
OpenLDAP Software 2.4 Administrator's Guide

Table of Contents
Preface...1

Copyright..1
Scope of this Document..1
Acknowledgments..1
Amendments...2
About this document...2

1. Introduction to OpenLDAP Directory Services..3
1.1. What is a directory service?...3
1.2. What is LDAP?..4
1.3. When should I use LDAP?..6
1.4. When should I not use LDAP?..6
1.5. How does LDAP work?...6
1.6. What about X.500?..7
1.7. What is the difference between LDAPv2 and LDAPv3?..7
1.8. LDAP vs RDBMS...7
1.9. What is slapd and what can it do?..9

2. A Quick-Start Guide..11

3. The Big Picture - Configuration Choices...15
3.1. Local Directory Service...15
3.2. Local Directory Service with Referrals...15
3.3. Replicated Directory Service...15
3.4. Distributed Local Directory Service..16

4. Building and Installing OpenLDAP Software...17
4.1. Obtaining and Extracting the Software..17
4.2. Prerequisite software..17

4.2.1. Transport Layer Security..17
4.2.2. Simple Authentication and Security Layer..18
4.2.3. Kerberos Authentication Service...18
4.2.4. Database Software..18
4.2.5. Threads...19
4.2.6. TCP Wrappers..19

4.3. Running configure...19
4.4. Building the Software..20
4.5. Testing the Software..20
4.6. Installing the Software...20

5. Configuring slapd..22
5.1. Configuration Layout...22
5.2. Configuration Directives..24

5.2.1. cn=config..24
5.2.2. cn=module..26
5.2.3. cn=schema..27
5.2.4. Backend-specific Directives...27
5.2.5. Database-specific Directives..28

OpenLDAP Software 2.4 Administrator's Guide

i

Table of Contents
5. Configuring slapd

5.2.6. BDB and HDB Database Directives..33
5.3. Configuration Example..37
5.4. Converting old style slapd.conf(5) file to cn=config format...39

6. The slapd Configuration File..40
6.1. Configuration File Format...40
6.2. Configuration File Directives..41

6.2.1. Global Directives..41
6.2.2. General Backend Directives...44
6.2.3. General Database Directives..44
6.2.4. BDB and HDB Database Directives..48

6.3. Configuration File Example...49

7. Running slapd..51
7.1. Command-Line Options..51
7.2. Starting slapd...52
7.3. Stopping slapd..53

8. Access Control..54
8.1. Introduction..54
8.2. Access Control via Static Configuration...54

8.2.1. What to control access to...55
8.2.2. Who to grant access to...56
8.2.3. The access to grant...57
8.2.4. Access Control Evaluation...57
8.2.5. Access Control Examples...58

8.3. Access Control via Dynamic Configuration..59
8.3.1. What to control access to...60
8.3.2. Who to grant access to...61
8.3.3. The access to grant...62
8.3.4. Access Control Evaluation...62
8.3.5. Access Control Examples...63
8.3.6. Access Control Ordering..64

8.4. Access Control Common Examples..65
8.4.1. Basic ACLs..65
8.4.2. Matching Anonymous and Authenticated users...66
8.4.3. Controlling rootdn access...66
8.4.4. Managing access with Groups..67
8.4.5. Granting access to a subset of attributes..68
8.4.6. Allowing a user write to all entries below theirs..68
8.4.7. Allowing entry creation..69
8.4.8. Tips for using regular expressions in Access Control..70
8.4.9. Granting and Denying access based on security strength factors (ssf)....................71
8.4.10. When things aren't working as expected..71

8.5. Sets - Granting rights based on relationships...72
8.5.1. Groups of Groups...72
8.5.2. Group ACLs without DN syntax..73

OpenLDAP Software 2.4 Administrator's Guide

ii

Table of Contents
8. Access Control

8.5.3. Following references..74

9. Limits..76
9.1. Introduction..76
9.2. Soft and Hard limits...76
9.3. Global Limits...76
9.4. Per-Database Limits...77

9.4.1. Specify who the limits apply to..77
9.4.2. Specify time limits...77
9.4.3. Specifying size limits...78
9.4.4. Size limits and Paged Results...78

9.5. Example Limit Configurations..78
9.5.1. Simple Global Limits...79
9.5.2. Global Hard and Soft Limits..79
9.5.3. Giving specific users larger limits..79
9.5.4. Limiting who can do paged searches...79

9.6. Further Information..79

10. Database Creation and Maintenance Tools...80
10.1. Creating a database over LDAP...80
10.2. Creating a database off-line...81

10.2.1. The slapadd program..82
10.2.2. The slapindex program...83
10.2.3. The slapcat program...83

10.3. The LDIF text entry format...83

11. Backends...86
11.1. Berkeley DB Backends..86

11.1.1. Overview..86
11.1.2. back-bdb/back-hdb Configuration..86
11.1.3. Further Information..86

11.2. LDAP...86
11.2.1. Overview..86
11.2.2. back-ldap Configuration...87
11.2.3. Further Information..88

11.3. LDIF...88
11.3.1. Overview..88
11.3.2. back-ldif Configuration..88
11.3.3. Further Information..89

11.4. Metadirectory...89
11.4.1. Overview..89
11.4.2. back-meta Configuration..89
11.4.3. Further Information..89

11.5. Monitor..89
11.5.1. Overview..89
11.5.2. back-monitor Configuration...90
11.5.3. Further Information..91

OpenLDAP Software 2.4 Administrator's Guide

iii

Table of Contents
11. Backends

11.6. Null..91
11.6.1. Overview..91
11.6.2. back-null Configuration...91
11.6.3. Further Information..91

11.7. Passwd...92
11.7.1. Overview..92
11.7.2. back-passwd Configuration..92
11.7.3. Further Information..92

11.8. Perl/Shell..92
11.8.1. Overview..92
11.8.2. back-perl/back-shell Configuration..93
11.8.3. Further Information..93

11.9. Relay..93
11.9.1. Overview..93
11.9.2. back-relay Configuration..93
11.9.3. Further Information..93

11.10. SQL..93
11.10.1. Overview..93
11.10.2. back-sql Configuration...94
11.10.3. Further Information..95

12. Overlays..96
12.1. Access Logging..97

12.1.1. Overview..97
12.1.2. Access Logging Configuration...97
12.1.3. Further Information..98

12.2. Audit Logging..98
12.2.1. Overview..98
12.2.2. Audit Logging Configuration...99
12.2.3. Further Information..99

12.3. Chaining...99
12.3.1. Overview..100
12.3.2. Chaining Configuration..100
12.3.3. Handling Chaining Errors..101
12.3.4. Read-Back of Chained Modifications..101
12.3.5. Further Information..101

12.4. Constraints...101
12.4.1. Overview..101
12.4.2. Constraint Configuration..102
12.4.3. Further Information..102

12.5. Dynamic Directory Services..102
12.5.1. Overview..102
12.5.2. Dynamic Directory Service Configuration..102
12.5.3. Further Information..104

12.6. Dynamic Groups..104
12.6.1. Overview..104
12.6.2. Dynamic Group Configuration...104

OpenLDAP Software 2.4 Administrator's Guide

iv

Table of Contents
12. Overlays

12.7. Dynamic Lists..104
12.7.1. Overview..104
12.7.2. Dynamic List Configuration...104
12.7.3. Further Information..106

12.8. Reverse Group Membership Maintenance..106
12.8.1. Overview..106
12.8.2. Member Of Configuration..106
12.8.3. Further Information..107

12.9. The Proxy Cache Engine...107
12.9.1. Overview..108
12.9.2. Proxy Cache Configuration..108
12.9.3. Further Information..110

12.10. Password Policies..110
12.10.1. Overview..110
12.10.2. Password Policy Configuration..111
12.10.3. Further Information..113

12.11. Referential Integrity...113
12.11.1. Overview..113
12.11.2. Referential Integrity Configuration..113
12.11.3. Further Information..114

12.12. Return Code...114
12.12.1. Overview..114
12.12.2. Return Code Configuration..115
12.12.3. Further Information..115

12.13. Rewrite/Remap..115
12.13.1. Overview..115
12.13.2. Rewrite/Remap Configuration...116
12.13.3. Further Information..116

12.14. Sync Provider...116
12.14.1. Overview..116
12.14.2. Sync Provider Configuration..116
12.14.3. Further Information..116

12.15. Translucent Proxy..116
12.15.1. Overview..116
12.15.2. Translucent Proxy Configuration...117
12.15.3. Further Information..119

12.16. Attribute Uniqueness...119
12.16.1. Overview..119
12.16.2. Attribute Uniqueness Configuration..119
12.16.3. Further Information..120

12.17. Value Sorting...120
12.17.1. Overview..120
12.17.2. Value Sorting Configuration..120
12.17.3. Further Information..121

12.18. Overlay Stacking..121
12.18.1. Overview..121
12.18.2. Example Scenarios...122

OpenLDAP Software 2.4 Administrator's Guide

v

Table of Contents
13. Schema Specification...123

13.1. Distributed Schema Files...123
13.2. Extending Schema...123

13.2.1. Object Identifiers..124
13.2.2. Naming Elements...125
13.2.3. Local schema file...125
13.2.4. Attribute Type Specification..125
13.2.5. Object Class Specification...128
13.2.6. OID Macros..129

14. Security Considerations..130
14.1. Network Security...130

14.1.1. Selective Listening...130
14.1.2. IP Firewall..130
14.1.3. TCP Wrappers..130

14.2. Data Integrity and Confidentiality Protection..131
14.2.1. Security Strength Factors...131

14.3. Authentication Methods...131
14.3.1. "simple" method...131
14.3.2. SASL method...132

14.4. Password Storage...132
14.4.1. SSHA password storage scheme..133
14.4.2. CRYPT password storage scheme...133
14.4.3. MD5 password storage scheme..133
14.4.4. SMD5 password storage scheme..134
14.4.5. SHA password storage scheme..134
14.4.6. SASL password storage scheme..134

14.5. Pass-Through authentication..134
14.5.1. Configuring slapd to use an authentication provider...135
14.5.2. Configuring saslauthd..135
14.5.3. Testing pass-through authentication...135

15. Using SASL...137
15.1. SASL Security Considerations..137
15.2. SASL Authentication...138

15.2.1. GSSAPI..138
15.2.2. KERBEROS_V4..139
15.2.3. DIGEST-MD5..140
15.2.4. Mapping Authentication Identities...141
15.2.5. Direct Mapping..142
15.2.6. Search-based mappings..143

15.3. SASL Proxy Authorization..144
15.3.1. Uses of Proxy Authorization..144
15.3.2. SASL Authorization Identities...145
15.3.3. Proxy Authorization Rules...145

OpenLDAP Software 2.4 Administrator's Guide

vi

Table of Contents
16. Using TLS...148

16.1. TLS Certificates...148
16.1.1. Server Certificates..148
16.1.2. Client Certificates...148

16.2. TLS Configuration...148
16.2.1. Server Configuration..148
16.2.2. Client Configuration...151

17. Constructing a Distributed Directory Service...153
17.1. Subordinate Knowledge Information...153
17.2. Superior Knowledge Information..153
17.3. The ManageDsaIT Control..154

18. Replication..155
18.1. Replication Technology...155

18.1.1. LDAP Sync Replication...155
18.2. Deployment Alternatives...159

18.2.1. Delta-syncrepl replication..159
18.2.2. N-Way Multi-Master replication..160
18.2.3. MirrorMode replication..160
18.2.4. Syncrepl Proxy Mode...161

18.3. Configuring the different replication types..162
18.3.1. Syncrepl..162
18.3.2. Delta-syncrepl..164
18.3.3. N-Way Multi-Master..166
18.3.4. MirrorMode..168
18.3.5. Syncrepl Proxy...170

19. Maintenance...175
19.1. Directory Backups...175
19.2. Berkeley DB Logs...175
19.3. Checkpointing..177
19.4. Migration...177

20. Monitoring..178
20.1. Monitor configuration via cn=config(5)..178
20.2. Monitor configuration via slapd.conf(5)..178
20.3. Accessing Monitoring Information..179
20.4. Monitor Information..180

20.4.1. Backends..181
20.4.2. Connections..182
20.4.3. Databases..182
20.4.4. Listener...183
20.4.5. Log...183
20.4.6. Operations..183
20.4.7. Overlays...184
20.4.8. SASL..184
20.4.9. Statistics...184

OpenLDAP Software 2.4 Administrator's Guide

vii

Table of Contents
20. Monitoring

20.4.10. Threads...184
20.4.11. Time...185
20.4.12. TLS...185
20.4.13. Waiters...185

21. Tuning...187
21.1. Performance Factors..187

21.1.1. Memory..187
21.1.2. Disks...187
21.1.3. Network Topology...187
21.1.4. Directory Layout Design..187
21.1.5. Expected Usage..187

21.2. Indexes...188
21.2.1. Understanding how a search works..188
21.2.2. What to index...188
21.2.3. Presence indexing...188

21.3. Logging..188
21.3.1. What log level to use..188
21.3.2. What to watch out for...189
21.3.3. Improving throughput..189

21.4. Caching..189
21.4.1. Berkeley DB Cache..189
21.4.2. slapd(8) Entry Cache (cachesize)...192
21.4.3. IDL Cache (idlcachesize)...192
21.4.4. slapd(8) Threads...192

22. Troubleshooting...193
22.1. User or Software errors?..193
22.2. Checklist..193
22.3. OpenLDAP Bugs...193
22.4. 3rd party software error...194
22.5. How to contact the OpenLDAP Project...194
22.6. How to present your problem..194
22.7. Debugging slapd(8)..194
22.8. Commercial Support..194

A. Changes Since Previous Release..195
A.1. New Guide Sections..195
A.2. New Features and Enhancements in 2.4...195

A.2.1. Better cn=config functionality...195
A.2.2. Better cn=schema functionality...196
A.2.3. More sophisticated Syncrepl configurations...196
A.2.4. N-Way Multimaster Replication...196
A.2.5. Replicating slapd Configuration (syncrepl and cn=config)..................................196
A.2.6. Push-Mode Replication...196
A.2.7. More extensive TLS configuration control...197
A.2.8. Performance enhancements...197

OpenLDAP Software 2.4 Administrator's Guide

viii

Table of Contents
A. Changes Since Previous Release

A.2.9. New overlays...197
A.2.10. New features in existing Overlays...197
A.2.11. New features in slapd..198
A.2.12. New features in libldap..198
A.2.13. New clients, tools and tool enhancements...198
A.2.14. New build options...198

A.3. Obsolete Features Removed From 2.4..198
A.3.1. Slurpd..198
A.3.2. back-ldbm..198

B. Upgrading from 2.3.x..199
B.1. cn=config olc* attributes...199
B.2. ACLs: searches require privileges on the search base..199

C. Common errors encountered when using OpenLDAP Software...200
C.1. Common causes of LDAP errors..200

C.1.1. ldap_*: Can't contact LDAP server...200
C.1.2. ldap_*: No such object..200
C.1.3. ldap_*: Can't chase referral...201
C.1.4. ldap_*: server is unwilling to perform..201
C.1.5. ldap_*: Insufficient access...202
C.1.6. ldap_*: Invalid DN syntax...202
C.1.7. ldap_*: Referral hop limit exceeded..202
C.1.8. ldap_*: operations error...202
C.1.9. ldap_*: other error...202
C.1.10. ldap_add/modify: Invalid syntax...202
C.1.11. ldap_add/modify: Object class violation...203
C.1.12. ldap_add: No such object..204
C.1.13. ldap add: invalid structural object class chain...204
C.1.14. ldap_add: no structuralObjectClass operational attribute....................................205
C.1.15. ldap_add/modify/rename: Naming violation...205
C.1.16. ldap_add/delete/modify/rename: no global superior knowledge.........................206
C.1.17. ldap_bind: Insufficient access...206
C.1.18. ldap_bind: Invalid credentials...207
C.1.19. ldap_bind: Protocol error...207
C.1.20. ldap_modify: cannot modify object class..207
C.1.21. ldap_sasl_interactive_bind_s: ...207
C.1.22. ldap_sasl_interactive_bind_s: No such Object..208
C.1.23. ldap_sasl_interactive_bind_s: No such attribute...208
C.1.24. ldap_sasl_interactive_bind_s: Unknown authentication method........................208
C.1.25. ldap_sasl_interactive_bind_s: Local error (82)...208
C.1.26. ldap_search: Partial results and referral received..208
C.1.27. ldap_start_tls: Operations error...209

C.2. Other Errors...209
C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of range).................209
C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily unavailable)..........209
C.2.3. daemon: socket() failed errno=97 (Address family not supported).......................209

OpenLDAP Software 2.4 Administrator's Guide

ix

Table of Contents
C. Common errors encountered when using OpenLDAP Software

C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure; Permission denied;..............209
C.2.5. access from unknown denied...210
C.2.6. ldap_read: want=# error=Resource temporarily unavailable................................210
C.2.7. `make test' fails..210
C.2.8. ldap_*: Internal (implementation specific) error (80) - additional info: entry

 index delete failed...211
C.2.9. ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1).............................211

D. Recommended OpenLDAP Software Dependency Versions..213
D.1. Dependency Versions...213

E. Real World OpenLDAP Deployments and Examples...214

F. OpenLDAP Software Contributions...215
F.1. Client APIs..215

F.1.1. ldapc++..215
F.1.2. ldaptcl...215

F.2. Overlays...215
F.2.1. acl...215
F.2.2. addpartial..215
F.2.3. allop..215
F.2.4. autogroup...215
F.2.5. comp_match...215
F.2.6. denyop..215
F.2.7. dsaschema..216
F.2.8. lastmod...216
F.2.9. nops..216
F.2.10. nssov...216
F.2.11. passwd..216
F.2.12. proxyOld..216
F.2.13. smbk5pwd..216
F.2.14. trace..216
F.2.15. usn..216

F.3. Tools..216
F.3.1. Statistic Logging..216

F.4. SLAPI Plugins...217
F.4.1. addrdnvalues..217

G. Configuration File Examples...218
G.1. slapd.conf..218
G.2. ldap.conf..218
G.3. a-n-other.conf..218

H. LDAP Result Codes..219
H.1. Non-Error Result Codes..219
H.2. Result Codes...219
H.3. success (0)...219

OpenLDAP Software 2.4 Administrator's Guide

x

Table of Contents
H. LDAP Result Codes

H.4. operationsError (1)..219
H.5. protocolError (2)...220
H.6. timeLimitExceeded (3)...220
H.7. sizeLimitExceeded (4)..220
H.8. compareFalse (5)...220
H.9. compareTrue (6)..220
H.10. authMethodNotSupported (7)...220
H.11. strongerAuthRequired (8)...220
H.12. referral (10)...221
H.13. adminLimitExceeded (11)..221
H.14. unavailableCriticalExtension (12)..221
H.15. confidentialityRequired (13)...221
H.16. saslBindInProgress (14)..221
H.17. noSuchAttribute (16)..221
H.18. undefinedAttributeType (17)..221
H.19. inappropriateMatching (18)..221
H.20. constraintViolation (19)..221
H.21. attributeOrValueExists (20)..221
H.22. invalidAttributeSyntax (21)..222
H.23. noSuchObject (32)..222
H.24. aliasProblem (33)..222
H.25. invalidDNSyntax (34)...222
H.26. aliasDereferencingProblem (36)...222
H.27. inappropriateAuthentication (48)..222
H.28. invalidCredentials (49)..222
H.29. insufficientAccessRights (50)...222
H.30. busy (51)...222
H.31. unavailable (52)..223
H.32. unwillingToPerform (53)..223
H.33. loopDetect (54)...223
H.34. namingViolation (64)..223
H.35. objectClassViolation (65)...223
H.36. notAllowedOnNonLeaf (66)...223
H.37. notAllowedOnRDN (67)...223
H.38. entryAlreadyExists (68)..223
H.39. objectClassModsProhibited (69)...223
H.40. affectsMultipleDSAs (71)...224
H.41. other (80)...224

I. Glossary...225
I.1. Terms..225
I.2. Related Organizations..228
I.3. Related Products...228
I.4. References..229

OpenLDAP Software 2.4 Administrator's Guide

xi

Table of Contents
J. Generic configure Instructions...233

K. OpenLDAP Software Copyright Notices..236
K.1. OpenLDAP Copyright Notice...236
K.2. Additional Copyright Notices...236
K.3. University of Michigan Copyright Notice..237

L. OpenLDAP Public License...238

OpenLDAP Software 2.4 Administrator's Guide

xii

Preface

Copyright

Copyright 1998-2008, The OpenLDAP Foundation, All Rights Reserved.

Copyright 1992-1996, Regents of the University of Michigan, All Rights Reserved.

This document is considered a part of OpenLDAP Software. This document is subject to terms of
conditions set forth in OpenLDAP Software Copyright Notices and the OpenLDAP Public License.
Complete copies of the notices and associated license can be found in Appendix K and L,
respectively.

Portions of OpenLDAP Software and this document may be copyright by other parties and/or subject
to additional restrictions. Individual source files should be consulted for additional copyright notices.

Scope of this Document

This document provides a guide for installing OpenLDAP Software 2.4
(http://www.openldap.org/software/) on UNIX (and UNIX-like) systems. The document is aimed at
experienced system administrators with basic understanding of LDAP-based directory services.

This document is meant to be used in conjunction with other OpenLDAP information resources
provided with the software package and on the project's site (http://www.OpenLDAP.org/) on the
World Wide Web. The site makes available a number of resources.

OpenLDAP Resources

Resource URL
Document Catalog http://www.OpenLDAP.org/doc/
Frequently Asked Questions http://www.OpenLDAP.org/faq/
Issue Tracking System http://www.OpenLDAP.org/its/
Mailing Lists http://www.OpenLDAP.org/lists/
Manual Pages http://www.OpenLDAP.org/software/man.cgi
Software Pages http://www.OpenLDAP.org/software/
Support Pages http://www.OpenLDAP.org/support/

Acknowledgments

The OpenLDAP Project is comprised of a team of volunteers. This document would not be possible
without their contribution of time and energy.

The OpenLDAP Project would also like to thank the University of Michigan LDAP Team for
building the foundation of LDAP software and information to which OpenLDAP Software is built
upon. This document is based upon University of Michigan document: The SLAPD and SLURPD
Administrators Guide.

Preface 1

http://www.openldap.org/foundation/
http://www.umich.edu/
http://www.openldap.org/software/
http://www.OpenLDAP.org/
http://www.OpenLDAP.org/doc/
http://www.OpenLDAP.org/faq/
http://www.OpenLDAP.org/its/
http://www.OpenLDAP.org/lists/
http://www.OpenLDAP.org/software/man.cgi
http://www.OpenLDAP.org/software/
http://www.OpenLDAP.org/support/
http://www.openldap.org/project/
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf
http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf

Amendments

Suggested enhancements and corrections to this document should be submitted using the OpenLDAP
Issue Tracking System (http://www.openldap.org/its/).

About this document

This document was produced using the Simple Document Format (SDF) documentation system
(http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html) developed by Ian Clatworthy. Tools for
SDF are available from CPAN (http://search.cpan.org/search?query=SDF&mode=dist).

OpenLDAP Software 2.4 Administrator's Guide

Amendments 2

http://www.openldap.org/
http://www.openldap.org/its/
http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html
http://cpan.org/
http://search.cpan.org/search?query=SDF&mode=dist

1. Introduction to OpenLDAP Directory
Services
This document describes how to build, configure, and operate OpenLDAP Software to provide
directory services. This includes details on how to configure and run the Standalone LDAP Daemon,
slapd(8). It is intended for new and experienced administrators alike. This section provides a basic
introduction to directory services and, in particular, the directory services provided by slapd(8). This
introduction is only intended to provide enough information so one might get started learning about
LDAP, X.500, and directory services.

1.1. What is a directory service?

A directory is a specialized database specifically designed for searching and browsing, in additional to
supporting basic lookup and update functions.

Note: A directory is defined by some as merely a database optimized for read access. This definition,
at best, is overly simplistic.

Directories tend to contain descriptive, attribute-based information and support sophisticated filtering
capabilities. Directories generally do not support complicated transaction or roll-back schemes found
in database management systems designed for handling high-volume complex updates. Directory
updates are typically simple all-or-nothing changes, if they are allowed at all. Directories are
generally tuned to give quick response to high-volume lookup or search operations. They may have
the ability to replicate information widely in order to increase availability and reliability, while
reducing response time. When directory information is replicated, temporary inconsistencies between
the replicas may be okay, as long as inconsistencies are resolved in a timely manner.

There are many different ways to provide a directory service. Different methods allow different kinds
of information to be stored in the directory, place different requirements on how that information can
be referenced, queried and updated, how it is protected from unauthorized access, etc. Some directory
services are local, providing service to a restricted context (e.g., the finger service on a single
machine). Other services are global, providing service to a much broader context (e.g., the entire
Internet). Global services are usually distributed, meaning that the data they contain is spread across
many machines, all of which cooperate to provide the directory service. Typically a global service
defines a uniform namespace which gives the same view of the data no matter where you are in
relation to the data itself.

A web directory, such as provided by the Open Directory Project <http://dmoz.org>, is a good
example of a directory service. These services catalog web pages and are specifically designed to
support browsing and searching.

While some consider the Internet Domain Name System (DNS) is an example of a globally
distributed directory service, DNS is not browseable nor searchable. It is more properly described as a
globally distributed lookup service.

