
widget toolkit, 31

Ruby, 36
documentation, 36
gem2rpm, 36
ruby-devel, 36

libstdc++
libraries and runtime support, 26

libstdc++-devel
GNU C++ Standard Library

libraries and runtime support, 26
libstdc++-docs

GNU C++ Standard Library
libraries and runtime support, 27

Linux-specific interfaces (added)
GNU C Library

libraries and runtime support, 24

list
tools

GNU debugger, 54
Performance Counters for Linux (PCL) and
perf, 75

locales (added)
GNU C Library

libraries and runtime support, 24

M
machine interface

GNU debugger, 58
massif

tools
Valgrind, 63

mechanisms
GNU debugger

debugging, 53
memcheck

tools
Valgrind, 62

Menu (Help Menu)
Help system

Eclipse, 4
menu (Main Menu)

integrated development environment
Eclipse, 7

Menu Visibility Tab
integrated development environment

Eclipse, 15
message passing interface (MPI)

Boost
libraries and runtime support, 29

meta object compiler (MOC)
Qt

libraries and runtime support, 31
meta-package

Boost
libraries and runtime support, 28

module installation
Perl

libraries and runtime support, 37
module signing (compile server authorization)

SSL and certificate management
SystemTap, 68

MPICH2
Boost

libraries and runtime support, 29

N
new extensions

GNU C++ Standard Library
libraries and runtime support, 27

87

new libraries
Boost

libraries and runtime support, 29
New Project Wizard

projects
Eclipse, 2

next
tools

GNU debugger, 55

O
opannotate

tools
OProfile, 64

oparchive
tools

OProfile, 65
opcontrol

tools
OProfile, 64

Open MPI
Boost

libraries and runtime support, 29
opgprof

tools
OProfile, 65

opreport
tools

OProfile, 64
OProfile

profiling, 64
documentation, 66
usage, 65

tools, 64
opannotate, 64
oparchive, 65
opcontrol, 64
opgprof, 65
opreport, 64

oprofiled
OProfile

profiling, 64
Outline Window

user interface
Eclipse, 9

P
perf

profiling
Performance Counters for Linux (PCL) and
perf, 74

usage

Performance Counters for Linux (PCL) and
perf, 75

Performance Counters for Linux (PCL) and perf
profiling, 74

subsystem (PCL), 74
tools, 75

commands, 75
list, 75
record, 75
report, 75
stat, 75

usage, 75
perf, 75

Perl
libraries and runtime support, 37

perspectives
integrated development environment

Eclipse, 7
Phonon

KDE Development Framework
libraries and runtime support, 33

Plasma
KDE Development Framework

libraries and runtime support, 32
plug-in for Eclipse

Autotools
compiling and building, 51

Eclipse-Callgraph, 69
profiling

Valgrind, 63
specfile Editor

compiling and building, 52
pretty-printers

Python pretty-printers
debugging, 59

print
tools

GNU debugger, 54
Problems View

user interface
Eclipse, 11

Profile As
Eclipse

profiling, 61
Profile Configuration Menu

Eclipse
profiling, 62

profiling
Eclipse, 61

Profile As, 61
Profile Configuration Menu, 62

ftrace, 77
introduction, 61
OProfile, 64

Index

88

oprofiled, 64
Performance Counters for Linux (PCL) and
perf, 74
plug-in for Eclipse

Eclipse-Callgraph, 69
SystemTap, 66
Valgrind, 62

Project Explorer
user interface

Eclipse, 8
projects

Eclipse, 1
Python

libraries and runtime support, 34
Python pretty-printers

debugging, 59

Q
Qt

libraries and runtime support, 31
Qt Creator

Qt
libraries and runtime support, 32

qt-doc
Qt

libraries and runtime support, 32
Quick Access Menu

integrated development environment
Eclipse, 12

quick fix (Problems View)
user interface

Eclipse, 11
quit

tools
GNU debugger, 55

R
Radial view

profiling
Eclipse-Callgraph, 72

record
tools

Performance Counters for Linux (PCL) and
perf, 75

report
tools

Performance Counters for Linux (PCL) and
perf, 75

required packages
compiling and building, 50
GNU Compiler Collection

compiling and building, 43
profiling

SystemTap, 66
requirements

GNU debugger
debugging, 54

Ruby
libraries and runtime support, 36

ruby-devel
Ruby

libraries and runtime support, 36
runtime support

libraries, 21

S
scripts (SystemTap scripts)