1. Introduction to OpenLDAP Directory Services 3

http://www.openldap.org/
http://dmoz.org

1.2. What is LDAP?

LDAP stands for Lightweight Directory Access Protocol. As the name suggests, it is a lightweight
protocol for accessing directory services, specifically X.500-based directory services. LDAP runs
over TCP/IP or other connection oriented transfer services. LDAP is an IETF Standard Track protocol
and is specified in "Lightweight Directory Access Protocol (LDAP) Technical Specification Road
Map" RFC4510.

This section gives an overview of LDAP from a user's perspective.

What kind of information can be stored in the directory? The LDAP information model is based on
entries. An entry is a collection of attributes that has a globally-unique Distinguished Name (DN).
The DN is used to refer to the entry unambiguously. Each of the entry's attributes has a type and one
or more values. The types are typically mnemonic strings, like "cn" for common name, or "mail"
for email address. The syntax of values depend on the attribute type. For example, a cn attribute
might contain the value Babs Jensen. A mail attribute might contain the value
"babs@example.com". A jpegPhoto attribute would contain a photograph in the JPEG (binary)
format.

How is the information arranged? In LDAP, directory entries are arranged in a hierarchical tree-like
structure. Traditionally, this structure reflected the geographic and/or organizational boundaries.
Entries representing countries appear at the top of the tree. Below them are entries representing states
and national organizations. Below them might be entries representing organizational units, people,
printers, documents, or just about anything else you can think of. Figure 1.1 shows an example LDAP
directory tree using traditional naming.

Figure 1.1: LDAP directory tree (traditional naming)

OpenLDAP Software 2.4 Administrator's Guide

1.2. What is LDAP? 4

http://www.ietf.org/
http://www.rfc-editor.org/rfc/rfc4510.txt

The tree may also be arranged based upon Internet domain names. This naming approach is becoming
increasing popular as it allows for directory services to be located using the DNS. Figure 1.2 shows an
example LDAP directory tree using domain-based naming.

Figure 1.2: LDAP directory tree (Internet naming)

In addition, LDAP allows you to control which attributes are required and allowed in an entry through
the use of a special attribute called objectClass. The values of the objectClass attribute
determine the schema rules the entry must obey.

How is the information referenced? An entry is referenced by its distinguished name, which is
constructed by taking the name of the entry itself (called the Relative Distinguished Name or RDN)
and concatenating the names of its ancestor entries. For example, the entry for Barbara Jensen in the
Internet naming example above has an RDN of uid=babs and a DN of
uid=babs,ou=People,dc=example,dc=com. The full DN format is described in RFC4514,
"LDAP: String Representation of Distinguished Names."

How is the information accessed? LDAP defines operations for interrogating and updating the
directory. Operations are provided for adding and deleting an entry from the directory, changing an
existing entry, and changing the name of an entry. Most of the time, though, LDAP is used to search
for information in the directory. The LDAP search operation allows some portion of the directory to
be searched for entries that match some criteria specified by a search filter. Information can be
requested from each entry that matches the criteria.

For example, you might want to search the entire directory subtree at and below
dc=example,dc=com for people with the name Barbara Jensen, retrieving the email address
of each entry found. LDAP lets you do this easily. Or you might want to search the entries directly
below the st=California,c=US entry for organizations with the string Acme in their name, and
that have a fax number. LDAP lets you do this too. The next section describes in more detail what you
can do with LDAP and how it might be useful to you.

OpenLDAP Software 2.4 Administrator's Guide

1.2. What is LDAP? 5

http://www.rfc-editor.org/rfc/rfc4514.txt

How is the information protected from unauthorized access? Some directory services provide no
protection, allowing anyone to see the information. LDAP provides a mechanism for a client to
authenticate, or prove its identity to a directory server, paving the way for rich access control to
protect the information the server contains. LDAP also supports data security (integrity and
confidentiality) services.

1.3. When should I use LDAP?

This is a very good question. In general, you should use a Directory server when you require data to
be centrally managed, stored and accessible via standards based methods.

Some common examples found throughout the industry are, but not limited to:

Machine Authentication•
User Authentication•
User/System Groups•
Address book•
Organization Representation•
Asset Tracking•
Telephony Information Store•
User resource management•
E-mail address lookups•
Application Configuration store•
PBX Configuration store•
etc.....•

There are various Distributed Schema Files that are standards based, but you can always create your
own Schema Specification.

There are always new ways to use a Directory and apply LDAP principles to address certain
problems, therefore there is no simple answer to this question.

If in doubt, join the general LDAP forum for non-commercial discussions and information relating to
LDAP at: http://www.umich.edu/~dirsvcs/ldap/mailinglist.html and ask

1.4. When should I not use LDAP?

When you start finding yourself bending the directory to do what you require, maybe a redesign is
needed. Or if you only require one application to use and manipulate your data (for discussion of
LDAP vs RDBMS, please read the LDAP vs RDBMS section).

It will become obvious when LDAP is the right tool for the job.

1.5. How does LDAP work?

LDAP utilizes a client-server model. One or more LDAP servers contain the data making up the
directory information tree (DIT). The client connects to servers and asks it a question. The server
responds with an answer and/or with a pointer to where the client can get additional information
(typically, another LDAP server). No matter which LDAP server a client connects to, it sees the same

OpenLDAP Software 2.4 Administrator's Guide

1.3. When should I use LDAP? 6

http://www.umich.edu/~dirsvcs/ldap/mailinglist.html

view of the directory; a name presented to one LDAP server references the same entry it would at
another LDAP server. This is an important feature of a global directory service.

1.6. What about X.500?

Technically, LDAP is a directory access protocol to an X.500 directory service, the OSI directory
service. Initially, LDAP clients accessed gateways to the X.500 directory service. This gateway ran
LDAP between the client and gateway and X.500's Directory Access Protocol (DAP) between the
gateway and the X.500 server. DAP is a heavyweight protocol that operates over a full OSI protocol
stack and requires a significant amount of computing resources. LDAP is designed to operate over
TCP/IP and provides most of the functionality of DAP at a much lower cost.

While LDAP is still used to access X.500 directory service via gateways, LDAP is now more
commonly directly implemented in X.500 servers.

The Standalone LDAP Daemon, or slapd(8), can be viewed as a lightweight X.500 directory server.
That is, it does not implement the X.500's DAP nor does it support the complete X.500 models.

If you are already running a X.500 DAP service and you want to continue to do so, you can probably
stop reading this guide. This guide is all about running LDAP via slapd(8), without running X.500
DAP. If you are not running X.500 DAP, want to stop running X.500 DAP, or have no immediate
plans to run X.500 DAP, read on.

It is possible to replicate data from an LDAP directory server to a X.500 DAP DSA. This requires an
LDAP/DAP gateway. OpenLDAP Software does not include such a gateway.

1.7. What is the difference between LDAPv2 and
LDAPv3?

LDAPv3 was developed in the late 1990's to replace LDAPv2. LDAPv3 adds the following features
to LDAP:

Strong authentication and data security services via SASL•
Certificate authentication and data security services via TLS (SSL)•
Internationalization through the use of Unicode•
Referrals and Continuations•
Schema Discovery•
Extensibility (controls, extended operations, and more)•

LDAPv2 is historic (RFC3494). As most so-called LDAPv2 implementations (including slapd(8)) do
not conform to the LDAPv2 technical specification, interoperability amongst implementations
claiming LDAPv2 support is limited. As LDAPv2 differs significantly from LDAPv3, deploying both
LDAPv2 and LDAPv3 simultaneously is quite problematic. LDAPv2 should be avoided. LDAPv2 is
disabled by default.

1.8. LDAP vs RDBMS

This question is raised many times, in different forms. The most common, however, is: Why doesn't
OpenLDAP drop Berkeley DB and use a relational database management system (RDBMS) instead?

OpenLDAP Software 2.4 Administrator's Guide

1.5. How does LDAP work? 7

http://www.rfc-editor.org/rfc/rfc3494.txt

In general, expecting that the sophisticated algorithms implemented by commercial-grade RDBMS
would make OpenLDAP be faster or somehow better and, at the same time, permitting sharing of data
with other applications.

The short answer is that use of an embedded database and custom indexing system allows OpenLDAP
to provide greater performance and scalability without loss of reliability. OpenLDAP uses Berkeley
DB concurrent / transactional database software. This is the same software used by leading
commercial directory software.

Now for the long answer. We are all confronted all the time with the choice RDBMSes vs. directories.
It is a hard choice and no simple answer exists.

It is tempting to think that having a RDBMS backend to the directory solves all problems. However, it
is a pig. This is because the data models are very different. Representing directory data with a
relational database is going to require splitting data into multiple tables.

Think for a moment about the person objectclass. Its definition requires attribute types objectclass, sn
and cn and allows attribute types userPassword, telephoneNumber, seeAlso and description. All of
these attributes are multivalued, so a normalization requires putting each attribute type in a separate
table.

Now you have to decide on appropriate keys for those tables. The primary key might be a
combination of the DN, but this becomes rather inefficient on most database implementations.

The big problem now is that accessing data from one entry requires seeking on different disk areas.
On some applications this may be OK but in many applications performance suffers.

The only attribute types that can be put in the main table entry are those that are mandatory and
single-value. You may add also the optional single-valued attributes and set them to NULL or
something if not present.

But wait, the entry can have multiple objectclasses and they are organized in an inheritance hierarchy.
An entry of objectclass organizationalPerson now has the attributes from person plus a few others and
some formerly optional attribute types are now mandatory.

What to do? Should we have different tables for the different objectclasses? This way the person
would have an entry on the person table, another on organizationalPerson, etc. Or should we get rid of
person and put everything on the second table?

But what do we do with a filter like (cn=*) where cn is an attribute type that appears in many, many
objectclasses. Should we search all possible tables for matching entries? Not very attractive.

Once this point is reached, three approaches come to mind. One is to do full normalization so that
each attribute type, no matter what, has its own separate table. The simplistic approach where the DN
is part of the primary key is extremely wasteful, and calls for an approach where the entry has a
unique numeric id that is used instead for the keys and a main table that maps DNs to ids. The
approach, anyway, is very inefficient when several attribute types from one or more entries are
requested. Such a database, though cumbersomely, can be managed from SQL applications.

The second approach is to put the whole entry as a blob in a table shared by all entries regardless of
the objectclass and have additional tables that act as indices for the first table. Index tables are not

OpenLDAP Software 2.4 Administrator's Guide

1.8. LDAP vs RDBMS 8

database indices, but are fully managed by the LDAP server-side implementation. However, the
database becomes unusable from SQL. And, thus, a fully fledged database system provides little or no
advantage. The full generality of the database is unneeded. Much better to use something light and
fast, like Berkeley DB.

A completely different way to see this is to give up any hopes of implementing the directory data
model. In this case, LDAP is used as an access protocol to data that provides only superficially the
directory data model. For instance, it may be read only or, where updates are allowed, restrictions are
applied, such as making single-value attribute types that would allow for multiple values. Or the
impossibility to add new objectclasses to an existing entry or remove one of those present. The
restrictions span the range from allowed restrictions (that might be elsewhere the result of access
control) to outright violations of the data model. It can be, however, a method to provide LDAP
access to preexisting data that is used by other applications. But in the understanding that we don't
really have a "directory".

Existing commercial LDAP server implementations that use a relational database are either from the
first kind or the third. I don't know of any implementation that uses a relational database to do
inefficiently what BDB does efficiently. For those who are interested in "third way" (exposing
EXISTING data from RDBMS as LDAP tree, having some limitations compared to classic LDAP
model, but making it possible to interoperate between LDAP and SQL applications):

OpenLDAP includes back-sql - the backend that makes it possible. It uses ODBC + additional
metainformation about translating LDAP queries to SQL queries in your RDBMS schema, providing
different levels of access - from read-only to full access depending on RDBMS you use, and your
schema.

For more information on concept and limitations, see slapd-sql(5) man page, or the Backends section.
There are also several examples for several RDBMSes in back-sql/rdbms_depend/*
subdirectories.

1.9. What is slapd and what can it do?

slapd(8) is an LDAP directory server that runs on many different platforms. You can use it to provide
a directory service of your very own. Your directory can contain pretty much anything you want to
put in it. You can connect it to the global LDAP directory service, or run a service all by yourself.
Some of slapd's more interesting features and capabilities include:

LDAPv3: slapd implements version 3 of Lightweight Directory Access Protocol. slapd supports
LDAP over both IPv4 and IPv6 and Unix IPC.

Simple Authentication and Security Layer: slapd supports strong authentication and data security
(integrity and confidentiality) services through the use of SASL. slapd's SASL implementation
utilizes Cyrus SASL software which supports a number of mechanisms including DIGEST-MD5,
EXTERNAL, and GSSAPI.

Transport Layer Security: slapd supports certificate-based authentication and data security
(integrity and confidentiality) services through the use of TLS (or SSL). slapd's TLS implementation
can utilize OpenSSL, GnuTLS, or MozNSS software.

OpenLDAP Software 2.4 Administrator's Guide

1.9. What is slapd and what can it do? 9

http://asg.web.cmu.edu/sasl/sasl-library.html
http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS

Topology control: slapd can be configured to restrict access at the socket layer based upon network
topology information. This feature utilizes TCP wrappers.

Access control: slapd provides a rich and powerful access control facility, allowing you to control
access to the information in your database(s). You can control access to entries based on LDAP
authorization information, IP address, domain name and other criteria. slapd supports both static and
dynamic access control information.

Internationalization: slapd supports Unicode and language tags.

Choice of database backends: slapd comes with a variety of different database backends you can
choose from. They include BDB, a high-performance transactional database backend; HDB, a
hierarchical high-performance transactional backend; SHELL, a backend interface to arbitrary shell
scripts; and PASSWD, a simple backend interface to the passwd(5) file. The BDB and HDB backends
utilize Oracle Berkeley DB.

Multiple database instances: slapd can be configured to serve multiple databases at the same time.
This means that a single slapd server can respond to requests for many logically different portions of
the LDAP tree, using the same or different database backends.

Generic modules API: If you require even more customization, slapd lets you write your own
modules easily. slapd consists of two distinct parts: a front end that handles protocol communication
with LDAP clients; and modules which handle specific tasks such as database operations. Because
these two pieces communicate via a well-defined C API, you can write your own customized modules
which extend slapd in numerous ways. Also, a number of programmable database modules are
provided. These allow you to expose external data sources to slapd using popular programming
languages (Perl, shell, and SQL).

Threads: slapd is threaded for high performance. A single multi-threaded slapd process handles all
incoming requests using a pool of threads. This reduces the amount of system overhead required
while providing high performance.

Replication: slapd can be configured to maintain shadow copies of directory information. This
single-master/multiple-slave replication scheme is vital in high-volume environments where a single
slapd installation just doesn't provide the necessary availability or reliability. For extremely
demanding environments where a single point of failure is not acceptable, multi-master replication is
also available. slapd includes support for LDAP Sync-based replication.

Proxy Cache: slapd can be configured as a caching LDAP proxy service.

Configuration: slapd is highly configurable through a single configuration file which allows you to
change just about everything you'd ever want to change. Configuration options have reasonable
defaults, making your job much easier. Configuration can also be performed dynamically using
LDAP itself, which greatly improves manageability.

OpenLDAP Software 2.4 Administrator's Guide

1.9. What is slapd and what can it do? 10

http://www.oracle.com/
http://www.oracle.com/database/berkeley-db/db/index.html
http://www.perl.org/

2. A Quick-Start Guide
The following is a quick start guide to OpenLDAP Software 2.4, including the Standalone LDAP
Daemon, slapd(8).

It is meant to walk you through the basic steps needed to install and configure OpenLDAP Software.
It should be used in conjunction with the other chapters of this document, manual pages, and other
materials provided with the distribution (e.g. the INSTALL document) or on the OpenLDAP web site
(http://www.OpenLDAP.org), in particular the OpenLDAP Software FAQ
(http://www.OpenLDAP.org/faq/?file=2).

If you intend to run OpenLDAP Software seriously, you should review all of this document before
attempting to install the software.

Note: This quick start guide does not use strong authentication nor any integrity or confidential
protection services. These services are described in other chapters of the OpenLDAP Administrator's
Guide.

Get the software
You can obtain a copy of the software by following the instructions on the OpenLDAP
Software download page (http://www.openldap.org/software/download/). It is recommended
that new users start with the latest release.

1.

Unpack the distribution
Pick a directory for the source to live under, change directory to there, and unpack the
distribution using the following commands:
gunzip -c openldap-VERSION.tgz | tar xvfB -
then relocate yourself into the distribution directory:
cd openldap-VERSION
You'll have to replace VERSION with the version name of the release.

2.

Review documentation
You should now review the COPYRIGHT, LICENSE, README and INSTALL documents
provided with the distribution. The COPYRIGHT and LICENSE provide information on
acceptable use, copying, and limitation of warranty of OpenLDAP Software.

You should also review other chapters of this document. In particular, the Building and
Installing OpenLDAP Software chapter of this document provides detailed information on
prerequisite software and installation procedures.

3.

Run configure
You will need to run the provided configure script to configure the distribution for
building on your system. The configure script accepts many command line options that
enable or disable optional software features. Usually the defaults are okay, but you may want
to change them. To get a complete list of options that configure accepts, use the --help
option:

4.

2. A Quick-Start Guide 11

http://www.openldap.org/software/
http://www.openldap.org/
http://www.OpenLDAP.org
http://www.OpenLDAP.org/faq/?file=2
http://www.openldap.org/software/download/

./configure --help
However, given that you are using this guide, we'll assume you are brave enough to just let
configure determine what's best:
./configure
Assuming configure doesn't dislike your system, you can proceed with building the
software. If configure did complain, well, you'll likely need to go to the Software FAQ
Installation section (http://www.openldap.org/faq/?file=8) and/or actually read the Building
and Installing OpenLDAP Software chapter of this document.

Build the software.
The next step is to build the software. This step has two parts, first we construct dependencies
and then we compile the software:
make depend
make
Both makes should complete without error.

5.

Test the build.
To ensure a correct build, you should run the test suite (it only takes a few minutes):
make test
Tests which apply to your configuration will run and they should pass. Some tests, such as the
replication test, may be skipped.

6.

Install the software.
You are now ready to install the software; this usually requires super-user privileges:
su root -c 'make install'
Everything should now be installed under /usr/local (or whatever installation prefix was
used by configure).

7.

Edit the configuration file.
Use your favorite editor to edit the provided slapd.conf(5) example (usually installed as
/usr/local/etc/openldap/slapd.conf) to contain a BDB database definition of
the form:
database bdb
suffix "dc=<MY-DOMAIN>,dc=<COM>"
rootdn "cn=Manager,dc=<MY-DOMAIN>,dc=<COM>"
rootpw secret
directory /usr/local/var/openldap-data
Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of
your domain name. For example, for example.com, use:
database bdb
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /usr/local/var/openldap-data
If your domain contains additional components, such as eng.uni.edu.eu, use:
database bdb
suffix "dc=eng,dc=uni,dc=edu,dc=eu"
rootdn "cn=Manager,dc=eng,dc=uni,dc=edu,dc=eu"
rootpw secret
directory /usr/local/var/openldap-data
Details regarding configuring slapd(8) can be found in the slapd.conf(5) manual page and the

8.

OpenLDAP Software 2.4 Administrator's Guide

2. A Quick-Start Guide 12

http://www.openldap.org/faq/?file=8

The slapd Configuration File chapter of this document. Note that the specified directory must
exist prior to starting slapd(8).

Start SLAPD.
You are now ready to start the Standalone LDAP Daemon, slapd(8), by running the
command:
su root -c /usr/local/libexec/slapd
To check to see if the server is running and configured correctly, you can run a search against
it with ldapsearch(1). By default, ldapsearch is installed as
/usr/local/bin/ldapsearch:
ldapsearch -x -b '' -s base '(objectclass=*)' namingContexts
Note the use of single quotes around command parameters to prevent special characters from
being interpreted by the shell. This should return:
dn:
namingContexts: dc=example,dc=com
Details regarding running slapd(8) can be found in the slapd(8) manual page and the Running
slapd chapter of this document.

9.

Add initial entries to your directory.
You can use ldapadd(1) to add entries to your LDAP directory. ldapadd expects input in
LDIF form. We'll do it in two steps:

create an LDIF file1.
run ldapadd2.

Use your favorite editor and create an LDIF file that contains:
dn: dc=<MY-DOMAIN>,dc=<COM>
objectclass: dcObject
objectclass: organization
o: <MY ORGANIZATION>
dc: <MY-DOMAIN>

dn: cn=Manager,dc=<MY-DOMAIN>,dc=<COM>
objectclass: organizationalRole
cn: Manager
Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of
your domain name. <MY ORGANIZATION> should be replaced with the name of your
organization. When you cut and paste, be sure to trim any leading and trailing whitespace
from the example.
dn: dc=example,dc=com
objectclass: dcObject
objectclass: organization
o: Example Company
dc: example

dn: cn=Manager,dc=example,dc=com
objectclass: organizationalRole
cn: Manager
Now, you may run ldapadd(1) to insert these entries into your directory.
ldapadd -x -D "cn=Manager,dc=<MY-DOMAIN>,dc=<COM>" -W -f
example.ldif
Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of

10.

OpenLDAP Software 2.4 Administrator's Guide

2. A Quick-Start Guide 13

your domain name. You will be prompted for the "secret" specified in slapd.conf. For
example, for example.com, use:
ldapadd -x -D "cn=Manager,dc=example,dc=com" -W -f
example.ldif
where example.ldif is the file you created above.

Additional information regarding directory creation can be found in the Database Creation
and Maintenance Tools chapter of this document.

See if it works.
Now we're ready to verify the added entries are in your directory. You can use any LDAP
client to do this, but our example uses the ldapsearch(1) tool. Remember to replace
dc=example,dc=com with the correct values for your site:
ldapsearch -x -b 'dc=example,dc=com' '(objectclass=*)'
This command will search for and retrieve every entry in the database.

11.

You are now ready to add more entries using ldapadd(1) or another LDAP client, experiment with
various configuration options, backend arrangements, etc..

Note that by default, the slapd(8) database grants read access to everybody excepting the super-user
(as specified by the rootdn configuration directive). It is highly recommended that you establish
controls to restrict access to authorized users. Access controls are discussed in the Access Control
chapter. You are also encouraged to read the Security Considerations, Using SASL and Using TLS
sections.

The following chapters provide more detailed information on making, installing, and running
slapd(8).

OpenLDAP Software 2.4 Administrator's Guide

2. A Quick-Start Guide 14

3. The Big Picture - Configuration Choices
This section gives a brief overview of various LDAP directory configurations, and how your
Standalone LDAP Daemon slapd(8) fits in with the rest of the world.

3.1. Local Directory Service

In this configuration, you run a slapd(8) instance which provides directory service for your local
domain only. It does not interact with other directory servers in any way. This configuration is shown
in Figure 3.1.

Figure 3.1: Local service configuration.

Use this configuration if you are just starting out (it's the one the quick-start guide makes for you) or
if you want to provide a local service and are not interested in connecting to the rest of the world. It's
easy to upgrade to another configuration later if you want.

3.2. Local Directory Service with Referrals

In this configuration, you run a slapd(8) instance which provides directory service for your local
domain and configure it to return referrals to other servers capable of handling requests. You may run
this service (or services) yourself or use one provided to you. This configuration is shown in Figure
3.2.

Figure 3.2: Local service with referrals

Use this configuration if you want to provide local service and participate in the Global Directory, or
you want to delegate responsibility for subordinate entries to another server.

3.3. Replicated Directory Service

slapd(8) includes support for LDAP Sync-based replication, called syncrepl, which may be used to
maintain shadow copies of directory information on multiple directory servers. In its most basic

3. The Big Picture - Configuration Choices 15

configuration, the master is a syncrepl provider and one or more slave (or shadow) are syncrepl
consumers. An example master-slave configuration is shown in figure 3.3. Multi-Master
configurations are also supported.

Figure 3.3: Replicated Directory Services

This configuration can be used in conjunction with either of the first two configurations in situations
where a single slapd(8) instance does not provide the required reliability or availability.

3.4. Distributed Local Directory Service

In this configuration, the local service is partitioned into smaller services, each of which may be
replicated, and glued together with superior and subordinate referrals.

OpenLDAP Software 2.4 Administrator's Guide

3.3. Replicated Directory Service 16

4. Building and Installing OpenLDAP Software
This chapter details how to build and install the OpenLDAP Software package including slapd(8), the
Standalone LDAP Daemon. Building and installing OpenLDAP Software requires several steps:
installing prerequisite software, configuring OpenLDAP Software itself, making, and finally
installing. The following sections describe this process in detail.

4.1. Obtaining and Extracting the Software

You can obtain OpenLDAP Software from the project's download page at
http://www.openldap.org/software/download/ or directly from the project's FTP service at
ftp://ftp.openldap.org/pub/OpenLDAP/.

The project makes available two series of packages for general use. The project makes releases as
new features and bug fixes come available. Though the project takes steps to improve stability of
these releases, it is common for problems to arise only after release. The stable release is the latest
release which has demonstrated stability through general use.

Users of OpenLDAP Software can choose, depending on their desire for the latest features versus
demonstrated stability, the most appropriate series to install.

After downloading OpenLDAP Software, you need to extract the distribution from the compressed
archive file and change your working directory to the top directory of the distribution:

gunzip -c openldap-VERSION.tgz | tar xf -
cd openldap-VERSION

You'll have to replace VERSION with the version name of the release.

You should now review the COPYRIGHT, LICENSE, README and INSTALL documents provided
with the distribution. The COPYRIGHT and LICENSE provide information on acceptable use,
copying, and limitation of warranty of OpenLDAP Software. The README and INSTALL documents
provide detailed information on prerequisite software and installation procedures.

4.2. Prerequisite software

OpenLDAP Software relies upon a number of software packages distributed by third parties.
Depending on the features you intend to use, you may have to download and install a number of
additional software packages. This section details commonly needed third party software packages
you might have to install. However, for an up-to-date prerequisite information, the README
document should be consulted. Note that some of these third party packages may depend on
additional software packages. Install each package per the installation instructions provided with it.

4.2.1. Transport Layer Security

OpenLDAP clients and servers require installation of OpenSSL, GnuTLS, or MozNSS TLS libraries
to provide Transport Layer Security services. Though some operating systems may provide these
libraries as part of the base system or as an optional software component, OpenSSL, GnuTLS, and
Mozilla NSS often require separate installation.

4. Building and Installing OpenLDAP Software 17

http://www.openldap.org/
http://www.openldap.org/software/download/
ftp://ftp.openldap.org/pub/OpenLDAP/
http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS

OpenSSL is available from http://www.openssl.org/. GnuTLS is available from
http://www.gnu.org/software/gnutls/. Mozilla NSS is available from
http://developer.mozilla.org/en/NSS.

OpenLDAP Software will not be fully LDAPv3 compliant unless OpenLDAP's configure detects
a usable TLS library.

4.2.2. Simple Authentication and Security Layer

OpenLDAP clients and servers require installation of Cyrus SASL libraries to provide Simple
Authentication and Security Layer services. Though some operating systems may provide this library
as part of the base system or as an optional software component, Cyrus SASL often requires separate
installation.

Cyrus SASL is available from http://asg.web.cmu.edu/sasl/sasl-library.html. Cyrus SASL will make
use of OpenSSL and Kerberos/GSSAPI libraries if preinstalled.

OpenLDAP Software will not be fully LDAPv3 compliant unless OpenLDAP's configure detects a
usable Cyrus SASL installation.

4.2.3. Kerberos Authentication Service

OpenLDAP clients and servers support Kerberos authentication services. In particular, OpenLDAP
supports the Kerberos V GSS-API SASL authentication mechanism known as the GSSAPI
mechanism. This feature requires, in addition to Cyrus SASL libraries, either Heimdal or MIT
Kerberos V libraries.

Heimdal Kerberos is available from http://www.pdc.kth.se/heimdal/. MIT Kerberos is available from
http://web.mit.edu/kerberos/www/.

Use of strong authentication services, such as those provided by Kerberos, is highly recommended.

4.2.4. Database Software

OpenLDAP's slapd(8) BDB and HDB primary database backends require Oracle Corporation
Berkeley DB. If not available at configure time, you will not be able to build slapd(8) with these
primary database backends.

Your operating system may provide a supported version of Berkeley DB in the base system or as an
optional software component. If not, you'll have to obtain and install it yourself.

Berkeley DB is available from Oracle Corporation's Berkeley DB download page
http://www.oracle.com/technology/software/products/berkeley-db/index.html.

There are several versions available. Generally, the most recent release (with published patches) is
recommended. This package is required if you wish to use the BDB or HDB database backends.

Note: Please see Recommended OpenLDAP Software Dependency Versions for more information.

OpenLDAP Software 2.4 Administrator's Guide

4.2.1. Transport Layer Security 18

http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS
http://asg.web.cmu.edu/sasl/sasl-library.html
http://asg.web.cmu.edu/sasl/sasl-library.html
http://www.pdc.kth.se/heimdal/
http://web.mit.edu/kerberos/www/
http://web.mit.edu/kerberos/www/
http://www.pdc.kth.se/heimdal/
http://web.mit.edu/kerberos/www/
http://www.oracle.com/
http://www.oracle.com/database/berkeley-db/db/index.html
http://www.oracle.com/database/berkeley-db/db/index.html
http://www.oracle.com/database/berkeley-db/db/index.html
http://www.oracle.com/
http://www.oracle.com/technology/software/products/berkeley-db/index.html

4.2.5. Threads

OpenLDAP is designed to take advantage of threads. OpenLDAP supports POSIX pthreads, Mach
CThreads, and a number of other varieties. configure will complain if it cannot find a suitable
thread subsystem. If this occurs, please consult the Software|Installation|Platform
Hints section of the OpenLDAP FAQ http://www.openldap.org/faq/.

4.2.6. TCP Wrappers

slapd(8) supports TCP Wrappers (IP level access control filters) if preinstalled. Use of TCP Wrappers
or other IP-level access filters (such as those provided by an IP-level firewall) is recommended for
servers containing non-public information.

4.3. Running configure

Now you should probably run the configure script with the --help option. This will give you a
list of options that you can change when building OpenLDAP. Many of the features of OpenLDAP
can be enabled or disabled using this method.

 ./configure --help

The configure script will also look at various environment variables for certain settings. These
environment variables include:

Table 4.1: Environment Variables

Variable Description
CC Specify alternative C Compiler
CFLAGS Specify additional compiler flags
CPPFLAGS Specify C Preprocessor flags
LDFLAGS Specify linker flags
LIBS Specify additional libraries

Now run the configure script with any desired configuration options or environment variables.

 [[env] settings] ./configure [options]

As an example, let's assume that we want to install OpenLDAP with BDB backend and TCP
Wrappers support. By default, BDB is enabled and TCP Wrappers is not. So, we just need to specify
--with-wrappers to include TCP Wrappers support:

 ./configure --with-wrappers

However, this will fail to locate dependent software not installed in system directories. For example,
if TCP Wrappers headers and libraries are installed in /usr/local/include and
/usr/local/lib respectively, the configure script should be called as follows:

 env CPPFLAGS="-I/usr/local/include" LDFLAGS="-L/usr/local/lib" \
 ./configure --with-wrappers

OpenLDAP Software 2.4 Administrator's Guide

4.2.5. Threads 19

http://www.openldap.org/faq/

Note: Some shells, such as those derived from the Bourne sh(1), do not require use of the env(1)
command. In some cases, environmental variables have to be specified using alternative syntaxes.

The configure script will normally auto-detect appropriate settings. If you have problems at this
stage, consult any platform specific hints and check your configure options, if any.

4.4. Building the Software

Once you have run the configure script the last line of output should be:

 Please "make depend" to build dependencies

If the last line of output does not match, configure has failed, and you will need to review its
output to determine what went wrong. You should not proceed until configure completes
successfully.

To build dependencies, run:

 make depend

Now build the software, this step will actually compile OpenLDAP.

 make

You should examine the output of this command carefully to make sure everything is built correctly.
Note that this command builds the LDAP libraries and associated clients as well as slapd(8).

4.5. Testing the Software

Once the software has been properly configured and successfully made, you should run the test suite
to verify the build.

 make test

Tests which apply to your configuration will run and they should pass. Some tests, such as the
replication test, may be skipped if not supported by your configuration.

4.6. Installing the Software

Once you have successfully tested the software, you are ready to install it. You will need to have write
permission to the installation directories you specified when you ran configure. By default
OpenLDAP Software is installed in /usr/local. If you changed this setting with the --prefix
configure option, it will be installed in the location you provided.

Typically, the installation requires super-user privileges. From the top level OpenLDAP source
directory, type:

 su root -c 'make install'

and enter the appropriate password when requested.

OpenLDAP Software 2.4 Administrator's Guide

4.3. Running configure 20

You should examine the output of this command carefully to make sure everything is installed
correctly. You will find the configuration files for slapd(8) in /usr/local/etc/openldap by
default. See the chapter Configuring slapd for additional information.

OpenLDAP Software 2.4 Administrator's Guide

4.6. Installing the Software 21

5. Configuring slapd
Once the software has been built and installed, you are ready to configure slapd(8) for use at your site.

Unlike previous OpenLDAP releases, the slapd(8) runtime configuration in 2.3 (and later) is fully
LDAP-enabled and can be managed using the standard LDAP operations with data in LDIF. The
LDAP configuration engine allows all of slapd's configuration options to be changed on the fly,
generally without requiring a server restart for the changes to take effect.

The old style slapd.conf(5) file is still supported, but must be converted to the new slapd-config(5)
format to allow runtime changes to be saved. While the old style configuration uses a single file,
normally installed as /usr/local/etc/openldap/slapd.conf, the new style uses a slapd
backend database to store the configuration. The configuration database normally resides in the
/usr/local/etc/openldap/slapd.d directory. An alternate configuration directory (or file)
can be specified via a command-line option to slapd(8).

This chapter briefly discusses converting to the new style configuration, then describes the general
format of the configuration system, followed by a detailed description of commonly used config
settings.

Note: some of the backends and of the distributed overlays do not support runtime configuration yet.
In those cases, the old style slapd.conf(5) file must be used.

5.1. Configuration Layout

The slapd configuration is stored as a special LDAP directory with a predefined schema and DIT.
There are specific objectClasses used to carry global configuration options, schema definitions,
backend and database definitions, and assorted other items. A sample config tree is shown in Figure
5.1.

Figure 5.1: Sample configuration tree.

Other objects may be part of the configuration but were omitted from the illustration for clarity.

5. Configuring slapd 22

The slapd-config configuration tree has a very specific structure. The root of the tree is named
cn=config and contains global configuration settings. Additional settings are contained in separate
child entries:

Dynamically loaded modules
These may only be used if the --enable-modules option was used to configure the
software.

•

Schema definitions
The cn=schema,cn=config entry contains the system schema (all the schema that is
hard-coded in slapd).
Child entries of cn=schema,cn=config contain user schema as loaded from config files
or added at runtime.

•

Backend-specific configuration•
Database-specific configuration
Overlays are defined in children of the Database entry.
Databases and Overlays may also have other miscellaneous children.

•

The usual rules for LDIF files apply to the configuration information: Comment lines beginning with
a '#' character are ignored. If a line begins with a single space, it is considered a continuation of the
previous line (even if the previous line is a comment) and the single leading space is removed. Entries
are separated by blank lines.

The general layout of the config LDIF is as follows:

 # global configuration settings
 dn: cn=config
 objectClass: olcGlobal
 cn: config
 <global config settings>

 # schema definitions
 dn: cn=schema,cn=config
 objectClass: olcSchemaConfig
 cn: schema
 <system schema>

 dn: cn={X}core,cn=schema,cn=config
 objectClass: olcSchemaConfig
 cn: {X}core
 <core schema>

 # additional user-specified schema
 ...

 # backend definitions
 dn: olcBackend=<typeA>,cn=config
 objectClass: olcBackendConfig
 olcBackend: <typeA>
 <backend-specific settings>

 # database definitions
 dn: olcDatabase={X}<typeA>,cn=config
 objectClass: olcDatabaseConfig
 olcDatabase: {X}<typeA>
 <database-specific settings>

 # subsequent definitions and settings

OpenLDAP Software 2.4 Administrator's Guide

5.1. Configuration Layout 23

 ...

Some of the entries listed above have a numeric index "{X}" in their names. While most
configuration settings have an inherent ordering dependency (i.e., one setting must take effect before
a subsequent one may be set), LDAP databases are inherently unordered. The numeric index is used
to enforce a consistent ordering in the configuration database, so that all ordering dependencies are
preserved. In most cases the index does not have to be provided; it will be automatically generated
based on the order in which entries are created.

Configuration directives are specified as values of individual attributes. Most of the attributes and
objectClasses used in the slapd configuration have a prefix of "olc" (OpenLDAP Configuration) in
their names. Generally there is a one-to-one correspondence between the attributes and the old-style
slapd.conf configuration keywords, using the keyword as the attribute name, with the "olc" prefix
attached.

A configuration directive may take arguments. If so, the arguments are separated by whitespace. If an
argument contains whitespace, the argument should be enclosed in double quotes "like this". In
the descriptions that follow, arguments that should be replaced by actual text are shown in brackets
<>.

The distribution contains an example configuration file that will be installed in the
/usr/local/etc/openldap directory. A number of files containing schema definitions
(attribute types and object classes) are also provided in the
/usr/local/etc/openldap/schema directory.

5.2. Configuration Directives

This section details commonly used configuration directives. For a complete list, see the
slapd-config(5) manual page. This section will treat the configuration directives in a top-down order,
starting with the global directives in the cn=config entry. Each directive will be described along
with its default value (if any) and an example of its use.

5.2.1. cn=config

Directives contained in this entry generally apply to the server as a whole. Most of them are system or
connection oriented, not database related. This entry must have the olcGlobal objectClass.

5.2.1.1. olcIdleTimeout: <integer>

Specify the number of seconds to wait before forcibly closing an idle client connection. A value of 0,
the default, disables this feature.

5.2.1.2. olcLogLevel: <level>

This directive specifies the level at which debugging statements and operation statistics should be
syslogged (currently logged to the syslogd(8) LOG_LOCAL4 facility). You must have configured
OpenLDAP --enable-debug (the default) for this to work (except for the two statistics levels,
which are always enabled). Log levels may be specified as integers or by keyword. Multiple log levels
may be used and the levels are additive. To display what levels correspond to what kind of debugging,
invoke slapd with -d? or consult the table below. The possible values for <level> are:

OpenLDAP Software 2.4 Administrator's Guide

5.2. Configuration Directives 24

Table 5.1: Debugging Levels

Level Keyword Description
-1 any enable all debugging
0 no debugging
1 (0x1 trace) trace function callss
2 (0x2 packets) debug packet handling
4 (0x4 args) heavy trace debugging
8 (0x8 conns) connection management
16 (0x10 BER) print out packets sent and received
32 (0x20 filter) search filter processing
64 (0x40 config) configuration processing
128 (0x80 ACL) access control list processing
256 (0x100 stats) stats log connections/operations/results
512 (0x200 stats2) stats log entries sent
1024 (0x400 shell) print communication with shell backends
2048 (0x800 parse) print entry parsing debugging
16384 (0x4000 sync) syncrepl consumer processing
32768 (0x8000 none) only messages that get logged whatever log level is set

The desired log level can be input as a single integer that combines the (ORed) desired levels, both in
decimal or in hexadecimal notation, as a list of integers (that are ORed internally), or as a list of the
names that are shown between brackets, such that

 olcLogLevel 129
 olcLogLevel 0x81
 olcLogLevel 128 1
 olcLogLevel 0x80 0x1
 olcLogLevel acl trace

are equivalent.

Examples:

 olcLogLevel -1

This will cause lots and lots of debugging information to be logged.

 olcLogLevel conns filter

Just log the connection and search filter processing.

 olcLogLevel none

Log those messages that are logged regardless of the configured loglevel. This differs from setting the
log level to 0, when no logging occurs. At least the None level is required to have high priority
messages logged.

Default:

OpenLDAP Software 2.4 Administrator's Guide

5.2.1. cn=config 25

 olcLogLevel stats

Basic stats logging is configured by default. However, if no olcLogLevel is defined, no logging
occurs (equivalent to a 0 level).

5.2.1.3. olcReferral <URI>

This directive specifies the referral to pass back when slapd cannot find a local database to handle a
request.

Example:

 olcReferral: ldap://root.openldap.org

This will refer non-local queries to the global root LDAP server at the OpenLDAP Project. Smart
LDAP clients can re-ask their query at that server, but note that most of these clients are only going to
know how to handle simple LDAP URLs that contain a host part and optionally a distinguished name
part.

5.2.1.4. Sample Entry

dn: cn=config
objectClass: olcGlobal
cn: config
olcIdleTimeout: 30
olcLogLevel: Stats
olcReferral: ldap://root.openldap.org

5.2.2. cn=module

If support for dynamically loaded modules was enabled when configuring slapd, cn=module entries
may be used to specify sets of modules to load. Module entries must have the olcModuleList
objectClass.

5.2.2.1. olcModuleLoad: <filename>

Specify the name of a dynamically loadable module to load. The filename may be an absolute path
name or a simple filename. Non-absolute names are searched for in the directories specified by the
olcModulePath directive.

5.2.2.2. olcModulePath: <pathspec>

Specify a list of directories to search for loadable modules. Typically the path is colon-separated but
this depends on the operating system.

5.2.2.3. Sample Entries

dn: cn=module{0},cn=config
objectClass: olcModuleList
cn: module{0}
olcModuleLoad: /usr/local/lib/smbk5pwd.la

dn: cn=module{1},cn=config

OpenLDAP Software 2.4 Administrator's Guide

5.2.1. cn=config 26

objectClass: olcModuleList
cn: module{1}
olcModulePath: /usr/local/lib:/usr/local/lib/slapd
olcModuleLoad: accesslog.la
olcModuleLoad: pcache.la

5.2.3. cn=schema

The cn=schema entry holds all of the schema definitions that are hard-coded in slapd. As such, the
values in this entry are generated by slapd so no schema values need to be provided in the config file.
The entry must still be defined though, to serve as a base for the user-defined schema to add in
underneath. Schema entries must have the olcSchemaConfig objectClass.

5.2.3.1. olcAttributeTypes: <RFC4512 Attribute Type Description>

This directive defines an attribute type. Please see the Schema Specification chapter for information
regarding how to use this directive.

5.2.3.2. olcObjectClasses: <RFC4512 Object Class Description>

This directive defines an object class. Please see the Schema Specification chapter for information
regarding how to use this directive.

5.2.3.3. Sample Entries

dn: cn=schema,cn=config
objectClass: olcSchemaConfig
cn: schema

dn: cn=test,cn=schema,cn=config
objectClass: olcSchemaConfig
cn: test
olcAttributeTypes: (1.1.1
 NAME 'testAttr'
 EQUALITY integerMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
olcAttributeTypes: (1.1.2 NAME 'testTwo' EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.44)
olcObjectClasses: (1.1.3 NAME 'testObject'
 MAY (testAttr $ testTwo) AUXILIARY)

5.2.4. Backend-specific Directives

Backend directives apply to all database instances of the same type and, depending on the directive,
may be overridden by database directives. Backend entries must have the olcBackendConfig
objectClass.

5.2.4.1. olcBackend: <type>

This directive names a backend-specific configuration entry. <type> should be one of the supported
backend types listed in Table 5.2.

Table 5.2: Database Backends

OpenLDAP Software 2.4 Administrator's Guide

5.2.2. cn=module 27

http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4512.txt

Types Description
bdb Berkeley DB transactional backend
config Slapd configuration backend
dnssrv DNS SRV backend
hdb Hierarchical variant of bdb backend
ldap Lightweight Directory Access Protocol (Proxy) backend
ldif Lightweight Data Interchange Format backend
meta Meta Directory backend
monitor Monitor backend
passwd Provides read-only access to passwd(5)
perl Perl Programmable backend
shell Shell (extern program) backend
sql SQL Programmable backend

Example:

 olcBackend: bdb

There are no other directives defined for this entry. Specific backend types may define additional
attributes for their particular use but so far none have ever been defined. As such, these directives
usually do not appear in any actual configurations.

5.2.4.2. Sample Entry

 dn: olcBackend=bdb,cn=config
 objectClass: olcBackendConfig
 olcBackend: bdb

5.2.5. Database-specific Directives

Directives in this section are supported by every type of database. Database entries must have the
olcDatabaseConfig objectClass.

5.2.5.1. olcDatabase: [{<index>}]<type>

This directive names a specific database instance. The numeric {<index>} may be provided to
distinguish multiple databases of the same type. Usually the index can be omitted, and slapd will
generate it automatically. <type> should be one of the supported backend types listed in Table 5.2
or the frontend type.

The frontend is a special database that is used to hold database-level options that should be applied
to all the other databases. Subsequent database definitions may also override some frontend settings.

The config database is also special; both the config and the frontend databases are always
created implicitly even if they are not explicitly configured, and they are created before any other
databases.

Example:

 olcDatabase: bdb

OpenLDAP Software 2.4 Administrator's Guide

5.2.4. Backend-specific Directives 28

This marks the beginning of a new BDB database instance.

5.2.5.2. olcAccess: to <what> [by <who> [<accesslevel>] [<control>]]+

This directive grants access (specified by <accesslevel>) to a set of entries and/or attributes (specified
by <what>) by one or more requestors (specified by <who>). See the Access Control section of this
guide for basic usage.

Note: If no olcAccess directives are specified, the default access control policy, to * by *
read, allows all users (both authenticated and anonymous) read access.

Note: Access controls defined in the frontend are appended to all other databases' controls.

5.2.5.3. olcReadonly { TRUE | FALSE }

This directive puts the database into "read-only" mode. Any attempts to modify the database will
return an "unwilling to perform" error.

Default:

 olcReadonly: FALSE

5.2.5.4. olcRootDN: <DN>

This directive specifies the DN that is not subject to access control or administrative limit restrictions
for operations on this database. The DN need not refer to an entry in this database or even in the
directory. The DN may refer to a SASL identity.

Entry-based Example:

 olcRootDN: "cn=Manager,dc=example,dc=com"

SASL-based Example:

 olcRootDN: "uid=root,cn=example.com,cn=digest-md5,cn=auth"

See the SASL Authentication section for information on SASL authentication identities.

5.2.5.5. olcRootPW: <password>

This directive can be used to specify a password for the DN for the rootdn (when the rootdn is set to a
DN within the database).

Example:

 olcRootPW: secret

It is also permissible to provide a hash of the password in RFC2307 form. slappasswd(8) may be used
to generate the password hash.

OpenLDAP Software 2.4 Administrator's Guide

5.2.5. Database-specific Directives 29

http://www.rfc-editor.org/rfc/rfc2307.txt

Example:

 olcRootPW: {SSHA}ZKKuqbEKJfKSXhUbHG3fG8MDn9j1v4QN

The hash was generated using the command slappasswd -s secret.

5.2.5.6. olcSizeLimit: <integer>

This directive specifies the maximum number of entries to return from a search operation.

Default:

 olcSizeLimit: 500

See the Limits section of this guide and slapd-config(5) for more details.

5.2.5.7. olcSuffix: <dn suffix>

This directive specifies the DN suffix of queries that will be passed to this backend database. Multiple
suffix lines can be given, and usually at least one is required for each database definition. (Some
backend types, such as frontend and monitor use a hard-coded suffix which may not be
overridden in the configuration.)

Example:

 olcSuffix: "dc=example,dc=com"

Queries with a DN ending in "dc=example,dc=com" will be passed to this backend.

Note: When the backend to pass a query to is selected, slapd looks at the suffix value(s) in each
database definition in the order in which they were configured. Thus, if one database suffix is a prefix
of another, it must appear after it in the configuration.

5.2.5.8. olcSyncrepl

 olcSyncrepl: rid=<replica ID>
 provider=ldap[s]://<hostname>[:port]
 [type=refreshOnly|refreshAndPersist]
 [interval=dd:hh:mm:ss]
 [retry=[<retry interval> <# of retries>]+]
 searchbase=<base DN>
 [filter=<filter str>]
 [scope=sub|one|base]
 [attrs=<attr list>]
 [attrsonly]
 [sizelimit=<limit>]
 [timelimit=<limit>]
 [schemachecking=on|off]
 [bindmethod=simple|sasl]
 [binddn=<DN>]
 [saslmech=<mech>]
 [authcid=<identity>]
 [authzid=<identity>]
 [credentials=<passwd>]
 [realm=<realm>]

OpenLDAP Software 2.4 Administrator's Guide

5.2.5. Database-specific Directives 30

 [secprops=<properties>]
 [starttls=yes|critical]
 [tls_cert=<file>]
 [tls_key=<file>]
 [tls_cacert=<file>]
 [tls_cacertdir=<path>]
 [tls_reqcert=never|allow|try|demand]
 [tls_ciphersuite=<ciphers>]
 [tls_crlcheck=none|peer|all]
 [logbase=<base DN>]
 [logfilter=<filter str>]
 [syncdata=default|accesslog|changelog]

This directive specifies the current database as a replica of the master content by establishing the
current slapd(8) as a replication consumer site running a syncrepl replication engine. The master
database is located at the replication provider site specified by the provider parameter. The replica
database is kept up-to-date with the master content using the LDAP Content Synchronization
protocol. See RFC4533 for more information on the protocol.

The rid parameter is used for identification of the current syncrepl directive within the
replication consumer server, where <replica ID> uniquely identifies the syncrepl specification
described by the current syncrepl directive. <replica ID> is non-negative and is no more than
three decimal digits in length.

The provider parameter specifies the replication provider site containing the master content as an
LDAP URI. The provider parameter specifies a scheme, a host and optionally a port where the
provider slapd instance can be found. Either a domain name or IP address may be used for
<hostname>. Examples are ldap://provider.example.com:389 or
ldaps://192.168.1.1:636. If <port> is not given, the standard LDAP port number (389 or
636) is used. Note that the syncrepl uses a consumer-initiated protocol, and hence its specification is
located at the consumer site, whereas the replica specification is located at the provider site.
syncrepl and replica directives define two independent replication mechanisms. They do not
represent the replication peers of each other.

The content of the syncrepl replica is defined using a search specification as its result set. The
consumer slapd will send search requests to the provider slapd according to the search specification.
The search specification includes searchbase, scope, filter, attrs, attrsonly,
sizelimit, and timelimit parameters as in the normal search specification. The searchbase
parameter has no default value and must always be specified. The scope defaults to sub, the
filter defaults to (objectclass=*), attrs defaults to "*,+" to replicate all user and
operational attributes, and attrsonly is unset by default. Both sizelimit and timelimit
default to "unlimited", and only positive integers or "unlimited" may be specified.

The LDAP Content Synchronization protocol has two operation types: refreshOnly and
refreshAndPersist. The operation type is specified by the type parameter. In the
refreshOnly operation, the next synchronization search operation is periodically rescheduled at an
interval time after each synchronization operation finishes. The interval is specified by the
interval parameter. It is set to one day by default. In the refreshAndPersist operation, a
synchronization search remains persistent in the provider slapd instance. Further updates to the master
replica will generate searchResultEntry to the consumer slapd as the search responses to the
persistent synchronization search.