profiling
SystemTap, 66

setup
libhover

libraries and runtime support, 18
Shortcuts Tab

integrated development environment
Eclipse, 17

signed modules
SSL and certificate management

SystemTap, 68
unprivileged user support

SystemTap, 67
Solid

KDE Development Framework
libraries and runtime support, 33

Sonnet
KDE Development Framework

libraries and runtime support, 33
specfile Editor

compiling and building, 52
SSL and certificate management

SystemTap, 68
Standard Template Library

GNU C++ Standard Library
libraries and runtime support, 26

starting an executable
fundamentals

GNU debugger, 54
stat

tools
Performance Counters for Linux (PCL) and
perf, 75

step
tools

GNU debugger, 55
Strigi

KDE Development Framework
libraries and runtime support, 33

sub-packages

89

Boost
libraries and runtime support, 28

subsystem (PCL)
profiling

Performance Counters for Linux (PCL) and
perf, 74

supported templates
Autotools

compiling and building, 51
SystemTap

compile server, 67
host (compile server host), 67

profiling, 66
documentation, 68
Eclipse-Callgraph, 69
introduction, 66
kernel information packages, 66
required packages, 66
scripts (SystemTap scripts), 66

SSL and certificate management, 68
automatic authorization, 68
connection authorization (compile servers),
68
module signing (compile server
authorization), 68

unprivileged user support, 67
signed modules, 67

T
Tasks Properties

user interface
Eclipse, 10

Tasks View
user interface

Eclipse, 9
technical overview

projects
Eclipse, 1

Telepathy
KDE Development Framework

libraries and runtime support, 33
templates (supported)

Autotools
compiling and building, 51

thread and threaded debugging
GNU debugger, 58

Thumbnail viewer
profiling

Eclipse-Callgraph, 73
Tool Bar Visibility

integrated development environment
Eclipse, 14

tools
GNU debugger, 54

OProfile, 64
Performance Counters for Linux (PCL) and
perf, 75
profiling

Valgrind, 62
Valgrind, 62

tracked comments
user interface

Eclipse, 10
Tree view

profiling
Eclipse-Callgraph, 72

U
unprivileged user support

SystemTap, 67
unprivileged users

unprivileged user support
SystemTap, 67

updates
Boost

libraries and runtime support, 29
GNU C Library

libraries and runtime support, 23
GNU C++ Standard Library

libraries and runtime support, 26
Perl

libraries and runtime support, 37
Python

libraries and runtime support, 34
Qt

libraries and runtime support, 31
usage

GNU Compiler Collection
compiling and building, 43

GNU debugger, 55
fundamentals, 54

libhover
libraries and runtime support, 18

Performance Counters for Linux (PCL) and
perf, 75
profiling

Eclipse-Callgraph, 69
ftrace, 77
OProfile, 65

Valgrind
profiling, 63

useful hints
integrated development environment

Eclipse, 11
user interface

integrated development environment
Eclipse, 7

Index

90

V
Valgrind

profiling, 62
commands, 62
documentation, 64
plug-in for Eclipse, 63
tools, 62
usage, 63

tools
cachegrind, 63
callgrind, 63
helgrind, 63
massif, 63
memcheck, 62

variable tracking at assignments (VTA)
debugging, 59

variations and environments
GNU debugger, 58

View Menu (button)
user interface

Eclipse, 9
View, Callgraph

profiling
Eclipse-Callgraph, 71

W
widget toolkit

Qt
libraries and runtime support, 31

workbench
integrated development environment

Eclipse, 7
Workbench User Guide

Help system
Eclipse, 5

workspace (overview)
projects

Eclipse, 1
Workspace Launcher

projects
Eclipse, 1

	Developer Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	Chapter 1. Introduction to Eclipse
	1.1. Understanding Eclipse Projects
	1.2. Help In Eclipse
	1.3. Development Toolkits

	Chapter 2. The Eclipse Integrated Development Environment (IDE)
	2.1. User Interface
	2.2. Useful Hints
	2.2.1. The quick access menu
	2.2.2. libhover Plug-in
	2.2.2.1. Setup and Usage