OpenLDAP Software 2.4 Administrator's Guide

5.2.5. Database-specific Directives 31

http://www.rfc-editor.org/rfc/rfc4533.txt

If an error occurs during replication, the consumer will attempt to reconnect according to the retry
parameter which is a list of the <retry interval> and <# of retries> pairs. For example, retry="60 10
300 3" lets the consumer retry every 60 seconds for the first 10 times and then retry every 300
seconds for the next three times before stop retrying. + in <# of retries> means indefinite number of
retries until success.

The schema checking can be enforced at the LDAP Sync consumer site by turning on the
schemachecking parameter. If it is turned on, every replicated entry will be checked for its
schema as the entry is stored into the replica content. Every entry in the replica should contain those
attributes required by the schema definition. If it is turned off, entries will be stored without checking
schema conformance. The default is off.

The binddn parameter gives the DN to bind as for the syncrepl searches to the provider slapd. It
should be a DN which has read access to the replication content in the master database.

The bindmethod is simple or sasl, depending on whether simple password-based
authentication or SASL authentication is to be used when connecting to the provider slapd instance.

Simple authentication should not be used unless adequate data integrity and confidentiality
protections are in place (e.g. TLS or IPsec). Simple authentication requires specification of binddn
and credentials parameters.

SASL authentication is generally recommended. SASL authentication requires specification of a
mechanism using the saslmech parameter. Depending on the mechanism, an authentication identity
and/or credentials can be specified using authcid and credentials, respectively. The
authzid parameter may be used to specify an authorization identity.

The realm parameter specifies a realm which a certain mechanisms authenticate the identity within.
The secprops parameter specifies Cyrus SASL security properties.

The starttls parameter specifies use of the StartTLS extended operation to establish a TLS
session before authenticating to the provider. If the critical argument is supplied, the session will
be aborted if the StartTLS request fails. Otherwise the syncrepl session continues without TLS. Note
that the main slapd TLS settings are not used by the syncrepl engine; by default the TLS parameters
from a ldap.conf(5) configuration file will be used. TLS settings may be specified here, in which case
any ldap.conf(5) settings will be completely ignored.

Rather than replicating whole entries, the consumer can query logs of data modifications. This mode
of operation is referred to as delta syncrepl. In addition to the above parameters, the logbase and
logfilter parameters must be set appropriately for the log that will be used. The syncdata
parameter must be set to either "accesslog" if the log conforms to the slapo-accesslog(5) log
format, or "changelog" if the log conforms to the obsolete changelog format. If the syncdata
parameter is omitted or set to "default" then the log parameters are ignored.

The syncrepl replication mechanism is supported by the bdb and hdb backends.

See the LDAP Sync Replication chapter of this guide for more information on how to use this
directive.

OpenLDAP Software 2.4 Administrator's Guide

5.2.5. Database-specific Directives 32

5.2.5.9. olcTimeLimit: <integer>

This directive specifies the maximum number of seconds (in real time) slapd will spend answering a
search request. If a request is not finished in this time, a result indicating an exceeded timelimit will
be returned.

Default:

 olcTimeLimit: 3600

See the Limits section of this guide and slapd-config(5) for more details.

5.2.5.10. olcUpdateref: <URL>

This directive is only applicable in a slave slapd. It specifies the URL to return to clients which
submit update requests upon the replica. If specified multiple times, each URL is provided.

Example:

 olcUpdateref: ldap://master.example.net

5.2.5.11. Sample Entries

dn: olcDatabase=frontend,cn=config
objectClass: olcDatabaseConfig
objectClass: olcFrontendConfig
olcDatabase: frontend
olcReadOnly: FALSE

dn: olcDatabase=config,cn=config
objectClass: olcDatabaseConfig
olcDatabase: config
olcRootDN: cn=Manager,dc=example,dc=com

5.2.6. BDB and HDB Database Directives

Directives in this category apply to both the BDB and the HDB database. They are used in an
olcDatabase entry in addition to the generic database directives defined above. For a complete
reference of BDB/HDB configuration directives, see slapd-bdb(5). In addition to the
olcDatabaseConfig objectClass, BDB and HDB database entries must have the
olcBdbConfig and olcHdbConfig objectClass, respectively.

5.2.6.1. olcDbDirectory: <directory>

This directive specifies the directory where the BDB files containing the database and associated
indices live.

Default:

 olcDbDirectory: /usr/local/var/openldap-data

OpenLDAP Software 2.4 Administrator's Guide

5.2.5. Database-specific Directives 33

5.2.6.2. olcDbCachesize: <integer>

This directive specifies the size in entries of the in-memory cache maintained by the BDB backend
database instance.

Default:

 olcDbCachesize: 1000

5.2.6.3. olcDbCheckpoint: <kbyte> <min>

This directive specifies how often to checkpoint the BDB transaction log. A checkpoint operation
flushes the database buffers to disk and writes a checkpoint record in the log. The checkpoint will
occur if either <kbyte> data has been written or <min> minutes have passed since the last checkpoint.
Both arguments default to zero, in which case they are ignored. When the <min> argument is
non-zero, an internal task will run every <min> minutes to perform the checkpoint. See the Berkeley
DB reference guide for more details.

Example:

 olcDbCheckpoint: 1024 10

5.2.6.4. olcDbConfig: <DB_CONFIG setting>

This attribute specifies a configuration directive to be placed in the DB_CONFIG file of the database
directory. At server startup time, if no such file exists yet, the DB_CONFIG file will be created and
the settings in this attribute will be written to it. If the file exists, its contents will be read and
displayed in this attribute. The attribute is multi-valued, to accommodate multiple configuration
directives. No default is provided, but it is essential to use proper settings here to get the best server
performance.

Any changes made to this attribute will be written to the DB_CONFIG file and will cause the database
environment to be reset so the changes can take immediate effect. If the environment cache is large
and has not been recently checkpointed, this reset operation may take a long time. It may be advisable
to manually perform a single checkpoint using the Berkeley DB db_checkpoint utility before using
LDAP Modify to change this attribute.

Example:

 olcDbConfig: set_cachesize 0 10485760 0
 olcDbConfig: set_lg_bsize 2097512
 olcDbConfig: set_lg_dir /var/tmp/bdb-log
 olcDbConfig: set_flags DB_LOG_AUTOREMOVE

In this example, the BDB cache is set to 10MB, the BDB transaction log buffer size is set to 2MB,
and the transaction log files are to be stored in the /var/tmp/bdb-log directory. Also a flag is set to tell
BDB to delete transaction log files as soon as their contents have been checkpointed and they are no
longer needed. Without this setting the transaction log files will continue to accumulate until some
other cleanup procedure removes them. See the Berkeley DB documentation for the db_archive
command for details. For a complete list of Berkeley DB flags please see -
http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html

OpenLDAP Software 2.4 Administrator's Guide

5.2.6. BDB and HDB Database Directives 34

http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html

Ideally the BDB cache must be at least as large as the working set of the database, the log buffer size
should be large enough to accommodate most transactions without overflowing, and the log directory
must be on a separate physical disk from the main database files. And both the database directory and
the log directory should be separate from disks used for regular system activities such as the root,
boot, or swap filesystems. See the FAQ-o-Matic and the Berkeley DB documentation for more
details.

5.2.6.5. olcDbNosync: { TRUE | FALSE }

This option causes on-disk database contents to not be immediately synchronized with in memory
changes upon change. Setting this option to TRUE may improve performance at the expense of data
integrity. This directive has the same effect as using

 olcDbConfig: set_flags DB_TXN_NOSYNC

5.2.6.6. olcDbIDLcacheSize: <integer>

Specify the size of the in-memory index cache, in index slots. The default is zero. A larger value will
speed up frequent searches of indexed entries. The optimal size will depend on the data and search
characteristics of the database, but using a number three times the entry cache size is a good starting
point.

Example:

 olcDbIDLcacheSize: 3000

5.2.6.7. olcDbIndex: {<attrlist> | default} [pres,eq,approx,sub,none]

This directive specifies the indices to maintain for the given attribute. If only an <attrlist> is
given, the default indices are maintained. The index keywords correspond to the common types of
matches that may be used in an LDAP search filter.

Example:

 olcDbIndex: default pres,eq
 olcDbIndex: uid
 olcDbIndex: cn,sn pres,eq,sub
 olcDbIndex: objectClass eq

The first line sets the default set of indices to maintain to present and equality. The second line causes
the default (pres,eq) set of indices to be maintained for the uid attribute type. The third line causes
present, equality, and substring indices to be maintained for cn and sn attribute types. The fourth line
causes an equality index for the objectClass attribute type.

There is no index keyword for inequality matches. Generally these matches do not use an index.
However, some attributes do support indexing for inequality matches, based on the equality index.

A substring index can be more explicitly specified as subinitial, subany, or subfinal,
corresponding to the three possible components of a substring match filter. A subinitial index only
indexes substrings that appear at the beginning of an attribute value. A subfinal index only indexes
substrings that appear at the end of an attribute value, while subany indexes substrings that occur
anywhere in a value.

OpenLDAP Software 2.4 Administrator's Guide

5.2.6. BDB and HDB Database Directives 35

Note that by default, setting an index for an attribute also affects every subtype of that attribute. E.g.,
setting an equality index on the name attribute causes cn, sn, and every other attribute that inherits
from name to be indexed.

By default, no indices are maintained. It is generally advised that minimally an equality index upon
objectClass be maintained.

 olcDbindex: objectClass eq

Additional indices should be configured corresponding to the most common searches that are used on
the database. Presence indexing should not be configured for an attribute unless the attribute occurs
very rarely in the database, and presence searches on the attribute occur very frequently during normal
use of the directory. Most applications don't use presence searches, so usually presence indexing is
not very useful.

If this setting is changed while slapd is running, an internal task will be run to generate the changed
index data. All server operations can continue as normal while the indexer does its work. If slapd is
stopped before the index task completes, indexing will have to be manually completed using the
slapindex tool.

5.2.6.8. olcDbLinearIndex: { TRUE | FALSE }

If this setting is TRUE slapindex will index one attribute at a time. The default settings is FALSE in
which case all indexed attributes of an entry are processed at the same time. When enabled, each
indexed attribute is processed individually, using multiple passes through the entire database. This
option improves slapindex performance when the database size exceeds the BDB cache size. When
the BDB cache is large enough, this option is not needed and will decrease performance. Also by
default, slapadd performs full indexing and so a separate slapindex run is not needed. With this
option, slapadd does no indexing and slapindex must be used.

5.2.6.9. olcDbMode: { <octal> | <symbolic> }

This directive specifies the file protection mode that newly created database index files should have.
This can be in the form 0600 or -rw-------

Default:

 olcDbMode: 0600

5.2.6.10. olcDbSearchStack: <integer>

Specify the depth of the stack used for search filter evaluation. Search filters are evaluated on a stack
to accommodate nested AND / OR clauses. An individual stack is allocated for each server thread. The
depth of the stack determines how complex a filter can be evaluated without requiring any additional
memory allocation. Filters that are nested deeper than the search stack depth will cause a separate
stack to be allocated for that particular search operation. These separate allocations can have a major
negative impact on server performance, but specifying too much stack will also consume a great deal
of memory. Each search uses 512K bytes per level on a 32-bit machine, or 1024K bytes per level on a
64-bit machine. The default stack depth is 16, thus 8MB or 16MB per thread is used on 32 and 64 bit
machines, respectively. Also the 512KB size of a single stack slot is set by a compile-time constant
which may be changed if needed; the code must be recompiled for the change to take effect.

OpenLDAP Software 2.4 Administrator's Guide

5.2.6. BDB and HDB Database Directives 36

Default:

 olcDbSearchStack: 16

5.2.6.11. olcDbShmKey: <integer>

Specify a key for a shared memory BDB environment. By default the BDB environment uses memory
mapped files. If a non-zero value is specified, it will be used as the key to identify a shared memory
region that will house the environment.

Example:

 olcDbShmKey: 42

5.2.6.12. Sample Entry

dn: olcDatabase=hdb,cn=config
objectClass: olcDatabaseConfig
objectClass: olcHdbConfig
olcDatabase: hdb
olcSuffix: "dc=example,dc=com"
olcDbDirectory: /usr/local/var/openldap-data
olcDbCacheSize: 1000
olcDbCheckpoint: 1024 10
olcDbConfig: set_cachesize 0 10485760 0
olcDbConfig: set_lg_bsize 2097152
olcDbConfig: set_lg_dir /var/tmp/bdb-log
olcDbConfig: set_flags DB_LOG_AUTOREMOVE
olcDbIDLcacheSize: 3000
olcDbIndex: objectClass eq

5.3. Configuration Example

The following is an example configuration, interspersed with explanatory text. It defines two
databases to handle different parts of the X.500 tree; both are BDB database instances. The line
numbers shown are provided for reference only and are not included in the actual file. First, the global
configuration section:

 1. # example config file - global configuration entry
 2. dn: cn=config
 3. objectClass: olcGlobal
 4. cn: config
 5. olcReferral: ldap://root.openldap.org
 6.

Line 1 is a comment. Lines 2-4 identify this as the global configuration entry. The olcReferral:
directive on line 5 means that queries not local to one of the databases defined below will be referred
to the LDAP server running on the standard port (389) at the host root.openldap.org. Line 6 is
a blank line, indicating the end of this entry.

 7. # internal schema
 8. dn: cn=schema,cn=config
 9. objectClass: olcSchemaConfig
 10. cn: schema
 11.

OpenLDAP Software 2.4 Administrator's Guide

5.2.6. BDB and HDB Database Directives 37

Line 7 is a comment. Lines 8-10 identify this as the root of the schema subtree. The actual schema
definitions in this entry are hardcoded into slapd so no additional attributes are specified here. Line 11
is a blank line, indicating the end of this entry.

 12. # include the core schema
 13. include: file:///usr/local/etc/openldap/schema/core.ldif
 14.

Line 12 is a comment. Line 13 is an LDIF include directive which accesses the core schema
definitions in LDIF format. Line 14 is a blank line.

Next comes the database definitions. The first database is the special frontend database whose
settings are applied globally to all the other databases.

 15. # global database parameters
 16. dn: olcDatabase=frontend,cn=config
 17. objectClass: olcDatabaseConfig
 18. olcDatabase: frontend
 19. olcAccess: to * by * read
 20.

Line 15 is a comment. Lines 16-18 identify this entry as the global database entry. Line 19 is a global
access control. It applies to all entries (after any applicable database-specific access controls).

The next entry defines a BDB backend that will handle queries for things in the
"dc=example,dc=com" portion of the tree. Indices are to be maintained for several attributes, and the
userPassword attribute is to be protected from unauthorized access.

 21. # BDB definition for example.com
 22. dn: olcDatabase=bdb,cn=config
 23. objectClass: olcDatabaseConfig
 24. objectClass: olcBdbConfig
 25. olcDatabase: bdb
 26. olcSuffix: "dc=example,dc=com"
 27. olcDbDirectory: /usr/local/var/openldap-data
 28. olcRootDN: "cn=Manager,dc=example,dc=com"
 29. olcRootPW: secret
 30. olcDbIndex: uid pres,eq
 31. olcDbIndex: cn,sn,uid pres,eq,approx,sub
 32. olcDbIndex: objectClass eq
 33. olcAccess: to attrs=userPassword
 34. by self write
 35. by anonymous auth
 36. by dn.base="cn=Admin,dc=example,dc=com" write
 37. by * none
 38. olcAccess: to *
 39. by self write
 40. by dn.base="cn=Admin,dc=example,dc=com" write
 41. by * read
 42.

Line 21 is a comment. Lines 22-25 identify this entry as a BDB database configuration entry. Line 26
specifies the DN suffix for queries to pass to this database. Line 27 specifies the directory in which
the database files will live.

Lines 28 and 29 identify the database super-user entry and associated password. This entry is not

OpenLDAP Software 2.4 Administrator's Guide

5.3. Configuration Example 38

subject to access control or size or time limit restrictions.

Lines 30 through 32 indicate the indices to maintain for various attributes.

Lines 33 through 41 specify access control for entries in this database. For all applicable entries, the
userPassword attribute is writable by the entry itself and by the "admin" entry. It may be used for
authentication/authorization purposes, but is otherwise not readable. All other attributes are writable
by the entry and the "admin" entry, but may be read by all users (authenticated or not).

Line 42 is a blank line, indicating the end of this entry.

The next section of the example configuration file defines another BDB database. This one handles
queries involving the dc=example,dc=net subtree but is managed by the same entity as the first
database. Note that without line 52, the read access would be allowed due to the global access rule at
line 19.

 43. # BDB definition for example.net
 44. dn: olcDatabase=bdb,cn=config
 45. objectClass: olcDatabaseConfig
 46. objectClass: olcBdbConfig
 47. olcDatabase: bdb
 48. olcSuffix: "dc=example,dc=net"
 49. olcDbDirectory: /usr/local/var/openldap-data-net
 50. olcRootDN: "cn=Manager,dc=example,dc=com"
 51. olcDbIndex: objectClass eq
 52. olcAccess: to * by users read

5.4. Converting old style slapd.conf(5) file to cn=config
format

An existing slapd.conf(5) file can be converted to the new format using slaptest(8) or any of the slap
tools:

 slaptest -f /usr/local/etc/openldap/slapd.conf -F /usr/local/etc/openldap/slapd.d

You can then discard the old slapd.conf(5) file. Make sure to launch slapd(8) with the -F option to
specify the configuration directory.

Note: When converting from the slapd.conf format to slapd.d format, any included files will also be
integrated into the resulting configuration database.

OpenLDAP Software 2.4 Administrator's Guide

5.4. Converting old style slapd.conf(5) file to cn=config format 39

6. The slapd Configuration File
Once the software has been built and installed, you are ready to configure slapd(8) for use at your site.
The slapd runtime configuration is primarily accomplished through the slapd.conf(5) file, normally
installed in the /usr/local/etc/openldap directory.

An alternate configuration file location can be specified via a command-line option to slapd(8). This
chapter describes the general format of the slapd.conf(5) configuration file, followed by a detailed
description of commonly used config file directives.

6.1. Configuration File Format

The slapd.conf(5) file consists of three types of configuration information: global, backend specific,
and database specific. Global information is specified first, followed by information associated with a
particular backend type, which is then followed by information associated with a particular database
instance. Global directives can be overridden in backend and/or database directives, and backend
directives can be overridden by database directives.

Blank lines and comment lines beginning with a '#' character are ignored. If a line begins with
whitespace, it is considered a continuation of the previous line (even if the previous line is a
comment).

The general format of slapd.conf is as follows:

 # global configuration directives
 <global config directives>

 # backend definition
 backend <typeA>
 <backend-specific directives>

 # first database definition & config directives
 database <typeA>
 <database-specific directives>

 # second database definition & config directives
 database <typeB>
 <database-specific directives>

 # second database definition & config directives
 database <typeA>
 <database-specific directives>

 # subsequent backend & database definitions & config directives
 ...

A configuration directive may take arguments. If so, they are separated by whitespace. If an argument
contains whitespace, the argument should be enclosed in double quotes "like this". If an
argument contains a double quote or a backslash character `\', the character should be preceded by a
backslash character `\'.

The distribution contains an example configuration file that will be installed in the
/usr/local/etc/openldap directory. A number of files containing schema definitions

6. The slapd Configuration File 40

(attribute types and object classes) are also provided in the
/usr/local/etc/openldap/schema directory.

6.2. Configuration File Directives

This section details commonly used configuration directives. For a complete list, see the slapd.conf(5)
manual page. This section separates the configuration file directives into global, backend-specific and
data-specific categories, describing each directive and its default value (if any), and giving an
example of its use.

6.2.1. Global Directives

Directives described in this section apply to all backends and databases unless specifically overridden
in a backend or database definition. Arguments that should be replaced by actual text are shown in
brackets <>.

6.2.1.1. access to <what> [by <who> [<accesslevel>] [<control>]]+

This directive grants access (specified by <accesslevel>) to a set of entries and/or attributes (specified
by <what>) by one or more requestors (specified by <who>). See the Access Control section of this
guide for basic usage.

Note: If no access directives are specified, the default access control policy, access to * by
* read, allows all both authenticated and anonymous users read access.

6.2.1.2. attributetype <RFC4512 Attribute Type Description>

This directive defines an attribute type. Please see the Schema Specification chapter for information
regarding how to use this directive.

6.2.1.3. idletimeout <integer>

Specify the number of seconds to wait before forcibly closing an idle client connection. An
idletimeout of 0, the default, disables this feature.

6.2.1.4. include <filename>

This directive specifies that slapd should read additional configuration information from the given file
before continuing with the next line of the current file. The included file should follow the normal
slapd config file format. The file is commonly used to include files containing schema specifications.

Note: You should be careful when using this directive - there is no small limit on the number of
nested include directives, and no loop detection is done.

6.2.1.5. loglevel <integer>

This directive specifies the level at which debugging statements and operation statistics should be
syslogged (currently logged to the syslogd(8) LOG_LOCAL4 facility). You must have configured
OpenLDAP --enable-debug (the default) for this to work (except for the two statistics levels,

OpenLDAP Software 2.4 Administrator's Guide

6.1. Configuration File Format 41

http://www.rfc-editor.org/rfc/rfc4512.txt

which are always enabled). Log levels may be specified as integers or by keyword. Multiple log levels
may be used and the levels are additive. To display what numbers correspond to what kind of
debugging, invoke slapd with -d? or consult the table below. The possible values for <integer> are:

Table 6.1: Debugging Levels

Level Keyword Description
-1 any enable all debugging
0 no debugging
1 (0x1 trace) trace function calls
2 (0x2 packets) debug packet handling
4 (0x4 args) heavy trace debugging
8 (0x8 conns) connection management
16 (0x10 BER) print out packets sent and received
32 (0x20 filter) search filter processing
64 (0x40 config) configuration processing
128 (0x80 ACL) access control list processing
256 (0x100 stats) stats log connections/operations/results
512 (0x200 stats2) stats log entries sent
1024 (0x400 shell) print communication with shell backends
2048 (0x800 parse) print entry parsing debugging
16384 (0x4000 sync) syncrepl consumer processing
32768 (0x8000 none) only messages that get logged whatever log level is set

The desired log level can be input as a single integer that combines the (ORed) desired levels, both in
decimal or in hexadecimal notation, as a list of integers (that are ORed internally), or as a list of the
names that are shown between brackets, such that

 loglevel 129
 loglevel 0x81
 loglevel 128 1
 loglevel 0x80 0x1
 loglevel acl trace

are equivalent.

Examples:

 loglevel -1

This will cause lots and lots of debugging information to be logged.

 loglevel conns filter

Just log the connection and search filter processing.

 loglevel none

Log those messages that are logged regardless of the configured loglevel. This differs from setting the
log level to 0, when no logging occurs. At least the None level is required to have high priority

OpenLDAP Software 2.4 Administrator's Guide

6.2.1. Global Directives 42

messages logged.

Default:

 loglevel stats

Basic stats logging is configured by default. However, if no loglevel is defined, no logging occurs
(equivalent to a 0 level).

6.2.1.6. objectclass <RFC4512 Object Class Description>

This directive defines an object class. Please see the Schema Specification chapter for information
regarding how to use this directive.

6.2.1.7. referral <URI>

This directive specifies the referral to pass back when slapd cannot find a local database to handle a
request.

Example:

 referral ldap://root.openldap.org

This will refer non-local queries to the global root LDAP server at the OpenLDAP Project. Smart
LDAP clients can re-ask their query at that server, but note that most of these clients are only going to
know how to handle simple LDAP URLs that contain a host part and optionally a distinguished name
part.

6.2.1.8. sizelimit <integer>

This directive specifies the maximum number of entries to return from a search operation.

Default:

 sizelimit 500

See the Limits section of this guide and slapd.conf(5) for more details.

6.2.1.9. timelimit <integer>

This directive specifies the maximum number of seconds (in real time) slapd will spend answering a
search request. If a request is not finished in this time, a result indicating an exceeded timelimit will
be returned.

Default:

 timelimit 3600

See the Limits section of this guide and slapd.conf(5) for more details.

OpenLDAP Software 2.4 Administrator's Guide

6.2.1. Global Directives 43

http://www.rfc-editor.org/rfc/rfc4512.txt

6.2.2. General Backend Directives

Directives in this section apply only to the backend in which they are defined. They are supported by
every type of backend. Backend directives apply to all databases instances of the same type and,
depending on the directive, may be overridden by database directives.

6.2.2.1. backend <type>

This directive marks the beginning of a backend declaration. <type> should be one of the supported
backend types listed in Table 6.2.

Table 5.2: Database Backends

Types Description
bdb Berkeley DB transactional backend
dnssrv DNS SRV backend
hdb Hierarchical variant of bdb backend
ldap Lightweight Directory Access Protocol (Proxy) backend
meta Meta Directory backend
monitor Monitor backend
passwd Provides read-only access to passwd(5)
perl Perl Programmable backend
shell Shell (extern program) backend
sql SQL Programmable backend

Example:

 backend bdb

This marks the beginning of a new BDB backend definition.

6.2.3. General Database Directives

Directives in this section apply only to the database in which they are defined. They are supported by
every type of database.

6.2.3.1. database <type>

This directive marks the beginning of a database instance declaration. <type> should be one of the
supported backend types listed in Table 6.2.

Example:

 database bdb

This marks the beginning of a new BDB database instance declaration.

OpenLDAP Software 2.4 Administrator's Guide

6.2.2. General Backend Directives 44

6.2.3.2. limits <who> <limit> [<limit> [...]]

Specify time and size limits based on who initiated an operation.

See the Limits section of this guide and slapd.conf(5) for more details.

6.2.3.3. readonly { on | off }

This directive puts the database into "read-only" mode. Any attempts to modify the database will
return an "unwilling to perform" error.

Default:

 readonly off

6.2.3.4. rootdn <DN>

This directive specifies the DN that is not subject to access control or administrative limit restrictions
for operations on this database. The DN need not refer to an entry in this database or even in the
directory. The DN may refer to a SASL identity.

Entry-based Example:

 rootdn "cn=Manager,dc=example,dc=com"

SASL-based Example:

 rootdn "uid=root,cn=example.com,cn=digest-md5,cn=auth"

See the SASL Authentication section for information on SASL authentication identities.

6.2.3.5. rootpw <password>

This directive can be used to specifies a password for the DN for the rootdn (when the rootdn is set to
a DN within the database).

Example:

 rootpw secret

It is also permissible to provide hash of the password in RFC2307 form. slappasswd(8) may be used
to generate the password hash.

Example:

 rootpw {SSHA}ZKKuqbEKJfKSXhUbHG3fG8MDn9j1v4QN

The hash was generated using the command slappasswd -s secret.

OpenLDAP Software 2.4 Administrator's Guide

6.2.3. General Database Directives 45

http://www.rfc-editor.org/rfc/rfc2307.txt

6.2.3.6. suffix <dn suffix>

This directive specifies the DN suffix of queries that will be passed to this backend database. Multiple
suffix lines can be given, and at least one is required for each database definition.

Example:

 suffix "dc=example,dc=com"

Queries with a DN ending in "dc=example,dc=com" will be passed to this backend.

Note: When the backend to pass a query to is selected, slapd looks at the suffix line(s) in each
database definition in the order they appear in the file. Thus, if one database suffix is a prefix of
another, it must appear after it in the config file.

6.2.3.7. syncrepl

 syncrepl rid=<replica ID>
 provider=ldap[s]://<hostname>[:port]
 [type=refreshOnly|refreshAndPersist]
 [interval=dd:hh:mm:ss]
 [retry=[<retry interval> <# of retries>]+]
 searchbase=<base DN>
 [filter=<filter str>]
 [scope=sub|one|base]
 [attrs=<attr list>]
 [attrsonly]
 [sizelimit=<limit>]
 [timelimit=<limit>]
 [schemachecking=on|off]
 [bindmethod=simple|sasl]
 [binddn=<DN>]
 [saslmech=<mech>]
 [authcid=<identity>]
 [authzid=<identity>]
 [credentials=<passwd>]
 [realm=<realm>]
 [secprops=<properties>]
 [starttls=yes|critical]
 [tls_cert=<file>]
 [tls_key=<file>]
 [tls_cacert=<file>]
 [tls_cacertdir=<path>]
 [tls_reqcert=never|allow|try|demand]
 [tls_ciphersuite=<ciphers>]
 [tls_crlcheck=none|peer|all]
 [logbase=<base DN>]
 [logfilter=<filter str>]
 [syncdata=default|accesslog|changelog]

This directive specifies the current database as a replica of the master content by establishing the
current slapd(8) as a replication consumer site running a syncrepl replication engine. The master
database is located at the replication provider site specified by the provider parameter. The replica
database is kept up-to-date with the master content using the LDAP Content Synchronization
protocol. See RFC4533 for more information on the protocol.

OpenLDAP Software 2.4 Administrator's Guide

6.2.3. General Database Directives 46

http://www.rfc-editor.org/rfc/rfc4533.txt

The rid parameter is used for identification of the current syncrepl directive within the
replication consumer server, where <replica ID> uniquely identifies the syncrepl specification
described by the current syncrepl directive. <replica ID> is non-negative and is no more than
three decimal digits in length.

The provider parameter specifies the replication provider site containing the master content as an
LDAP URI. The provider parameter specifies a scheme, a host and optionally a port where the
provider slapd instance can be found. Either a domain name or IP address may be used for
<hostname>. Examples are ldap://provider.example.com:389 or
ldaps://192.168.1.1:636. If <port> is not given, the standard LDAP port number (389 or
636) is used. Note that the syncrepl uses a consumer-initiated protocol, and hence its specification is
located at the consumer site, whereas the replica specification is located at the provider site.
syncrepl and replica directives define two independent replication mechanisms. They do not
represent the replication peers of each other.

The content of the syncrepl replica is defined using a search specification as its result set. The
consumer slapd will send search requests to the provider slapd according to the search specification.
The search specification includes searchbase, scope, filter, attrs, attrsonly,
sizelimit, and timelimit parameters as in the normal search specification. The searchbase
parameter has no default value and must always be specified. The scope defaults to sub, the
filter defaults to (objectclass=*), attrs defaults to "*,+" to replicate all user and
operational attributes, and attrsonly is unset by default. Both sizelimit and timelimit
default to "unlimited", and only positive integers or "unlimited" may be specified.

The LDAP Content Synchronization protocol has two operation types: refreshOnly and
refreshAndPersist. The operation type is specified by the type parameter. In the
refreshOnly operation, the next synchronization search operation is periodically rescheduled at an
interval time after each synchronization operation finishes. The interval is specified by the
interval parameter. It is set to one day by default. In the refreshAndPersist operation, a
synchronization search remains persistent in the provider slapd instance. Further updates to the master
replica will generate searchResultEntry to the consumer slapd as the search responses to the
persistent synchronization search.

If an error occurs during replication, the consumer will attempt to reconnect according to the retry
parameter which is a list of the <retry interval> and <# of retries> pairs. For example, retry="60 10
300 3" lets the consumer retry every 60 seconds for the first 10 times and then retry every 300
seconds for the next three times before stop retrying. + in <# of retries> means indefinite number of
retries until success.

The schema checking can be enforced at the LDAP Sync consumer site by turning on the
schemachecking parameter. If it is turned on, every replicated entry will be checked for its
schema as the entry is stored into the replica content. Every entry in the replica should contain those
attributes required by the schema definition. If it is turned off, entries will be stored without checking
schema conformance. The default is off.

The binddn parameter gives the DN to bind as for the syncrepl searches to the provider slapd. It
should be a DN which has read access to the replication content in the master database.

The bindmethod is simple or sasl, depending on whether simple password-based
authentication or SASL authentication is to be used when connecting to the provider slapd instance.

OpenLDAP Software 2.4 Administrator's Guide

6.2.3. General Database Directives 47

Simple authentication should not be used unless adequate data integrity and confidentiality
protections are in place (e.g. TLS or IPsec). Simple authentication requires specification of binddn
and credentials parameters.

SASL authentication is generally recommended. SASL authentication requires specification of a
mechanism using the saslmech parameter. Depending on the mechanism, an authentication identity
and/or credentials can be specified using authcid and credentials, respectively. The
authzid parameter may be used to specify an authorization identity.

The realm parameter specifies a realm which a certain mechanisms authenticate the identity within.
The secprops parameter specifies Cyrus SASL security properties.

The starttls parameter specifies use of the StartTLS extended operation to establish a TLS
session before authenticating to the provider. If the critical argument is supplied, the session will
be aborted if the StartTLS request fails. Otherwise the syncrepl session continues without TLS. Note
that the main slapd TLS settings are not used by the syncrepl engine; by default the TLS parameters
from a ldap.conf(5) configuration file will be used. TLS settings may be specified here, in which case
any ldap.conf(5) settings will be completely ignored.

Rather than replicating whole entries, the consumer can query logs of data modifications. This mode
of operation is referred to as delta syncrepl. In addition to the above parameters, the logbase and
logfilter parameters must be set appropriately for the log that will be used. The syncdata
parameter must be set to either "accesslog" if the log conforms to the slapo-accesslog(5) log
format, or "changelog" if the log conforms to the obsolete changelog format. If the syncdata
parameter is omitted or set to "default" then the log parameters are ignored.

The syncrepl replication mechanism is supported by the bdb and hdb backends.

See the LDAP Sync Replication chapter of this guide for more information on how to use this
directive.

6.2.3.8. updateref <URL>

This directive is only applicable in a slave (or shadow) slapd(8) instance. It specifies the URL to
return to clients which submit update requests upon the replica. If specified multiple times, each URL
is provided.

Example:

 updateref ldap://master.example.net

6.2.4. BDB and HDB Database Directives

Directives in this category only apply to both the BDB and the HDB database. That is, they must
follow a "database bdb" or "database hdb" line and come before any subsequent "backend" or
"database" line. For a complete reference of BDB/HDB configuration directives, see slapd-bdb(5).

6.2.4.1. directory <directory>

This directive specifies the directory where the BDB files containing the database and associated
indices live.

OpenLDAP Software 2.4 Administrator's Guide

6.2.3. General Database Directives 48

Default:

 directory /usr/local/var/openldap-data

6.3. Configuration File Example

The following is an example configuration file, interspersed with explanatory text. It defines two
databases to handle different parts of the X.500 tree; both are BDB database instances. The line
numbers shown are provided for reference only and are not included in the actual file. First, the global
configuration section:

 1. # example config file - global configuration section
 2. include /usr/local/etc/schema/core.schema
 3. referral ldap://root.openldap.org
 4. access to * by * read

Line 1 is a comment. Line 2 includes another config file which contains core schema definitions. The
referral directive on line 3 means that queries not local to one of the databases defined below will
be referred to the LDAP server running on the standard port (389) at the host
root.openldap.org.

Line 4 is a global access control. It applies to all entries (after any applicable database-specific access
controls).

The next section of the configuration file defines a BDB backend that will handle queries for things in
the "dc=example,dc=com" portion of the tree. The database is to be replicated to two slave slapds, one
on truelies, the other on judgmentday. Indices are to be maintained for several attributes, and the
userPassword attribute is to be protected from unauthorized access.

 5. # BDB definition for the example.com
 6. database bdb
 7. suffix "dc=example,dc=com"
 8. directory /usr/local/var/openldap-data
 9. rootdn "cn=Manager,dc=example,dc=com"
 10. rootpw secret
 11. # indexed attribute definitions
 12. index uid pres,eq
 13. index cn,sn,uid pres,eq,approx,sub
 14. index objectClass eq
 15. # database access control definitions
 16. access to attrs=userPassword
 17. by self write
 18. by anonymous auth
 19. by dn.base="cn=Admin,dc=example,dc=com" write
 20. by * none
 21. access to *
 22. by self write
 23. by dn.base="cn=Admin,dc=example,dc=com" write
 24. by * read

Line 5 is a comment. The start of the database definition is marked by the database keyword on line 6.
Line 7 specifies the DN suffix for queries to pass to this database. Line 8 specifies the directory in
which the database files will live.

OpenLDAP Software 2.4 Administrator's Guide

6.2.4. BDB and HDB Database Directives 49

Lines 9 and 10 identify the database super-user entry and associated password. This entry is not
subject to access control or size or time limit restrictions.

Lines 12 through 14 indicate the indices to maintain for various attributes.

Lines 16 through 24 specify access control for entries in this database. For all applicable entries, the
userPassword attribute is writable by the entry itself and by the "admin" entry. It may be used for
authentication/authorization purposes, but is otherwise not readable. All other attributes are writable
by the entry and the "admin" entry, but may be read by all users (authenticated or not).

The next section of the example configuration file defines another BDB database. This one handles
queries involving the dc=example,dc=net subtree but is managed by the same entity as the first
database. Note that without line 39, the read access would be allowed due to the global access rule at
line 4.

 33. # BDB definition for example.net
 34. database bdb
 35. suffix "dc=example,dc=net"
 36. directory /usr/local/var/openldap-data-net
 37. rootdn "cn=Manager,dc=example,dc=com"
 38. index objectClass eq
 39. access to * by users read

OpenLDAP Software 2.4 Administrator's Guide

6.3. Configuration File Example 50

7. Running slapd
slapd(8) is designed to be run as a standalone service. This allows the server to take advantage of
caching, manage concurrency issues with underlying databases, and conserve system resources.
Running from inetd(8) is NOT an option.

7.1. Command-Line Options

slapd(8) supports a number of command-line options as detailed in the manual page. This section
details a few commonly used options.

 -f <filename>

This option specifies an alternate configuration file for slapd. The default is normally
/usr/local/etc/openldap/slapd.conf.

 -F <slapd-config-directory>

Specifies the slapd configuration directory. The default is
/usr/local/etc/openldap/slapd.d.

If both -f and -F are specified, the config file will be read and converted to config directory format
and written to the specified directory. If neither option is specified, slapd will attempt to read the
default config directory before trying to use the default config file. If a valid config directory exists
then the default config file is ignored. All of the slap tools that use the config options observe this
same behavior.

 -h <URLs>

This option specifies alternative listener configurations. The default is ldap:/// which implies
LDAP over TCP on all interfaces on the default LDAP port 389. You can specify specific host-port
pairs or other protocol schemes (such as ldaps:// or ldapi://). For example, -h "ldaps://
ldap://127.0.0.1:666" will create two listeners: one for the (non-standard) ldaps://
scheme on all interfaces on the default ldaps:// port 636, and one for the standard ldap://
scheme on the localhost (loopback) interface on port 666. Hosts may be specified using using
hostnames or IPv4 or IPv6 addresses. Port values must be numeric.

 -n <service-name>

This option specifies the service name used for logging and other purposes. The default service name
is slapd.

 -l <syslog-local-user>

This option specifies the local user for the syslog(8) facility. Values can be LOCAL0, LOCAL1,
LOCAL2, ..., and LOCAL7. The default is LOCAL4. This option may not be supported on all systems.

 -u user -g group

These options specify the user and group, respectively, to run as. user can be either a user name or

7. Running slapd 51

uid. group can be either a group name or gid.

 -r directory

This option specifies a run-time directory. slapd will chroot(2) to this directory after opening listeners
but before reading any configuration files or initializing any backends.

 -d <level> | ?

This option sets the slapd debug level to <level>. When level is a `?' character, the various debugging
levels are printed and slapd exits, regardless of any other options you give it. Current debugging
levels are

Table 7.1: Debugging Levels

Level Keyword Description
-1 any enable all debugging
0 no debugging
1 (0x1 trace) trace function calls
2 (0x2 packets) debug packet handling
4 (0x4 args) heavy trace debugging
8 (0x8 conns) connection management
16 (0x10 BER) print out packets sent and received
32 (0x20 filter) search filter processing
64 (0x40 config) configuration processing
128 (0x80 ACL) access control list processing
256 (0x100 stats) stats log connections/operations/results
512 (0x200 stats2) stats log entries sent
1024 (0x400 shell) print communication with shell backends
2048 (0x800 parse) print entry parsing debugging
16384 (0x4000 sync) syncrepl consumer processing
32768 (0x8000 none) only messages that get logged whatever log level is set

You may enable multiple levels by specifying the debug option once for each desired level. Or, since
debugging levels are additive, you can do the math yourself. That is, if you want to trace function
calls and watch the config file being processed, you could set level to the sum of those two levels (in
this case, -d 65). Or, you can let slapd do the math, (e.g. -d 1 -d 64). Consult <ldap_log.h>
for more details.

Note: slapd must have been compiled with --enable-debug defined for any debugging
information beyond the two stats levels to be available (the default).

7.2. Starting slapd

In general, slapd is run like this:

 /usr/local/libexec/slapd [<option>]*

OpenLDAP Software 2.4 Administrator's Guide

7.1. Command-Line Options 52

where /usr/local/libexec is determined by configure and <option> is one of the options
described above (or in slapd(8)). Unless you have specified a debugging level (including level 0),
slapd will automatically fork and detach itself from its controlling terminal and run in the background.

7.3. Stopping slapd

To kill off slapd(8) safely, you should give a command like this

 kill -INT `cat /usr/local/var/slapd.pid`

where /usr/local/var is determined by configure.

Killing slapd by a more drastic method may cause information loss or database corruption.

OpenLDAP Software 2.4 Administrator's Guide

7.2. Starting slapd 53

8. Access Control

8.1. Introduction

As the directory gets populated with more and more data of varying sensitivity, controlling the kinds
of access granted to the directory becomes more and more critical. For instance, the directory may
contain data of a confidential nature that you may need to protect by contract or by law. Or, if using
the directory to control access to other services, inappropriate access to the directory may create
avenues of attack to your sites security that result in devastating damage to your assets.

Access to your directory can be configured via two methods, the first using The slapd Configuration
File and the second using the slapd-config(5) format (Configuring slapd).

The default access control policy is allow read by all clients. Regardless of what access control policy
is defined, the rootdn is always allowed full rights (i.e. auth, search, compare, read and write) on
everything and anything.

As a consequence, it's useless (and results in a performance penalty) to explicitly list the rootdn
among the <by> clauses.

The following sections will describe Access Control Lists in more details and follow with some
examples and recommendations.

8.2. Access Control via Static Configuration

Access to entries and attributes is controlled by the access configuration file directive. The general
form of an access line is:

 <access directive> ::= access to <what>
 [by <who> [<access>] [<control>]]+
 <what> ::= * |
 [dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
 [filter=<ldapfilter>] [attrs=<attrlist>]
 <basic-style> ::= regex | exact
 <scope-style> ::= base | one | subtree | children
 <attrlist> ::= <attr> [val[.<basic-style>]=<regex>] | <attr> , <attrlist>
 <attr> ::= <attrname> | entry | children
 <who> ::= * | [anonymous | users | self
 | dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
 [dnattr=<attrname>]
 [group[/<objectclass>[/<attrname>][.<basic-style>]]=<regex>]
 [peername[.<basic-style>]=<regex>]
 [sockname[.<basic-style>]=<regex>]
 [domain[.<basic-style>]=<regex>]
 [sockurl[.<basic-style>]=<regex>]
 [set=<setspec>]
 [aci=<attrname>]
 <access> ::= [self]{<level>|<priv>}
 <level> ::= none | disclose | auth | compare | search | read | write | manage
 <priv> ::= {=|+|-}{m|w|r|s|c|x|d|0}+
 <control> ::= [stop | continue | break]

8. Access Control 54

where the <what> part selects the entries and/or attributes to which the access applies, the <who> part
specifies which entities are granted access, and the <access> part specifies the access granted.
Multiple <who> <access> <control> triplets are supported, allowing many entities to be
granted different access to the same set of entries and attributes. Not all of these access control
options are described here; for more details see the slapd.access(5) man page.

8.2.1. What to control access to

The <what> part of an access specification determines the entries and attributes to which the access
control applies. Entries are commonly selected in two ways: by DN and by filter. The following
qualifiers select entries by DN:

 to *
 to dn[.<basic-style>]=<regex>
 to dn.<scope-style>=<DN>

The first form is used to select all entries. The second form may be used to select entries by matching
a regular expression against the target entry's normalized DN. (The second form is not discussed
further in this document.) The third form is used to select entries which are within the requested scope
of DN. The <DN> is a string representation of the Distinguished Name, as described in RFC4514.

The scope can be either base, one, subtree, or children. Where base matches only the entry
with provided DN, one matches the entries whose parent is the provided DN, subtree matches all
entries in the subtree whose root is the provided DN, and children matches all entries under the
DN (but not the entry named by the DN).

For example, if the directory contained entries named:

 0: o=suffix
 1: cn=Manager,o=suffix
 2: ou=people,o=suffix
 3: uid=kdz,ou=people,o=suffix
 4: cn=addresses,uid=kdz,ou=people,o=suffix
 5: uid=hyc,ou=people,o=suffix

Then:

dn.base="ou=people,o=suffix" match 2;
dn.one="ou=people,o=suffix" match 3, and 5;
dn.subtree="ou=people,o=suffix" match 2, 3, 4, and 5; and
dn.children="ou=people,o=suffix" match 3, 4, and 5.

Entries may also be selected using a filter:

 to filter=<ldap filter>

where <ldap filter> is a string representation of an LDAP search filter, as described in RFC4515. For
example:

 to filter=(objectClass=person)

Note that entries may be selected by both DN and filter by including both qualifiers in the <what>

OpenLDAP Software 2.4 Administrator's Guide

8.2. Access Control via Static Configuration 55

http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.rfc-editor.org/rfc/rfc4515.txt

clause.

 to dn.one="ou=people,o=suffix" filter=(objectClass=person)

Attributes within an entry are selected by including a comma-separated list of attribute names in the
<what> selector:

 attrs=<attribute list>

A specific value of an attribute is selected by using a single attribute name and also using a value
selector:

 attrs=<attribute> val[.<style>]=<regex>

There are two special pseudo attributes entry and children. To read (and hence return) a target
entry, the subject must have read access to the target's entry attribute. To perform a search, the
subject must have search access to the search base's entry attribute. To add or delete an entry, the
subject must have write access to the entry's entry attribute AND must have write access to the
entry's parent's children attribute. To rename an entry, the subject must have write access to
entry's entry attribute AND have write access to both the old parent's and new parent's
children attributes. The complete examples at the end of this section should help clear things up.

Lastly, there is a special entry selector "*" that is used to select any entry. It is used when no other
<what> selector has been provided. It's equivalent to "dn=.*"

8.2.2. Who to grant access to

The <who> part identifies the entity or entities being granted access. Note that access is granted to
"entities" not "entries." The following table summarizes entity specifiers:

Table 6.3: Access Entity Specifiers

Specifier Entities
* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users
users Authenticated users
self User associated with target entry
dn[.<basic-style>]=<regex> Users matching a regular expression
dn.<scope-style>=<DN> Users within scope of a DN

The DN specifier behaves much like <what> clause DN specifiers.

Other control factors are also supported. For example, a <who> can be restricted by an entry listed in
a DN-valued attribute in the entry to which the access applies:

 dnattr=<dn-valued attribute name>

The dnattr specification is used to give access to an entry whose DN is listed in an attribute of the
entry (e.g., give access to a group entry to whoever is listed as the owner of the group entry).

OpenLDAP Software 2.4 Administrator's Guide

8.2.1. What to control access to 56

Some factors may not be appropriate in all environments (or any). For example, the domain factor
relies on IP to domain name lookups. As these can easily be spoofed, the domain factor should be
avoided.

8.2.3. The access to grant

The kind of <access> granted can be one of the following:

Table 6.4: Access Levels

Level Privileges Description
none = 0 no access
disclose = d needed for information disclosure on error
auth = dx needed to authenticate (bind)
compare = cdx needed to compare
search = scdx needed to apply search filters
read = rscdx needed to read search results
write = wrscdx needed to modify/rename
manage = mwrscdx needed to manage

Each level implies all lower levels of access. So, for example, granting someone write access to an
entry also grants them read, search, compare, auth and disclose access. However, one may
use the privileges specifier to grant specific permissions.

8.2.4. Access Control Evaluation

When evaluating whether some requester should be given access to an entry and/or attribute, slapd
compares the entry and/or attribute to the <what> selectors given in the configuration file. For each
entry, access controls provided in the database which holds the entry (or the global access directives if
not held in any database) apply first, followed by the global access directives. However, when dealing
with an access list, because the global access list is effectively appended to each per-database list, if
the resulting list is non-empty then the access list will end with an implicit access to * by *
none directive. If there are no access directives applicable to a backend, then a default read is used.

Within this priority, access directives are examined in the order in which they appear in the config
file. Slapd stops with the first <what> selector that matches the entry and/or attribute. The
corresponding access directive is the one slapd will use to evaluate access.

Next, slapd compares the entity requesting access to the <who> selectors within the access directive
selected above in the order in which they appear. It stops with the first <who> selector that matches
the requester. This determines the access the entity requesting access has to the entry and/or attribute.

Finally, slapd compares the access granted in the selected <access> clause to the access requested
by the client. If it allows greater or equal access, access is granted. Otherwise, access is denied.

The order of evaluation of access directives makes their placement in the configuration file important.
If one access directive is more specific than another in terms of the entries it selects, it should appear
first in the config file. Similarly, if one <who> selector is more specific than another it should come
first in the access directive. The access control examples given below should help make this clear.

OpenLDAP Software 2.4 Administrator's Guide

8.2.2. Who to grant access to 57

8.2.5. Access Control Examples

The access control facility described above is quite powerful. This section shows some examples of
its use for descriptive purposes.

A simple example:

 access to * by * read

This access directive grants read access to everyone.

 access to *
 by self write
 by anonymous auth
 by * read

This directive allows the user to modify their entry, allows anonymous to authentication against these
entries, and allows all others to read these entries. Note that only the first by <who> clause which
matches applies. Hence, the anonymous users are granted auth, not read. The last clause could just
as well have been "by users read".

It is often desirable to restrict operations based upon the level of protection in place. The following
shows how security strength factors (SSF) can be used.

 access to *
 by ssf=128 self write
 by ssf=64 anonymous auth
 by ssf=64 users read

This directive allows users to modify their own entries if security protections have of strength 128 or
better have been established, allows authentication access to anonymous users, and read access when
64 or better security protections have been established. If client has not establish sufficient security
protections, the implicit by * none clause would be applied.

The following example shows the use of a style specifiers to select the entries by DN in two access
directives where ordering is significant.

 access to dn.children="dc=example,dc=com"
 by * search
 access to dn.children="dc=com"
 by * read

Read access is granted to entries under the dc=com subtree, except for those entries under the
dc=example,dc=com subtree, to which search access is granted. No access is granted to dc=com
as neither access directive matches this DN. If the order of these access directives was reversed, the
trailing directive would never be reached, since all entries under dc=example,dc=com are also
under dc=com entries.