	Chapter 3. Libraries and Runtime Support
	3.1. Version Information
	3.2. Compatibility
	3.2.1. API Compatibility
	3.2.2. ABI Compatibility
	3.2.3. Policy
	3.2.4. Static Linking

	3.3. Library and Runtime Details
	3.3.1. The GNU C Library
	3.3.1.1. GNU C Library Updates
	3.3.1.2. GNU C Library Documentation

	3.3.2. The GNU C++ Standard Library
	3.3.2.1. GNU C++ Standard Library Updates
	3.3.2.2. GNU C++ Standard Library Documentation

	3.3.3. Boost
	3.3.3.1. Boost Updates
	3.3.3.2. Boost Documentation

	3.3.4. Qt
	3.3.4.1. Qt Updates
	3.3.4.2. Qt Creator
	3.3.4.3. Qt Library Documentation

	3.3.5. KDE Development Framework
	3.3.5.1. KDE4 Architecture
	3.3.5.2. kdelibs Documentation

	3.3.6. Python
	3.3.6.1. Python Updates
	3.3.6.2. Python Documentation

	3.3.7. Java
	3.3.7.1. Java Documentation

	3.3.8. Ruby
	3.3.8.1. gem2rpm
	3.3.8.2. Ruby Documentation

	3.3.9. Perl
	3.3.9.1. Perl Updates
	3.3.9.2. Installation
	3.3.9.3. Perl Documentation

	Chapter 4. Compiling and Building
	4.1. GNU Compiler Collection (GCC)
	4.1.1. GCC Status and Features
	4.1.2. Language Compatibility
	4.1.3. Object Compatibility and Interoperability
	4.1.4. Backwards Compatibility Packages
	4.1.5. Previewing RHEL6 compiler features on RHEL5
	4.1.6. Running GCC
	4.1.6.1. Simple C Usage
	4.1.6.2. Simple C++ Usage
	4.1.6.3. Simple Multi-File Usage
	4.1.6.4. Recommended Optimization Options
	4.1.6.5. Using Profile Feedback to Tune Optimization Heuristics.
	4.1.6.6. Using 32-bit compilers on a 64-bit host

	4.1.7. GCC Documentation

	4.2. Distributed Compiling
	4.3. Autotools
	4.3.1. Autotools Plug-in for Eclipse
	4.3.2. Configuration Script
	4.3.3. Autotools Documentation

	4.4. Eclipse Built-in Specfile Editor

	Chapter 5. Debugging
	5.1. Installing Debuginfo Packages
	5.2. GDB
	5.2.1. Simple GDB
	5.2.2. Running GDB
	5.2.3. Conditional Breakpoints
	5.2.4. Forked Execution
	5.2.5. Threads
	5.2.6. GDB Variations and Environments
	5.2.7. GDB Documentation

	5.3. Variable Tracking at Assignments
	5.4. Python Pretty-Printers

	Chapter 6. Profiling
	6.1. Profiling In Eclipse
	6.2. Valgrind
	6.2.1. Valgrind Tools
	6.2.2. Using Valgrind
	6.2.3. Valgrind Plug-in for Eclipse
	6.2.4. Valgrind Documentation

	6.3. OProfile
	6.3.1. OProfile Tools
	6.3.2. Using OProfile
	6.3.3. OProfile Plug-in For Eclipse
	6.3.4. OProfile Documentation

	6.4. SystemTap
	6.4.1. SystemTap Compile Server
	6.4.2. SystemTap Support for Unprivileged Users
	6.4.3. SSL and Certificate Management
	6.4.3.1. Authorizing Compile Servers for Connection
	6.4.3.2. Authorizing Compile Servers for Module Signing (for Unprivileged Users)
	6.4.3.3. Automatic Authorization

	6.4.4. SystemTap Documentation

	6.5. Eclipse-Callgraph
	6.5.1. Launching a Profile With Eclipse-Callgraph
	6.5.2. The Callgraph View

	6.6. Performance Counters for Linux (PCL) Tools and perf
	6.6.1. Perf Tool Commands
	6.6.2. Using Perf

	6.7. ftrace
	6.7.1. Using ftrace
	6.7.2. ftrace Documentation

	Appendix A. Revision History
	Index