Also note that if no access to directive matches or no by <who> clause, access is denied. That
is, every access to directive ends with an implicit by * none clause. When dealing with an
access list, because the global access list is effectively appended to each per-database list, if the
resulting list is non-empty then the access list will end with an implicit access to * by *
none directive. If there are no access directives applicable to a backend, then a default read is used.

OpenLDAP Software 2.4 Administrator's Guide

8.2.5. Access Control Examples 58

The next example again shows the importance of ordering, both of the access directives and the by
<who> clauses. It also shows the use of an attribute selector to grant access to a specific attribute and
various <who> selectors.

 access to dn.subtree="dc=example,dc=com" attrs=homePhone
 by self write
 by dn.children="dc=example,dc=com" search
 by peername.regex=IP:10\..+ read
 access to dn.subtree="dc=example,dc=com"
 by self write
 by dn.children="dc=example,dc=com" search
 by anonymous auth

This example applies to entries in the "dc=example,dc=com" subtree. To all attributes except
homePhone, an entry can write to itself, entries under example.com entries can search by them,
anybody else has no access (implicit by * none) excepting for authentication/authorization (which
is always done anonymously). The homePhone attribute is writable by the entry, searchable by
entries under example.com, readable by clients connecting from network 10, and otherwise not
readable (implicit by * none). All other access is denied by the implicit access to * by *
none.

Sometimes it is useful to permit a particular DN to add or remove itself from an attribute. For
example, if you would like to create a group and allow people to add and remove only their own DN
from the member attribute, you could accomplish it with an access directive like this:

 access to attrs=member,entry
 by dnattr=member selfwrite

The dnattr <who> selector says that the access applies to entries listed in the member attribute. The
selfwrite access selector says that such members can only add or delete their own DN from the
attribute, not other values. The addition of the entry attribute is required because access to the entry is
required to access any of the entry's attributes.

8.3. Access Control via Dynamic Configuration

Access to slapd entries and attributes is controlled by the olcAccess attribute, whose values are a
sequence of access directives. The general form of the olcAccess configuration is:

 olcAccess: <access directive>
 <access directive> ::= to <what>
 [by <who> [<access>] [<control>]]+
 <what> ::= * |
 [dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
 [filter=<ldapfilter>] [attrs=<attrlist>]
 <basic-style> ::= regex | exact
 <scope-style> ::= base | one | subtree | children
 <attrlist> ::= <attr> [val[.<basic-style>]=<regex>] | <attr> , <attrlist>
 <attr> ::= <attrname> | entry | children
 <who> ::= * | [anonymous | users | self
 | dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
 [dnattr=<attrname>]
 [group[/<objectclass>[/<attrname>][.<basic-style>]]=<regex>]
 [peername[.<basic-style>]=<regex>]
 [sockname[.<basic-style>]=<regex>]
 [domain[.<basic-style>]=<regex>]

OpenLDAP Software 2.4 Administrator's Guide

8.3. Access Control via Dynamic Configuration 59

 [sockurl[.<basic-style>]=<regex>]
 [set=<setspec>]
 [aci=<attrname>]
 <access> ::= [self]{<level>|<priv>}
 <level> ::= none | disclose | auth | compare | search | read | write | manage
 <priv> ::= {=|+|-}{m|w|r|s|c|x|d|0}+
 <control> ::= [stop | continue | break]

where the <what> part selects the entries and/or attributes to which the access applies, the <who> part
specifies which entities are granted access, and the <access> part specifies the access granted.
Multiple <who> <access> <control> triplets are supported, allowing many entities to be
granted different access to the same set of entries and attributes. Not all of these access control
options are described here; for more details see the slapd.access(5) man page.

8.3.1. What to control access to

The <what> part of an access specification determines the entries and attributes to which the access
control applies. Entries are commonly selected in two ways: by DN and by filter. The following
qualifiers select entries by DN:

 to *
 to dn[.<basic-style>]=<regex>
 to dn.<scope-style>=<DN>

The first form is used to select all entries. The second form may be used to select entries by matching
a regular expression against the target entry's normalized DN. (The second form is not discussed
further in this document.) The third form is used to select entries which are within the requested scope
of DN. The <DN> is a string representation of the Distinguished Name, as described in RFC4514.

The scope can be either base, one, subtree, or children. Where base matches only the entry
with provided DN, one matches the entries whose parent is the provided DN, subtree matches all
entries in the subtree whose root is the provided DN, and children matches all entries under the
DN (but not the entry named by the DN).

For example, if the directory contained entries named:

 0: o=suffix
 1: cn=Manager,o=suffix
 2: ou=people,o=suffix
 3: uid=kdz,ou=people,o=suffix
 4: cn=addresses,uid=kdz,ou=people,o=suffix
 5: uid=hyc,ou=people,o=suffix

Then:

dn.base="ou=people,o=suffix" match 2;
dn.one="ou=people,o=suffix" match 3, and 5;
dn.subtree="ou=people,o=suffix" match 2, 3, 4, and 5; and
dn.children="ou=people,o=suffix" match 3, 4, and 5.

Entries may also be selected using a filter:

 to filter=<ldap filter>

OpenLDAP Software 2.4 Administrator's Guide

8.3.1. What to control access to 60

http://www.rfc-editor.org/rfc/rfc4514.txt

where <ldap filter> is a string representation of an LDAP search filter, as described in RFC4515. For
example:

 to filter=(objectClass=person)

Note that entries may be selected by both DN and filter by including both qualifiers in the <what>
clause.

 to dn.one="ou=people,o=suffix" filter=(objectClass=person)

Attributes within an entry are selected by including a comma-separated list of attribute names in the
<what> selector:

 attrs=<attribute list>

A specific value of an attribute is selected by using a single attribute name and also using a value
selector:

 attrs=<attribute> val[.<style>]=<regex>

There are two special pseudo attributes entry and children. To read (and hence return) a target
entry, the subject must have read access to the target's entry attribute. To perform a search, the
subject must have search access to the search base's entry attribute. To add or delete an entry, the
subject must have write access to the entry's entry attribute AND must have write access to the
entry's parent's children attribute. To rename an entry, the subject must have write access to
entry's entry attribute AND have write access to both the old parent's and new parent's
children attributes. The complete examples at the end of this section should help clear things up.

Lastly, there is a special entry selector "*" that is used to select any entry. It is used when no other
<what> selector has been provided. It's equivalent to "dn=.*"

8.3.2. Who to grant access to

The <who> part identifies the entity or entities being granted access. Note that access is granted to
"entities" not "entries." The following table summarizes entity specifiers:

Table 5.3: Access Entity Specifiers

Specifier Entities
* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users
users Authenticated users
self User associated with target entry
dn[.<basic-style>]=<regex> Users matching a regular expression
dn.<scope-style>=<DN> Users within scope of a DN

The DN specifier behaves much like <what> clause DN specifiers.

Other control factors are also supported. For example, a <who> can be restricted by an entry listed in
a DN-valued attribute in the entry to which the access applies:

OpenLDAP Software 2.4 Administrator's Guide

8.3.2. Who to grant access to 61

http://www.rfc-editor.org/rfc/rfc4515.txt

 dnattr=<dn-valued attribute name>

The dnattr specification is used to give access to an entry whose DN is listed in an attribute of the
entry (e.g., give access to a group entry to whoever is listed as the owner of the group entry).

Some factors may not be appropriate in all environments (or any). For example, the domain factor
relies on IP to domain name lookups. As these can easily be spoofed, the domain factor should be
avoided.

8.3.3. The access to grant

The kind of <access> granted can be one of the following:

Table 5.4: Access Levels

Level Privileges Description
none =0 no access
disclose =d needed for information disclosure on error
auth =dx needed to authenticate (bind)
compare =cdx needed to compare
search =scdx needed to apply search filters
read =rscdx needed to read search results
write =wrscdx needed to modify/rename
manage =mwrscdx needed to manage

Each level implies all lower levels of access. So, for example, granting someone write access to an
entry also grants them read, search, compare, auth and disclose access. However, one may
use the privileges specifier to grant specific permissions.

8.3.4. Access Control Evaluation

When evaluating whether some requester should be given access to an entry and/or attribute, slapd
compares the entry and/or attribute to the <what> selectors given in the configuration. For each
entry, access controls provided in the database which holds the entry (or the global access directives if
not held in any database) apply first, followed by the global access directives (which are held in the
frontend database definition). However, when dealing with an access list, because the global
access list is effectively appended to each per-database list, if the resulting list is non-empty then the
access list will end with an implicit access to * by * none directive. If there are no access
directives applicable to a backend, then a default read is used.

Within this priority, access directives are examined in the order in which they appear in the
configuration attribute. Slapd stops with the first <what> selector that matches the entry and/or
attribute. The corresponding access directive is the one slapd will use to evaluate access.

Next, slapd compares the entity requesting access to the <who> selectors within the access directive
selected above in the order in which they appear. It stops with the first <who> selector that matches
the requester. This determines the access the entity requesting access has to the entry and/or attribute.

Finally, slapd compares the access granted in the selected <access> clause to the access requested
by the client. If it allows greater or equal access, access is granted. Otherwise, access is denied.

OpenLDAP Software 2.4 Administrator's Guide

8.3.3. The access to grant 62

The order of evaluation of access directives makes their placement in the configuration file important.
If one access directive is more specific than another in terms of the entries it selects, it should appear
first in the configuration. Similarly, if one <who> selector is more specific than another it should
come first in the access directive. The access control examples given below should help make this
clear.

8.3.5. Access Control Examples

The access control facility described above is quite powerful. This section shows some examples of
its use for descriptive purposes.

A simple example:

 olcAccess: to * by * read

This access directive grants read access to everyone.

 olcAccess: to *
 by self write
 by anonymous auth
 by * read

This directive allows the user to modify their entry, allows anonymous to authenticate against these
entries, and allows all others to read these entries. Note that only the first by <who> clause which
matches applies. Hence, the anonymous users are granted auth, not read. The last clause could just
as well have been "by users read".

It is often desirable to restrict operations based upon the level of protection in place. The following
shows how security strength factors (SSF) can be used.

 olcAccess: to *
 by ssf=128 self write
 by ssf=64 anonymous auth
 by ssf=64 users read

This directive allows users to modify their own entries if security protections of strength 128 or better
have been established, allows authentication access to anonymous users, and read access when
strength 64 or better security protections have been established. If the client has not establish
sufficient security protections, the implicit by * none clause would be applied.

The following example shows the use of style specifiers to select the entries by DN in two access
directives where ordering is significant.

 olcAccess: to dn.children="dc=example,dc=com"
 by * search
 olcAccess: to dn.children="dc=com"
 by * read

Read access is granted to entries under the dc=com subtree, except for those entries under the
dc=example,dc=com subtree, to which search access is granted. No access is granted to dc=com
as neither access directive matches this DN. If the order of these access directives was reversed, the
trailing directive would never be reached, since all entries under dc=example,dc=com are also
under dc=com entries.

OpenLDAP Software 2.4 Administrator's Guide

8.3.4. Access Control Evaluation 63

Also note that if no olcAccess: to directive matches or no by <who> clause, access is denied.
When dealing with an access list, because the global access list is effectively appended to each
per-database list, if the resulting list is non-empty then the access list will end with an implicit
access to * by * none directive. If there are no access directives applicable to a backend,
then a default read is used.

The next example again shows the importance of ordering, both of the access directives and the by
<who> clauses. It also shows the use of an attribute selector to grant access to a specific attribute and
various <who> selectors.

 olcAccess: to dn.subtree="dc=example,dc=com" attrs=homePhone
 by self write
 by dn.children=dc=example,dc=com" search
 by peername.regex=IP:10\..+ read
 olcAccess: to dn.subtree="dc=example,dc=com"
 by self write
 by dn.children="dc=example,dc=com" search
 by anonymous auth

This example applies to entries in the "dc=example,dc=com" subtree. To all attributes except
homePhone, an entry can write to itself, entries under example.com entries can search by them,
anybody else has no access (implicit by * none) excepting for authentication/authorization (which
is always done anonymously). The homePhone attribute is writable by the entry, searchable by
entries under example.com, readable by clients connecting from network 10, and otherwise not
readable (implicit by * none). All other access is denied by the implicit access to * by *
none.

Sometimes it is useful to permit a particular DN to add or remove itself from an attribute. For
example, if you would like to create a group and allow people to add and remove only their own DN
from the member attribute, you could accomplish it with an access directive like this:

 olcAccess: to attrs=member,entry
 by dnattr=member selfwrite

The dnattr <who> selector says that the access applies to entries listed in the member attribute. The
selfwrite access selector says that such members can only add or delete their own DN from the
attribute, not other values. The addition of the entry attribute is required because access to the entry is
required to access any of the entry's attributes.

8.3.6. Access Control Ordering

Since the ordering of olcAccess directives is essential to their proper evaluation, but LDAP
attributes normally do not preserve the ordering of their values, OpenLDAP uses a custom schema
extension to maintain a fixed ordering of these values. This ordering is maintained by prepending a
"{X}" numeric index to each value, similarly to the approach used for ordering the configuration
entries. These index tags are maintained automatically by slapd and do not need to be specified when
originally defining the values. For example, when you create the settings

 olcAccess: to attrs=member,entry
 by dnattr=member selfwrite
 olcAccess: to dn.children="dc=example,dc=com"
 by * search
 olcAccess: to dn.children="dc=com"

OpenLDAP Software 2.4 Administrator's Guide

8.3.5. Access Control Examples 64

 by * read

when you read them back using slapcat or ldapsearch they will contain

 olcAccess: {0}to attrs=member,entry
 by dnattr=member selfwrite
 olcAccess: {1}to dn.children="dc=example,dc=com"
 by * search
 olcAccess: {2}to dn.children="dc=com"
 by * read

The numeric index may be used to specify a particular value to change when using ldapmodify to edit
the access rules. This index can be used instead of (or in addition to) the actual access value. Using
this numeric index is very helpful when multiple access rules are being managed.

For example, if we needed to change the second rule above to grant write access instead of search, we
could try this LDIF:

 changetype: modify
 delete: olcAccess
 olcAccess: to dn.children="dc=example,dc=com" by * search
 -
 add: olcAccess
 olcAccess: to dn.children="dc=example,dc=com" by * write
 -

But this example will not guarantee that the existing values remain in their original order, so it will
most likely yield a broken security configuration. Instead, the numeric index should be used:

 changetype: modify
 delete: olcAccess
 olcAccess: {1}
 -
 add: olcAccess
 olcAccess: {1}to dn.children="dc=example,dc=com" by * write
 -

This example deletes whatever rule is in value #1 of the olcAccess attribute (regardless of its
value) and adds a new value that is explicitly inserted as value #1. The result will be

 olcAccess: {0}to attrs=member,entry
 by dnattr=member selfwrite
 olcAccess: {1}to dn.children="dc=example,dc=com"
 by * write
 olcAccess: {2}to dn.children="dc=com"
 by * read

which is exactly what was intended.

8.4. Access Control Common Examples

8.4.1. Basic ACLs

Generally one should start with some basic ACLs such as:

OpenLDAP Software 2.4 Administrator's Guide

8.3.6. Access Control Ordering 65

 access to attr=userPassword
 by self =xw
 by anonymous auth
 by * none

 access to *
 by self write
 by users read
 by * none

The first ACL allows users to update (but not read) their passwords, anonymous users to authenticate
against this attribute, and (implicitly) denying all access to others.

The second ACL allows users full access to their entry, authenticated users read access to anything,
and (implicitly) denying all access to others (in this case, anonymous users).

8.4.2. Matching Anonymous and Authenticated users

An anonymous user has a empty DN. While the dn.exact="" or dn.regex="^$" could be used,
slapd(8)) offers an anonymous shorthand which should be used instead.

 access to *
 by anonymous none
 by * read

denies all access to anonymous users while granting others read.

Authenticated users have a subject DN. While dn.regex=".+" will match any authenticated user,
OpenLDAP provides the users short hand which should be used instead.

 access to *
 by users read
 by * none

This ACL grants read permissions to authenticated users while denying others (i.e.: anonymous
users).

8.4.3. Controlling rootdn access

You could specify the rootdn in slapd.conf(5) or slapd.d without specifying a rootpw. Then you have
to add an actual directory entry with the same dn, e.g.:

 dn: cn=Manager,o=MyOrganization
 cn: Manager
 sn: Manager
 objectClass: person
 objectClass: top
 userPassword: {SSHA}someSSHAdata

Then binding as the rootdn will require a regular bind to that DN, which in turn requires auth access
to that entry's DN and userPassword, and this can be restricted via ACLs. E.g.:

 access to dn.base="cn=Manager,o=MyOrganization"
 by peername.regex=127\.0\.0\.1 auth

OpenLDAP Software 2.4 Administrator's Guide

8.4.1. Basic ACLs 66

 by peername.regex=192\.168\.0\..* auth
 by users none
 by * none

The ACLs above will only allow binding using rootdn from localhost and 192.168.0.0/24.

8.4.4. Managing access with Groups

There are a few ways to do this. One approach is illustrated here. Consider the following DIT layout:

 +-dc=example,dc=com
 +---cn=administrators,dc=example,dc=com
 +---cn=fred blogs,dc=example,dc=com

and the following group object (in LDIF format):

 dn: cn=administrators,dc=example,dc=com
 cn: administrators of this region
 objectclass: groupOfNames (important for the group acl feature)
 member: cn=fred blogs,dc=example,dc=com
 member: cn=somebody else,dc=example,dc=com

One can then grant access to the members of this this group by adding appropriate by group clause to
an access directive in slapd.conf(5). For instance,

 access to dn.children="dc=example,dc=com"
 by self write
 by group.exact="cn=Administrators,dc=example,dc=com" write
 by * auth

Like by dn clauses, one can also use expand to expand the group name based upon the regular
expression matching of the target, that is, the to dn.regex). For instance,

 access to dn.regex="(.+,)?ou=People,(dc=[^,]+,dc=[^,]+)$"
 attrs=children,entry,uid
 by group.expand="cn=Managers,$2" write
 by users read
 by * auth

The above illustration assumed that the group members are to be found in the member attribute type
of the groupOfNames object class. If you need to use a different group object and/or a different
attribute type then use the following slapd.conf(5) (abbreviated) syntax:

 access to <what>
 by group/<objectclass>/<attributename>=<DN> <access>

For example:

 access to *
 by group/organizationalRole/roleOccupant="cn=Administrator,dc=example,dc=com" write

In this case, we have an ObjectClass organizationalRole which contains the administrator DN's in the
roleOccupant attribute. For instance:

 dn: cn=Administrator,dc=example,dc=com

OpenLDAP Software 2.4 Administrator's Guide

8.4.3. Controlling rootdn access 67

 cn: Administrator
 objectclass: organizationalRole
 roleOccupant: cn=Jane Doe,dc=example,dc=com

Note: the specified member attribute type MUST be of DN or NameAndOptionalUID syntax, and the
specified object class SHOULD allow the attribute type.

Dynamic Groups are also supported in Access Control. Please see slapo-dynlist(5) and the Dynamic
Lists overlay section.

8.4.5. Granting access to a subset of attributes

You can grant access to a set of attributes by specifying a list of attribute names in the ACL to clause.
To be useful, you also need to grant access to the entry itself. Also note how children controls the
ability to add, delete, and rename entries.

 # mail: self may write, authenticated users may read
 access to attrs=mail
 by self write
 by users read
 by * none

 # cn, sn: self my write, all may read
 access to attrs=cn,sn
 by self write
 by * read

 # immediate children: only self can add/delete entries under this entry
 access to attrs=children
 by self write

 # entry itself: self may write, all may read
 access to attrs=entry
 by self write
 by * read

 # other attributes: self may write, others have no access
 access to *
 by self write
 by * none

ObjectClass names may also be specified in this list, which will affect all the attributes that are
required and/or allowed by that objectClass. Actually, names in attrlist that are prefixed by @ are
directly treated as objectClass names. A name prefixed by ! is also treated as an objectClass, but in
this case the access rule affects the attributes that are not required nor allowed by that objectClass.

8.4.6. Allowing a user write to all entries below theirs

For a setup where a user can write to its own record and to all of its children:

 access to dn.regex="(.+,)?(uid=[^,]+,o=Company)$"
 by dn.exact,expand="$2" write
 by anonymous auth

(Add more examples for above)

OpenLDAP Software 2.4 Administrator's Guide

8.4.4. Managing access with Groups 68

8.4.7. Allowing entry creation

Let's say, you have it like this:

 o=<basedn>
 ou=domains
 associatedDomain=<somedomain>
 ou=users
 uid=<someuserid>
 uid=<someotheruserid>
 ou=addressbooks
 uid=<someuserid>
 cn=<someone>
 cn=<someoneelse>

and, for another domain <someotherdomain>:

 o=<basedn>
 ou=domains
 associatedDomain=<someotherdomain>
 ou=users
 uid=<someuserid>
 uid=<someotheruserid>
 ou=addressbooks
 uid=<someotheruserid>
 cn=<someone>
 cn=<someoneelse>

then, if you wanted user uid=<someuserid> to ONLY create an entry for its own thing, you could
write an ACL like this:

 # this rule lets users of "associatedDomain=<matcheddomain>"
 # write under "ou=addressbook,associatedDomain=<matcheddomain>,ou=domains,o=<basedn>",
 # i.e. a user can write ANY entry below its domain's address book;
 # this permission is necessary, but not sufficient, the next
 # will restrict this permission further

 access to dn.regex="^ou=addressbook,associatedDomain=([^,]+),ou=domains,o=<basedn>$" attrs=children
 by dn.regex="^uid=([^,]+),ou=users,associatedDomain=$1,ou=domains,o=<basedn>$$" write
 by * none

 # Note that above the "by" clause needs a "regex" style to make sure
 # it expands to a DN that starts with a "uid=<someuserid>" pattern
 # while substituting the associatedDomain submatch from the "what" clause.

 # This rule lets a user with "uid=<matcheduid>" of "<associatedDomain=matcheddomain>"
 # write (i.e. add, modify, delete) the entry whose DN is exactly
 # "uid=<matcheduid>,ou=addressbook,associatedDomain=<matcheddomain>,ou=domains,o=<basedn>"
 # and ANY entry as subtree of it

 access to dn.regex="^(.+,)?uid=([^,]+),ou=addressbook,associatedDomain=([^,]+),ou=domains,o=<basedn>$"
 by dn.exact,expand="uid=$2,ou=users,associatedDomain=$3,ou=domains,o=<basedn>" write
 by * none

OpenLDAP Software 2.4 Administrator's Guide

8.4.7. Allowing entry creation 69

 # Note that above the "by" clause uses the "exact" style with the "expand"
 # modifier because now the whole pattern can be rebuilt by means of the
 # submatches from the "what" clause, so a "regex" compilation and evaluation
 # is no longer required.

8.4.8. Tips for using regular expressions in Access Control

Always use dn.regex=<pattern> when you intend to use regular expression matching. dn=<pattern>
alone defaults to dn.exact<pattern>.

Use (.+) instead of (.*) when you want at least one char to be matched. (.*) matches the empty string
as well.

Don't use regular expressions for matches that can be done otherwise in a safer and cheaper manner.
Examples:

 dn.regex=".*dc=example,dc=com"

is unsafe and expensive:

unsafe because any string containing dc=example,dc=com will match, not only those that end
with the desired pattern; use .*dc=example,dc=com$ instead.

•

unsafe also because it would allow any attributeType ending with dc as naming attribute for
the first RDN in the string, e.g. a custom attributeType mydc would match as well. If you
really need a regular expression that allows just dc=example,dc=com or any of its subtrees,
use ^(.+,)?dc=example,dc=com$, which means: anything to the left of dc=..., if any (the
question mark after the pattern within brackets), must end with a comma;

•

expensive because if you don't need submatches, you could use scoping styles, e.g.•

 dn.subtree="dc=example,dc=com"

to include dc=example,dc=com in the matching patterns,

 dn.children="dc=example,dc=com"

to exclude dc=example,dc=com from the matching patterns, or

 dn.onelevel="dc=example,dc=com"

to allow exactly one sublevel matches only.

Always use ^ and $ in regexes, whenever appropriate, because
ou=(.+),ou=(.+),ou=addressbooks,o=basedn will match
something=bla,ou=xxx,ou=yyy,ou=addressbooks,o=basedn,ou=addressbooks,o=basedn,dc=some,dc=org

Always use ([^,]+) to indicate exactly one RDN, because (.+) can include any number of RDNs; e.g.
ou=(.+),dc=example,dc=com will match ou=My,o=Org,dc=example,dc=com, which might not be
what you want.

Never add the rootdn to the by clauses. ACLs are not even processed for operations performed with
rootdn identity (otherwise there would be no reason to define a rootdn at all).

OpenLDAP Software 2.4 Administrator's Guide

8.4.8. Tips for using regular expressions in Access Control 70

Use shorthands. The user directive matches authenticated users and the anonymous directive matches
anonymous users.

Don't use the dn.regex form for <by> clauses if all you need is scoping and/or substring replacement;
use scoping styles (e.g. exact, onelevel, children or subtree) and the style modifier expand to cause
substring expansion.

For instance,

 access to dn.regex=".+,dc=([^,]+),dc=([^,]+)$"
 by dn.regex="^[^,],ou=Admin,dc=$1,dc=$2$$" write

although correct, can be safely and efficiently replaced by

 access to dn.regex=".+,(dc=[^,]+,dc=[^,]+)$"
 by dn.onelevel,expand="ou=Admin,$1" write

where the regex in the <what> clause is more compact, and the one in the <by> clause is replaced by
a much more efficient scoping style of onelevel with substring expansion.

8.4.9. Granting and Denying access based on security strength
factors (ssf)

You can restrict access based on the security strength factor (SSF)

 access to dn="cn=example,cn=edu"
 by * ssf=256 read

0 (zero) implies no protection, 1 implies integrity protection only, 56 DES or other weak ciphers, 112
triple DES and other strong ciphers, 128 RC4, Blowfish and other modern strong ciphers.

Other possibilities:

 transport_ssf=<n>
 tls_ssf=<n>
 sasl_ssf=<n>

256 is recommended.

See slapd.conf(5) for information on ssf.

8.4.10. When things aren't working as expected

Consider this example:

 access to *
 by anonymous auth

 access to *
 by self write

 access to *
 by users read

OpenLDAP Software 2.4 Administrator's Guide

8.4.9. Granting and Denying access based on security strength factors (ssf) 71

You may think this will allow any user to login, to read everything and change his own data if he is
logged in. But in this example only the login works and an ldapsearch returns no data. The Problem is
that SLAPD goes through its access config line by line and stops as soon as it finds a match in the part
of the access rule.(here: to *)

To get what we wanted the file has to read:

 access to *
 by anonymous auth
 by self write
 by users read

The general rule is: "special access rules first, generic access rules last"

See also slapd.access(8), loglevel 128 and slapacl(8) for debugging information.

8.5. Sets - Granting rights based on relationships

Sets are best illustrated via examples. The following sections will present a few set ACL examples in
order to facilitate their understanding.

(Sets in Access Controls FAQ Entry: http://www.openldap.org/faq/data/cache/1133.html)

Note: Sets are considered experimental.

8.5.1. Groups of Groups

The OpenLDAP ACL for groups doesn't expand groups within groups, which are groups that have
another group as a member. For example:

 dn: cn=sudoadm,ou=group,dc=example,dc=com
 cn: sudoadm
 objectClass: groupOfNames
 member: uid=john,ou=people,dc=example,dc=com
 member: cn=accountadm,ou=group,dc=example,dc=com

 dn: cn=accountadm,ou=group,dc=example,dc=com
 cn: accountadm
 objectClass: groupOfNames
 member: uid=mary,ou=people,dc=example,dc=com

If we use standard group ACLs with the above entries and allow members of the sudoadm group to
write somewhere, mary won't be included:

 access to dn.subtree="ou=sudoers,dc=example,dc=com"
 by group.exact="cn=sudoadm,ou=group,dc=example,dc=com" write
 by * read

With sets we can make the ACL be recursive and consider group within groups. So for each member
that is a group, it is further expanded:

 access to dn.subtree="ou=sudoers,dc=example,dc=com"
 by set="[cn=sudoadm,ou=group,dc=example,dc=com]/member* & user" write

OpenLDAP Software 2.4 Administrator's Guide

8.4.10. When things aren't working as expected 72

http://www.openldap.org/faq/data/cache/1133.html

 by * read

This set ACL means: take the cn=sudoadm DN, check its member attribute(s) (where the "*"
means recursively) and intersect the result with the authenticated user's DN. If the result is non-empty,
the ACL is considered a match and write access is granted.

The following drawing explains how this set is built:

Figure X.Y: Populating a recursive group set

First we get the uid=john DN. This entry doesn't have a member attribute, so the expansion stops
here. Now we get to cn=accountadm. This one does have a member attribute, which is
uid=mary. The uid=mary entry, however, doesn't have member, so we stop here again. The end
comparison is:

 {"uid=john,ou=people,dc=example,dc=com","uid=mary,ou=people,dc=example,dc=com"} & user

If the authenticated user's DN is any one of those two, write access is granted. So this set will include
mary in the sudoadm group and she will be allowed the write access.

8.5.2. Group ACLs without DN syntax

The traditional group ACLs, and even the previous example about recursive groups, require that the
members are specified as DNs instead of just usernames.

With sets, however, it's also possible to use simple names in group ACLs, as this example will show.

Let's say we want to allow members of the sudoadm group to write to the ou=suders branch of
our tree. But our group definition now is using memberUid for the group members:

 dn: cn=sudoadm,ou=group,dc=example,dc=com
 cn: sudoadm
 objectClass: posixGroup
 gidNumber: 1000
 memberUid: john

With this type of group, we can't use group ACLs. But with a set ACL we can grant the desired
access:

 access to dn.subtree="ou=sudoers,dc=example,dc=com"
 by set="[cn=sudoadm,ou=group,dc=example,dc=com]/memberUid & user/uid" write
 by * read

OpenLDAP Software 2.4 Administrator's Guide

8.5.1. Groups of Groups 73

We use a simple intersection where we compare the uid attribute of the connecting (and
authenticated) user with the memberUid attributes of the group. If they match, the intersection is
non-empty and the ACL will grant write access.

This drawing illustrates this set when the connecting user is authenticated as
uid=john,ou=people,dc=example,dc=com:

Figure X.Y: Sets with memberUid

In this case, it's a match. If it were mary authenticating, however, she would be denied write access
to ou=sudoers because her uid attribute is not listed in the group's memberUid.

8.5.3. Following references

We will now show a quite powerful example of what can be done with sets. This example tends to
make OpenLDAP administrators smile after they have understood it and its implications.

Let's start with an user entry:

 dn: uid=john,ou=people,dc=example,dc=com
 uid: john
 objectClass: inetOrgPerson
 givenName: John
 sn: Smith
 cn: john
 manager: uid=mary,ou=people,dc=example,dc=com

Writing an ACL to allow the manager to update some attributes is quite simple using sets:

 access to dn.exact="uid=john,ou=people,dc=example,dc=com"
 attrs=carLicense,homePhone,mobile,pager,telephoneNumber
 by self write
 by set="this/manager & user" write
 by * read

In that set, this expands to the entry being accessed, so that this/manager expands to
uid=mary,ou=people,dc=example,dc=com when john's entry is accessed. If the manager
herself is accessing John's entry, the ACL will match and write access to those attributes will be
granted.

So far, this same behavior can be obtained with the dnattr keyword. With sets, however, we can
further enhance this ACL. Let's say we want to allow the secretary of the manager to also update these
attributes. This is how we do it:

 access to dn.exact="uid=john,ou=people,dc=example,dc=com"
 attrs=carLicense,homePhone,mobile,pager,telephoneNumber

OpenLDAP Software 2.4 Administrator's Guide

8.5.2. Group ACLs without DN syntax 74

 by self write
 by set="this/manager & user" write
 by set="this/manager/secretary & user" write
 by * read

Now we need a picture to help explain what is happening here (entries shortened for clarity):

Figure X.Y: Sets jumping through entries

In this example, Jane is the secretary of Mary, which is the manager of John. This whole relationship
is defined with the manager and secretary attributes, which are both of the distinguishedName
syntax (i.e., full DNs). So, when the uid=john entry is being accessed, the
this/manager/secretary set becomes
{"uid=jane,ou=people,dc=example,dc=com"} (follow the references in the picture):

 this = [uid=john,ou=people,dc=example,dc=com]
 this/manager = \
 [uid=john,ou=people,dc=example,dc=com]/manager = uid=mary,ou=people,dc=example,dc=com
 this/manager/secretary = \
 [uid=mary,ou=people,dc=example,dc=com]/secretary = uid=jane,ou=people,dc=example,dc=com

The end result is that when Jane accesses John's entry, she will be granted write access to the
specified attributes. Better yet, this will happen to any entry she accesses which has Mary as the
manager.

This is all cool and nice, but perhaps gives to much power to secretaries. Maybe we need to further
restrict it. For example, let's only allow executive secretaries to have this power:

 access to dn.exact="uid=john,ou=people,dc=example,dc=com"
 attrs=carLicense,homePhone,mobile,pager,telephoneNumber
 by self write
 by set="this/manager & user" write
 by set="this/manager/secretary &
 [cn=executive,ou=group,dc=example,dc=com]/member* &
 user" write
 by * read

It's almost the same ACL as before, but we now also require that the connecting user be a member of
the (possibly nested) cn=executive group.

OpenLDAP Software 2.4 Administrator's Guide

8.5.3. Following references 75

9. Limits

9.1. Introduction

It is usually desirable to limit the server resources that can be consumed by each LDAP client.
OpenLDAP provides two sets of limits: a size limit, which can restrict the number of entries that a
client can retrieve in a single operation, and a time limit which restricts the length of time that an
operation may continue. Both types of limit can be given different values depending on who initiated
the operation.

9.2. Soft and Hard limits

The server administrator can specify both soft limits and hard limits. Soft limits can be thought of as
being the default limit value. Hard limits cannot be exceeded by ordinary LDAP users.

LDAP clients can specify their own size and time limits when issuing search operations. This feature
has been present since the earliest version of X.500.

If the client specifies a limit then the lower of the requested value and the hard limit will become the
limit for the operation.

If the client does not specify a limit then the server applies the soft limit.

Soft and Hard limits are often referred to together as administrative limits. Thus, if an LDAP client
requests a search that would return more results than the limits allow it will get an
adminLimitExceeded error. Note that the server will usually return some results even if the limit has
been exceeded: this feature is useful to clients that just want to check for the existence of some entries
without needing to see them all.

The rootdn is not subject to any limits.

9.3. Global Limits

Limits specified in the global part of the server configuration act as defaults which are used if no
database has more specific limits set.

In a slapd.conf(5) configuration the keywords are sizelimit and timelimit. When using the
slapd config backend, the corresponding attributes are olcSizeLimit and olcTimeLimit. The
syntax of these values are the same in both cases.

The simple form sets both soft and hard limits to the same value:

 sizelimit {<integer>|unlimited}
 timelimit {<integer>|unlimited}

The default sizelimit is 500 entries and the default timelimit is 3600 seconds.

An extended form allows soft and hard limits to be set separately:

9. Limits 76

 sizelimit size[.{soft|hard|unchecked}]=<integer> [...]
 timelimit time[.{soft|hard}]=<integer> [...]

Thus, to set a soft sizelimit of 10 entries and a hard limit of 75 entries:

 sizelimit size.soft=10 size.hard=75

The unchecked keyword sets a limit on how many entries the server will examine once it has created
an initial set of candidate results by using indices. This can be very important in a large directory, as a
search that cannot be satisfied from an index might cause the server to examine millions of entries,
therefore always make sure the correct indexes are configured.

9.4. Per-Database Limits

Each database can have its own set of limits that override the global ones. The syntax is more flexible,
and it allows different limits to be applied to different entities. Note that an entity is different from an
entry: the term entity is used here to indicate the ID of the person or process that has initiated the
LDAP operation.

In a slapd.conf(5) configuration the keyword is limits. When using the slapd config backend, the
corresponding attribute is olcLimits. The syntax of the values is the same in both cases.

 limits <who> <limit> [<limit> [...]]

The limits clause can be specified multiple times to apply different limits to different initiators. The
server examines each clause in turn until it finds one that matches the ID that requested the operation.
If no match is found, the global limits will be used.

9.4.1. Specify who the limits apply to

The <who> part of the limits clause can take any of these values:

Table ZZZ.ZZZ: Entity Specifiers

Specifier Entities
* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users
users Authenticated users
self User associated with target entry
dn[.<basic-style>]=<regex> Users matching a regular expression
dn.<scope-style>=<DN> Users within scope of a DN
group[/oc[/at]]=<pattern> Members of a group

The rules for specifying <who> are the same as those used in access-control rules.

9.4.2. Specify time limits

The syntax for time limits is

 time[.{soft|hard}]=<integer>

OpenLDAP Software 2.4 Administrator's Guide

9.3. Global Limits 77

where integer is the number of seconds slapd will spend answering a search request.

If neither soft nor hard is specified, the value is used for both, e.g.:

 limits anonymous time=27

The value unlimited may be used to remove the hard time limit entirely, e.g.:

 limits dn.exact="cn=anyuser,dc=example,dc=org" time.hard=unlimited

9.4.3. Specifying size limits

The syntax for size limit is

 size[.{soft|hard|unchecked}]=<integer>

where <integer> is the maximum number of entries slapd will return when answering a search
request.

Soft, hard, and "unchecked" limits are available, with the same meanings described for the global
limits configuration above.

9.4.4. Size limits and Paged Results

If the LDAP client adds the pagedResultsControl to the search operation, the hard size limit is used by
default, because the request for a specific page size is considered an explicit request for a limitation
on the number of entries to be returned. However, the size limit applies to the total count of entries
returned within the search, and not to a single page.

Additional size limits may be enforced for paged searches.

The size.pr limit controls the maximum page size:

 size.pr={<integer>|noEstimate|unlimited}

<integer> is the maximum page size if no explicit size is set. noEstimate has no effect in the
current implementation as the server does not return an estimate of the result size anyway.
unlimited indicates that no limit is applied to the maximum page size.

The size.prtotal limit controls the total number of entries that can be returned by a paged
search. By default the limit is the same as the normal size.hard limit.

 size.prtotal={<integer>|unlimited|disabled}

unlimited removes the limit on the number of entries that can be returned by a paged search.
disabled can be used to selectively disable paged result searches.

9.5. Example Limit Configurations

OpenLDAP Software 2.4 Administrator's Guide

9.4.2. Specify time limits 78

9.5.1. Simple Global Limits

This simple global configuration fragment applies size and time limits to all searches by all users
except rootdn. It limits searches to 50 results and sets an overall time limit of 10 seconds.

 sizelimit 50
 timelimit 10

9.5.2. Global Hard and Soft Limits

It is sometimes useful to limit the size of result sets but to allow clients to request a higher limit where
needed. This can be achieved by setting separate hard and soft limits.

 sizelimit size.soft=5 size.hard=100

To prevent clients from doing very inefficient non-indexed searches, add the unchecked limit:

 sizelimit size.soft=5 size.hard=100 size.unchecked=100

9.5.3. Giving specific users larger limits

Having set appropriate default limits in the global configuration, you may want to give certain users
the ability to retrieve larger result sets. Here is a way to do that in the per-database configuration:

 limits dn.exact="cn=anyuser,dc=example,dc=org" size=100000
 limits dn.exact="cn=personnel,dc=example,dc=org" size=100000
 limits dn.exact="cn=dirsync,dc=example,dc=org" size=100000

It is generally best to avoid mentioning specific users in the server configuration. A better way is to
give the higher limits to a group:

 limits group/groupOfNames/member="cn=bigwigs,dc=example,dc=org" size=100000

9.5.4. Limiting who can do paged searches

It may be required that certain applications need very large result sets that they retrieve using paged
searches, but that you do not want ordinary LDAP users to use the pagedResults control. The pr and
prtotal limits can help:

 limits group/groupOfNames/member="cn=dirsync,dc=example,dc=org" size.prtotal=unlimited
 limits users size.soft=5 size.hard=100 size.prtotal=disabled
 limits anonymous size.soft=2 size.hard=5 size.prtotal=disabled

9.6. Further Information

For further information please see slapd.conf(5), ldapsearch(1) and slapd.access(5)

OpenLDAP Software 2.4 Administrator's Guide

9.5.1. Simple Global Limits 79

10. Database Creation and Maintenance Tools
This section tells you how to create a slapd database from scratch, and how to do trouble shooting if
you run into problems. There are two ways to create a database. First, you can create the database
on-line using LDAP. With this method, you simply start up slapd and add entries using the LDAP
client of your choice. This method is fine for relatively small databases (a few hundred or thousand
entries, depending on your requirements). This method works for database types which support
updates.

The second method of database creation is to do it off-line using special utilities provided with
slapd(8). This method is best if you have many thousands of entries to create, which would take an
unacceptably long time using the LDAP method, or if you want to ensure the database is not accessed
while it is being created. Note that not all database types support these utilities.

10.1. Creating a database over LDAP

With this method, you use the LDAP client of your choice (e.g., the ldapadd(1)) to add entries, just
like you would once the database is created. You should be sure to set the following options in the
configuration file before starting slapd(8).

 suffix <dn>

As described in the General Database Directives section, this option defines which entries are to be
held by this database. You should set this to the DN of the root of the subtree you are trying to create.
For example:

 suffix "dc=example,dc=com"

You should be sure to specify a directory where the index files should be created:

 directory <directory>

For example:

 directory /usr/local/var/openldap-data

You need to create this directory with appropriate permissions such that slapd can write to it.

You need to configure slapd so that you can connect to it as a directory user with permission to add
entries. You can configure the directory to support a special super-user or root user just for this
purpose. This is done through the following two options in the database definition:

 rootdn <dn>
 rootpw <passwd>

For example:

 rootdn "cn=Manager,dc=example,dc=com"
 rootpw secret

10. Database Creation and Maintenance Tools 80

These options specify a DN and password that can be used to authenticate as the super-user entry of
the database (i.e., the entry allowed to do anything). The DN and password specified here will always
work, regardless of whether the entry named actually exists or has the password given. This solves the
chicken-and-egg problem of how to authenticate and add entries before any entries yet exist.

Finally, you should make sure that the database definition contains the index definitions you want:

 index {<attrlist> | default} [pres,eq,approx,sub,none]

For example, to index the cn, sn, uid and objectclass attributes, the following index
directives could be used:

 index cn,sn,uid pres,eq,approx,sub
 index objectClass eq

This would create presence, equality, approximate, and substring indices for the cn, sn, and uid
attributes and an equality index for the objectClass attribute. Note that not all index types are
available with all attribute types. See The slapd Configuration File section for more information on
this option.

Once you have configured things to your liking, start up slapd, connect with your LDAP client, and
start adding entries. For example, to add an organization entry and an organizational role entry using
the ldapadd tool, you could create an LDIF file called entries.ldif with the contents:

 # Organization for Example Corporation
 dn: dc=example,dc=com
 objectClass: dcObject
 objectClass: organization
 dc: example
 o: Example Corporation
 description: The Example Corporation

 # Organizational Role for Directory Manager
 dn: cn=Manager,dc=example,dc=com
 objectClass: organizationalRole
 cn: Manager
 description: Directory Manager

and then use a command like this to actually create the entry:

 ldapadd -f entries.ldif -x -D "cn=Manager,dc=example,dc=com" -w secret

The above command assumes settings provided in the above examples.

10.2. Creating a database off-line

The second method of database creation is to do it off-line, using the slapd database tools described
below. This method is best if you have many thousands of entries to create, which would take an
unacceptably long time to add using the LDAP method described above. These tools read the slapd
configuration file and an input file containing a text representation of the entries to add. For database
types which support the tools, they produce the database files directly (otherwise you must use the
on-line method above). There are several important configuration options you will want to be sure and
set in the config file database definition first:

OpenLDAP Software 2.4 Administrator's Guide

10.1. Creating a database over LDAP 81

 suffix <dn>

As described in the General Database Directives section, this option defines which entries are to be
held by this database. You should set this to the DN of the root of the subtree you are trying to create.
For example:

 suffix "dc=example,dc=com"

You should be sure to specify a directory where the index files should be created:

 directory <directory>

For example:

 directory /usr/local/var/openldap-data

Finally, you need to specify which indices you want to build. This is done by one or more index
options.

 index {<attrlist> | default} [pres,eq,approx,sub,none]

For example:

 index cn,sn,uid pres,eq,approx,sub
 index objectClass eq

This would create presence, equality, approximate, and substring indices for the cn, sn, and uid
attributes and an equality index for the objectClass attribute. Note that not all index types are
available with all attribute types. See The slapd Configuration File section for more information on
this option.

10.2.1. The slapadd program

Once you've configured things to your liking, you create the primary database and associated indices
by running the slapadd(8) program:

 slapadd -l <inputfile> -f <slapdconfigfile>
 [-d <debuglevel>] [-n <integer>|-b <suffix>]

The arguments have the following meanings:

 -l <inputfile>

Specifies the LDIF input file containing the entries to add in text form (described below in the The
LDIF text entry format section).

 -f <slapdconfigfile>

Specifies the slapd configuration file that tells where to create the indices, what indices to create, etc.

 -F <slapdconfdirectory>

OpenLDAP Software 2.4 Administrator's Guide

10.2. Creating a database off-line 82

Specifies a config directory. If both -f and -F are specified, the config file will be read and
converted to config directory format and written to the specified directory. If neither option is
specified, an attempt to read the default config directory will be made before trying to use the default
config file. If a valid config directory exists then the default config file is ignored. If dryrun mode is
also specified, no conversion will occur.

 -d <debuglevel>

Turn on debugging, as specified by <debuglevel>. The debug levels are the same as for slapd. See
the Command-Line Options section in Running slapd.

 -n <databasenumber>

An optional argument that specifies which database to modify. The first database listed in the
configuration file is 1, the second 2, etc. By default, the first database in the configuration file is used.
Should not be used in conjunction with -b.

 -b <suffix>

An optional argument that specifies which database to modify. The provided suffix is matched against
a database suffix directive to determine the database number. Should not be used in conjunction
with -n.

10.2.2. The slapindex program

Sometimes it may be necessary to regenerate indices (such as after modifying slapd.conf(5)). This is
possible using the slapindex(8) program. slapindex is invoked like this

 slapindex -f <slapdconfigfile>
 [-d <debuglevel>] [-n <databasenumber>|-b <suffix>]

Where the -f, -d, -n and -b options are the same as for the slapadd(1) program. slapindex rebuilds
all indices based upon the current database contents.

10.2.3. The slapcat program

The slapcat program is used to dump the database to an LDIF file. This can be useful when you
want to make a human-readable backup of your database or when you want to edit your database
off-line. The program is invoked like this:

 slapcat -l <filename> -f <slapdconfigfile>
 [-d <debuglevel>] [-n <databasenumber>|-b <suffix>]

where -n or -b is used to select the database in the slapd.conf(5) specified using -f. The
corresponding LDIF output is written to standard output or to the file specified using the -l option.

10.3. The LDIF text entry format

The LDAP Data Interchange Format (LDIF) is used to represent LDAP entries in a simple text
format. This section provides a brief description of the LDIF entry format which complements ldif(5)
and the technical specification RFC2849.

OpenLDAP Software 2.4 Administrator's Guide

10.2.1. The slapadd program 83

http://www.rfc-editor.org/rfc/rfc2849.txt

The basic form of an entry is:

 # comment
 dn: <distinguished name>
 <attrdesc>: <attrvalue>
 <attrdesc>: <attrvalue>

 ...

Lines starting with a '#' character are comments. An attribute description may be a simple attribute
type like cn or objectClass or 1.2.3 (an OID associated with an attribute type) or may include
options such as cn;lang_en_US or userCertificate;binary.

A line may be continued by starting the next line with a single space or tab character. For example:

 dn: cn=Barbara J Jensen,dc=example,dc=
 com
 cn: Barbara J
 Jensen

is equivalent to:

 dn: cn=Barbara J Jensen,dc=example,dc=com
 cn: Barbara J Jensen

Multiple attribute values are specified on separate lines. e.g.,

 cn: Barbara J Jensen
 cn: Babs Jensen

If an <attrvalue> contains non-printing characters or begins with a space, a colon (':'), or a less
than ('<'), the <attrdesc> is followed by a double colon and the base64 encoding of the value. For
example, the value " begins with a space" would be encoded like this:

 cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=

You can also specify a URL containing the attribute value. For example, the following specifies the
jpegPhoto value should be obtained from the file /path/to/file.jpeg.

 cn:< file:///path/to/file.jpeg

Multiple entries within the same LDIF file are separated by blank lines. Here's an example of an LDIF
file containing three entries.

 # Barbara's Entry
 dn: cn=Barbara J Jensen,dc=example,dc=com
 cn: Barbara J Jensen
 cn: Babs Jensen
 objectClass: person
 sn: Jensen

 # Bjorn's Entry
 dn: cn=Bjorn J Jensen,dc=example,dc=com
 cn: Bjorn J Jensen
 cn: Bjorn Jensen
 objectClass: person

OpenLDAP Software 2.4 Administrator's Guide

10.3. The LDIF text entry format 84

 sn: Jensen
 # Base64 encoded JPEG photo
 jpegPhoto:: /9j/4AAQSkZJRgABAAAAAQABAAD/2wBDABALD
 A4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQ
 ERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVG

 # Jennifer's Entry
 dn: cn=Jennifer J Jensen,dc=example,dc=com
 cn: Jennifer J Jensen
 cn: Jennifer Jensen
 objectClass: person
 sn: Jensen
 # JPEG photo from file
 jpegPhoto:< file:///path/to/file.jpeg

Notice that the jpegPhoto in Bjorn's entry is base 64 encoded and the jpegPhoto in Jennifer's
entry is obtained from the location indicated by the URL.

Note: Trailing spaces are not trimmed from values in an LDIF file. Nor are multiple internal spaces
compressed. If you don't want them in your data, don't put them there.

OpenLDAP Software 2.4 Administrator's Guide

10.3. The LDIF text entry format 85

11. Backends
Backends do the actual work of storing or retrieving data in response to LDAP requests. Backends
may be compiled statically into slapd, or when module support is enabled, they may be dynamically
loaded.

If your installation uses dynamic modules, you may need to add the relevant moduleload directives to
the examples that follow. The name of the module for a backend is usually of the form:

 back_<backend name>.la

So for example, if you need to load the hdb backend, you would configure

 moduleload back_hdb.la

11.1. Berkeley DB Backends

11.1.1. Overview

The bdb backend to slapd(8) is the recommended primary backend for a normal slapd database. It
uses the Oracle Berkeley DB (BDB) package to store data. It makes extensive use of indexing and
caching (see the Tuning section) to speed data access.

hdb is a variant of the bdb backend that uses a hierarchical database layout which supports subtree
renames. It is otherwise identical to the bdb behavior, and all the same configuration options apply.

Note: An hdb database needs a large idlcachesize for good search performance, typically three times
the cachesize (entry cache size) or larger.

11.1.2. back-bdb/back-hdb Configuration

MORE LATER

11.1.3. Further Information

slapd-bdb(5)

11.2. LDAP

11.2.1. Overview

The LDAP backend to slapd(8) is not an actual database; instead it acts as a proxy to forward
incoming requests to another LDAP server. While processing requests it will also chase referrals, so
that referrals are fully processed instead of being returned to the slapd client.

Sessions that explicitly Bind to the back-ldap database always create their own private connection to
the remote LDAP server. Anonymous sessions will share a single anonymous connection to the
remote server. For sessions bound through other mechanisms, all sessions with the same DN will

11. Backends 86

share the same connection. This connection pooling strategy can enhance the proxy's efficiency by
reducing the overhead of repeatedly making/breaking multiple connections.

The ldap database can also act as an information service, i.e. the identity of locally authenticated
clients is asserted to the remote server, possibly in some modified form. For this purpose, the proxy
binds to the remote server with some administrative identity, and, if required, authorizes the asserted
identity.

It is heavily used by a lot of other Backends and Overlays.

11.2.2. back-ldap Configuration

As previously mentioned, slapd-ldap(5) is used behind the scenes by many other Backends and
Overlays. Some of them merely provide a few configuration directive themselves, but have available
to the administrator the whole of the slapd-ldap(5) options.

For example, the Translucent Proxy, which retrieves entries from a remote LDAP server that can be
partially overridden by the defined database, has only four specific translucent- directives, but can be
configured using any of the normal slapd-ldap(5) options. See {[slapo-translucent(5)}} for details.

Other Overlays allow you to tag directives in front of a normal slapd-ldap(5) directive. For example,
the slapo-chain(5) overlay does this:

"There are very few chain overlay specific directives; however, directives related to the instances of
the ldap backend that may be implicitly instantiated by the overlay may assume a special meaning
when used in conjunction with this overlay. They are described in slapd-ldap(5), and they also need to
be prefixed by chain-."

You may have also seen the slapd-ldap(5) backend used and described in the Push Based Replication
section of the guide.

It should therefore be obvious that the slapd-ldap(5) backend is extremely flexible and heavily used
throughout the OpenLDAP Suite.

The following is a very simple example, but already the power of the slapd-ldap(5) backend is seen
by use of a uri list:

 database ldap
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=slapd-ldap"
 uri ldap://localhost/ ldap://remotehost ldap://remotehost2

The URI list is space or comma-separated. Whenever the server that responds is not the first one in
the list, the list is rearranged and the responsive server is moved to the head, so that it will be first
contacted the next time a connection needs be created.

This feature can be used to provide a form of load balancing when using MirrorMode replication.

OpenLDAP Software 2.4 Administrator's Guide

11.2.1. Overview 87

11.2.3. Further Information

slapd-ldap(5)

11.3. LDIF

11.3.1. Overview

The LDIF backend to slapd(8) is a basic storage backend that stores entries in text files in LDIF
format, and exploits the filesystem to create the tree structure of the database. It is intended as a
cheap, low performance easy to use backend.

When using the cn=config dynamic configuration database with persistent storage, the configuration
data is stored using this backend. See slapd-config(5) for more information

11.3.2. back-ldif Configuration

Like many other backends, the LDIF backend can be instantiated with very few configuration lines:

 include ./schema/core.schema

 database ldif
 directory "./ldif"
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=LDIF,dc=suretecsystems,dc=com"
 rootpw LDIF

If we add the dcObject for dc=suretecsystems,dc=com, you can see how this is added behind the
scenes on the file system:

 dn: dc=suretecsystems,dc=com
 objectClass: dcObject
 objectClass: organization
 dc: suretecsystems
 o: Suretec Systems Ltd

Now we add it to the directory:

 ldapadd -x -H ldap://localhost:9011 -f suretec.ldif -D "cn=LDIF,dc=suretecsystems,dc=com" -w LDIF
 adding new entry "dc=suretecsystems,dc=com"

And inside ./ldif we have:

 ls ./ldif
 dc=suretecsystems,dc=com.ldif

which again contains:

 cat ldif/dc\=suretecsystems\,dc\=com.ldif

 dn: dc=suretecsystems
 objectClass: dcObject
 objectClass: organization

OpenLDAP Software 2.4 Administrator's Guide

11.2.3. Further Information 88

 dc: suretecsystems
 o: Suretec Systems Ltd.
 structuralObjectClass: organization
 entryUUID: 2134b714-e3a1-102c-9a15-f96ee263886d
 creatorsName: cn=LDIF,dc=suretecsystems,dc=com
 createTimestamp: 20080711142643Z
 entryCSN: 20080711142643.661124Z#000000#000#000000
 modifiersName: cn=LDIF,dc=suretecsystems,dc=com
 modifyTimestamp: 20080711142643Z

This is the complete format you would get when exporting your directory using slapcat etc.

11.3.3. Further Information

slapd-ldif(5)

11.4. Metadirectory

11.4.1. Overview

The meta backend to slapd(8) performs basic LDAP proxying with respect to a set of remote LDAP
servers, called "targets". The information contained in these servers can be presented as belonging to
a single Directory Information Tree (DIT).

A basic knowledge of the functionality of the slapd-ldap(5) backend is recommended. This backend
has been designed as an enhancement of the ldap backend. The two backends share many features
(actually they also share portions of code). While the ldap backend is intended to proxy operations
directed to a single server, the meta backend is mainly intended for proxying of multiple servers and
possibly naming context masquerading.

These features, although useful in many scenarios, may result in excessive overhead for some
applications, so its use should be carefully considered.

11.4.2. back-meta Configuration

LATER

11.4.3. Further Information

slapd-meta(5)

11.5. Monitor

11.5.1. Overview

The monitor backend to slapd(8) is not an actual database; if enabled, it is automatically generated
and dynamically maintained by slapd with information about the running status of the daemon.

To inspect all monitor information, issue a subtree search with base cn=Monitor, requesting that
attributes "+" and "*" are returned. The monitor backend produces mostly operational attributes, and

OpenLDAP Software 2.4 Administrator's Guide

11.3.2. back-ldif Configuration 89

LDAP only returns operational attributes that are explicitly requested. Requesting attribute "+" is an
extension which requests all operational attributes.

See the Monitoring section.

11.5.2. back-monitor Configuration

The monitor database can be instantiated only once, i.e. only one occurrence of "database monitor"
can occur in the slapd.conf(5) file. Also the suffix is automatically set to "cn=Monitor".

You can however set a rootdn and rootpw. The following is all that is needed to instantiate a monitor
backend:

 include ./schema/core.schema

 database monitor
 rootdn "cn=monitoring,cn=Monitor"
 rootpw monitoring

You can also apply Access Control to this database like any other database, for example:

 access to dn.subtree="cn=Monitor"
 by dn.exact="uid=Admin,dc=my,dc=org" write
 by users read
 by * none

Note: The core.schema must be loaded for the monitor database to work.

A small example of the data returned via ldapsearch would be:

 ldapsearch -x -H ldap://localhost:9011 -b 'cn=Monitor'
 # extended LDIF
 #
 # LDAPv3
 # base <cn=Monitor> with scope subtree
 # filter: (objectclass=*)
 # requesting: ALL
 #

 # Monitor
 dn: cn=Monitor
 objectClass: monitorServer
 cn: Monitor
 description: This subtree contains monitoring/managing objects.
 description: This object contains information about this server.
 description: Most of the information is held in operational attributes, which
 must be explicitly requested.

 # Backends, Monitor
 dn: cn=Backends,cn=Monitor
 objectClass: monitorContainer
 cn: Backends
 description: This subsystem contains information about available backends.

Please see the Monitoring section for complete examples of information available via this backend.

OpenLDAP Software 2.4 Administrator's Guide

11.5.1. Overview 90

11.5.3. Further Information

slapd-monitor(5)

11.6. Null

11.6.1. Overview

The Null backend to slapd(8) is surely the most useful part of slapd:

Searches return success but no entries.•
Compares return compareFalse.•
Updates return success (unless readonly is on) but do nothing.•
Binds other than as the rootdn fail unless the database option "bind on" is given.•
The slapadd(8) and slapcat(8) tools are equally exciting.•

Inspired by the /dev/null device.

11.6.2. back-null Configuration

This has to be one of the shortest configurations you'll ever do. In order to test this, your
slapd.conf file would look like:

 database null
 suffix "cn=Nothing"
 bind on

bind on means:

"Allow binds as any DN in this backend's suffix, with any password. The default is "off"."

To test this backend with ldapsearch:

 ldapsearch -x -H ldap://localhost:9011 -D "uid=none,cn=Nothing" -w testing -b 'cn=Nothing'
 # extended LDIF
 #
 # LDAPv3
 # base <cn=Nothing> with scope subtree
 # filter: (objectclass=*)
 # requesting: ALL
 #

 # search result
 search: 2
 result: 0 Success

 # numResponses: 1

11.6.3. Further Information

slapd-null(5)

OpenLDAP Software 2.4 Administrator's Guide

11.5.3. Further Information 91

11.7. Passwd

11.7.1. Overview

The PASSWD backend to slapd(8) serves up the user account information listed in the system
passwd(5) file (defaulting to /etc/passwd).

This backend is provided for demonstration purposes only. The DN of each entry is
"uid=<username>,<suffix>".

11.7.2. back-passwd Configuration

The configuration using slapd.conf a slightly longer, but not much. For example:

 include ./schema/core.schema

 database passwd
 suffix "cn=passwd"

Again, testing this with ldapsearch would result in something like:

 ldapsearch -x -H ldap://localhost:9011 -b 'cn=passwd'
 # extended LDIF
 #
 # LDAPv3
 # base <cn=passwd> with scope subtree
 # filter: (objectclass=*)
 # requesting: ALL
 #

 # passwd
 dn: cn=passwd
 cn: passwd
 objectClass: organizationalUnit

 # root, passwd
 dn: uid=root,cn=passwd
 objectClass: person
 objectClass: uidObject
 uid: root
 cn: root
 sn: root
 description: root

11.7.3. Further Information

slapd-passwd(5)

11.8. Perl/Shell

11.8.1. Overview

OpenLDAP Software 2.4 Administrator's Guide

11.7. Passwd 92

The Perl backend to slapd(8) works by embedding a perl(1) interpreter into slapd(8). Any perl
database section of the configuration file slapd.conf(5) must then specify what Perl module to use.
Slapd then creates a new Perl object that handles all the requests for that particular instance of the
backend.

The Shell backend to slapd(8) executes external programs to implement operations, and is designed to
make it easy to tie an existing database to the slapd front-end. This backend is is primarily intended to
be used in prototypes.

11.8.2. back-perl/back-shell Configuration

LATER

11.8.3. Further Information

slapd-shell(5) and slapd-perl(5)

11.9. Relay

11.9.1. Overview

The primary purpose of this slapd(8) backend is to map a naming context defined in a database
running in the same slapd(8) instance into a virtual naming context, with attributeType and
objectClass manipulation, if required. It requires the rwm overlay.

This backend and the above mentioned overlay are experimental.

11.9.2. back-relay Configuration

LATER

11.9.3. Further Information

slapd-relay(5)

11.10. SQL

11.10.1. Overview

The primary purpose of this slapd(8) backend is to PRESENT information stored in some RDBMS as
an LDAP subtree without any programming (some SQL and maybe stored procedures can't be
considered programming, anyway ;).

That is, for example, when you (some ISP) have account information you use in an RDBMS, and
want to use modern solutions that expect such information in LDAP (to authenticate users, make
email lookups etc.). Or you want to synchronize or distribute information between different
sites/applications that use RDBMSes and/or LDAP. Or whatever else...

OpenLDAP Software 2.4 Administrator's Guide

11.8.1. Overview 93

It is NOT designed as a general-purpose backend that uses RDBMS instead of BerkeleyDB (as the
standard BDB backend does), though it can be used as such with several limitations. Please see LDAP
vs RDBMS for discussion.

The idea is to use some meta-information to translate LDAP queries to SQL queries, leaving
relational schema untouched, so that old applications can continue using it without any modifications.
This allows SQL and LDAP applications to interoperate without replication, and exchange data as
needed.

The SQL backend is designed to be tunable to virtually any relational schema without having to
change source (through that meta-information mentioned). Also, it uses ODBC to connect to
RDBMSes, and is highly configurable for SQL dialects RDBMSes may use, so it may be used for
integration and distribution of data on different RDBMSes, OSes, hosts etc., in other words, in highly
heterogeneous environments.

This backend is experimental.

11.10.2. back-sql Configuration

This backend has to be one of the most abused and complex backends there is. Therefore, we will go
through a simple, small example that comes with the OpenLDAP source and can be found in
servers/slapd/back-sql/rdbms_depend/README

For this example we will be using PostgreSQL.

First, we add to /etc/odbc.ini a block of the form:

 [example] <===
 Description = Example for OpenLDAP's back-sql
 Driver = PostgreSQL
 Trace = No
 Database = example <===
 Servername = localhost
 UserName = manager <===
 Password = secret <===
 Port = 5432
 ;Protocol = 6.4
 ReadOnly = No
 RowVersioning = No
 ShowSystemTables = No
 ShowOidColumn = No
 FakeOidIndex = No
 ConnSettings =

The relevant information for our test setup is highlighted with '<===' on the right above.

Next, we add to /etc/odbcinst.ini a block of the form:

 [PostgreSQL]
 Description = ODBC for PostgreSQL
 Driver = /usr/lib/libodbcpsql.so
 Setup = /usr/lib/libodbcpsqlS.so
 FileUsage = 1

OpenLDAP Software 2.4 Administrator's Guide

11.10.1. Overview 94

We will presume you know how to create a database and user in PostgreSQL and how to set a
password. Also, we'll presume you can populate the 'example' database you've just created with the
following files, as found in servers/slapd/back-sql/rdbms_depend/pgsql

 backsql_create.sql, testdb_create.sql, testdb_data.sql, testdb_metadata.sql

Lastly, run the test:

 [root@localhost]# cd $SOURCES/tests
 [root@localhost]# SLAPD_USE_SQL=pgsql ./run sql-test000

Briefly, you should see something like (cut short for space):

 Cleaning up test run directory leftover from previous run.
 Running ./scripts/sql-test000-read...
 running defines.sh
 Starting slapd on TCP/IP port 9011...
 Testing SQL backend read operations...
 Waiting 5 seconds for slapd to start...
 Testing correct bind... dn:cn=Mitya Kovalev,dc=example,dc=com
 Testing incorrect bind (should fail)... ldap_bind: Invalid credentials (49)

 Filtering original ldif...
 Comparing filter output...
 >>>>> Test succeeded

The test is basically readonly; this can be performed by all RDBMSes (listed above).

There is another test, sql-test900-write, which is currently enabled only for PostgreSQL and IBM db2.

Using sql-test000, files in servers/slapd/back-sql/rdbms_depend/pgsql/ and
the man page, you should be set.

Note: This backend is experimental.

11.10.3. Further Information

slapd-sql(5) and servers/slapd/back-sql/rdbms_depend/README

OpenLDAP Software 2.4 Administrator's Guide

11.10.2. back-sql Configuration 95

12. Overlays
Overlays are software components that provide hooks to functions analogous to those provided by
backends, which can be stacked on top of the backend calls and as callbacks on top of backend
responses to alter their behavior.

Overlays may be compiled statically into slapd, or when module support is enabled, they may be
dynamically loaded. Most of the overlays are only allowed to be configured on individual databases.

Some can be stacked on the frontend as well, for global use. This means that they can be executed
after a request is parsed and validated, but right before the appropriate database is selected. The main
purpose is to affect operations regardless of the database they will be handled by, and, in some cases,
to influence the selection of the database by massaging the request DN.

Essentially, overlays represent a means to:

customize the behavior of existing backends without changing the backend code and without
requiring one to write a new custom backend with complete functionality

•

write functionality of general usefulness that can be applied to different backend types•

When using slapd.conf(5), overlays that are configured before any other databases are considered
global, as mentioned above. In fact they are implicitly stacked on top of the frontend database.
They can also be explicitly configured as such:

 database frontend
 overlay <overlay name>

Overlays are usually documented by separate specific man pages in section 5; the naming convention
is

 slapo-<overlay name>

All distributed core overlays have a man page. Feel free to contribute to any, if you think there is
anything missing in describing the behavior of the component and the implications of all the related
configuration directives.

Official overlays are located in

 servers/slapd/overlays/

That directory also contains the file slapover.txt, which describes the rationale of the overlay
implementation, and may serve as a guideline for the development of custom overlays.

Contribware overlays are located in

 contrib/slapd-modules/<overlay name>/

along with other types of run-time loadable components; they are officially distributed, but not
maintained by the project.

All the current overlays in OpenLDAP are listed and described in detail in the following sections.

12. Overlays 96

12.1. Access Logging

12.1.1. Overview

This overlay can record accesses to a given backend database on another database.

This allows all of the activity on a given database to be reviewed using arbitrary LDAP queries,
instead of just logging to local flat text files. Configuration options are available for selecting a subset
of operation types to log, and to automatically prune older log records from the logging database. Log
records are stored with audit schema to assure their readability whether viewed as LDIF or in raw
form.

It is also used for delta-syncrepl replication

12.1.2. Access Logging Configuration

The following is a basic example that implements Access Logging:

 database bdb
 suffix dc=example,dc=com
 ...
 overlay accesslog
 logdb cn=log
 logops writes reads
 logold (objectclass=person)

 database bdb
 suffix cn=log
 ...
 index reqStart eq
 access to *
 by dn.base="cn=admin,dc=example,dc=com" read

The following is an example used for delta-syncrepl replication:

 database hdb
 suffix cn=accesslog
 directory /usr/local/var/openldap-accesslog
 rootdn cn=accesslog
 index default eq
 index entryCSN,objectClass,reqEnd,reqResult,reqStart

Accesslog overlay definitions for the primary db

 database bdb
 suffix dc=example,dc=com
 ...
 overlay accesslog
 logdb cn=accesslog
 logops writes
 logsuccess TRUE
 # scan the accesslog DB every day, and purge entries older than 7 days
 logpurge 07+00:00 01+00:00

An example search result against cn=accesslog might look like:

OpenLDAP Software 2.4 Administrator's Guide

12.1. Access Logging 97

 [ghenry@suretec ghenry]# ldapsearch -x -b cn=accesslog
 # extended LDIF
 #
 # LDAPv3
 # base <cn=accesslog> with scope subtree
 # filter: (objectclass=*)
 # requesting: ALL
 #

 # accesslog
 dn: cn=accesslog
 objectClass: auditContainer
 cn: accesslog

 # 20080110163829.000004Z, accesslog
 dn: reqStart=20080110163829.000004Z,cn=accesslog
 objectClass: auditModify
 reqStart: 20080110163829.000004Z
 reqEnd: 20080110163829.000005Z
 reqType: modify
 reqSession: 196696
 reqAuthzID: cn=admin,dc=suretecsystems,dc=com
 reqDN: uid=suretec-46022f8$,ou=Users,dc=suretecsystems,dc=com
 reqResult: 0
 reqMod: sambaPwdCanChange:- ###CENSORED###
 reqMod: sambaPwdCanChange:+ ###CENSORED###
 reqMod: sambaNTPassword:- ###CENSORED###
 reqMod: sambaNTPassword:+ ###CENSORED###
 reqMod: sambaPwdLastSet:- ###CENSORED###
 reqMod: sambaPwdLastSet:+ ###CENSORED###
 reqMod: entryCSN:= 20080110163829.095157Z#000000#000#000000
 reqMod: modifiersName:= cn=admin,dc=suretecsystems,dc=com
 reqMod: modifyTimestamp:= 20080110163829Z

 # search result
 search: 2
 result: 0 Success

 # numResponses: 3
 # numEntries: 2

12.1.3. Further Information

slapo-accesslog(5) and the delta-syncrepl replication section.

12.2. Audit Logging

The Audit Logging overlay can be used to record all changes on a given backend database to a
specified log file.

12.2.1. Overview

If the need arises whereby changes need to be logged as standard LDIF, then the auditlog overlay
slapo-auditlog (5) can be used. Full examples are available in the man page slapo-auditlog (5)

OpenLDAP Software 2.4 Administrator's Guide

12.1.2. Access Logging Configuration 98

12.2.2. Audit Logging Configuration

If the directory is running vi slapd.d, then the following LDIF could be used to add the overlay to
the overlay list in cn=config and set what file the LDIF gets logged to (adjust to suit)

 dn: olcOverlay=auditlog,olcDatabase={1}hdb,cn=config
 changetype: add
 objectClass: olcOverlayConfig
 objectClass: olcAuditLogConfig
 olcOverlay: auditlog
 olcAuditlogFile: /tmp/auditlog.ldif

In this example for testing, we are logging changes to /tmp/auditlog.ldif

A typical LDIF file created by slapo-auditlog(5) would look like:

 # add 1196797576 dc=suretecsystems,dc=com cn=admin,dc=suretecsystems,dc=com
 dn: dc=suretecsystems,dc=com
 changetype: add
 objectClass: dcObject
 objectClass: organization
 dc: suretecsystems
 o: Suretec Systems Ltd.
 structuralObjectClass: organization
 entryUUID: 1606f8f8-f06e-1029-8289-f0cc9d81e81a
 creatorsName: cn=admin,dc=suretecsystems,dc=com
 modifiersName: cn=admin,dc=suretecsystems,dc=com
 createTimestamp: 20051123130912Z
 modifyTimestamp: 20051123130912Z
 entryCSN: 20051123130912.000000Z#000001#000#000000
 auditContext: cn=accesslog
 # end add 1196797576

 # add 1196797577 dc=suretecsystems,dc=com cn=admin,dc=suretecsystems,dc=com
 dn: ou=Groups,dc=suretecsystems,dc=com
 changetype: add
 objectClass: top
 objectClass: organizationalUnit
 ou: Groups
 structuralObjectClass: organizationalUnit
 entryUUID: 160aaa2a-f06e-1029-828a-f0cc9d81e81a
 creatorsName: cn=admin,dc=suretecsystems,dc=com
 modifiersName: cn=admin,dc=suretecsystems,dc=com
 createTimestamp: 20051123130912Z
 modifyTimestamp: 20051123130912Z
 entryCSN: 20051123130912.000000Z#000002#000#000000
 # end add 1196797577

12.2.3. Further Information

slapo-auditlog(5)

12.3. Chaining

OpenLDAP Software 2.4 Administrator's Guide

12.2.2. Audit Logging Configuration 99

12.3.1. Overview

The chain overlay provides basic chaining capability to the underlying database.

What is chaining? It indicates the capability of a DSA to follow referrals on behalf of the client, so
that distributed systems are viewed as a single virtual DSA by clients that are otherwise unable to
"chase" (i.e. follow) referrals by themselves.

The chain overlay is built on top of the ldap backend; it is compiled by default when --enable-ldap.

12.3.2. Chaining Configuration

In order to demonstrate how this overlay works, we shall discuss a typical scenario which might be
one master server and three Syncrepl slaves.

On each replica, add this near the top of the slapd.conf(5) file (global), before any database
definitions:

 overlay chain
 chain-uri "ldap://ldapmaster.example.com"
 chain-idassert-bind bindmethod="simple"
 binddn="cn=Manager,dc=example,dc=com"
 credentials="<secret>"
 mode="self"
 chain-tls start
 chain-return-error TRUE

Add this below your syncrepl statement:

 updateref "ldap://ldapmaster.example.com/"

The chain-tls statement enables TLS from the slave to the ldap master. The DITs are exactly the same
between these machines, therefore whatever user bound to the slave will also exist on the master. If
that DN does not have update privileges on the master, nothing will happen.

You will need to restart the slave after these slapd.conf changes. Then, if you are using loglevel stats
(256), you can monitor an ldapmodify on the slave and the master. (If you're using cn=config no
restart is required.)

Now start an ldapmodify on the slave and watch the logs. You should expect something like:

 Sep 6 09:27:25 slave1 slapd[29274]: conn=11 fd=31 ACCEPT from IP=143.199.102.216:45181 (IP=143.199.102.216:389)
 Sep 6 09:27:25 slave1 slapd[29274]: conn=11 op=0 STARTTLS
 Sep 6 09:27:25 slave1 slapd[29274]: conn=11 op=0 RESULT oid= err=0 text=
 Sep 6 09:27:25 slave1 slapd[29274]: conn=11 fd=31 TLS established tls_ssf=256 ssf=256
 Sep 6 09:27:28 slave1 slapd[29274]: conn=11 op=1 BIND dn="uid=user1,ou=people,dc=example,dc=com" method=128
 Sep 6 09:27:28 slave1 slapd[29274]: conn=11 op=1 BIND dn="uid=user1,ou=People,dc=example,dc=com" mech=SIMPLE ssf=0
 Sep 6 09:27:28 slave1 slapd[29274]: conn=11 op=1 RESULT tag=97 err=0 text=
 Sep 6 09:27:28 slave1 slapd[29274]: conn=11 op=2 MOD dn="uid=user1,ou=People,dc=example,dc=com"
 Sep 6 09:27:28 slave1 slapd[29274]: conn=11 op=2 MOD attr=mail
 Sep 6 09:27:28 slave1 slapd[29274]: conn=11 op=2 RESULT tag=103 err=0 text=
 Sep 6 09:27:28 slave1 slapd[29274]: conn=11 op=3 UNBIND
 Sep 6 09:27:28 slave1 slapd[29274]: conn=11 fd=31 closed
 Sep 6 09:27:28 slave1 slapd[29274]: syncrepl_entry: LDAP_RES_SEARCH_ENTRY(LDAP_SYNC_MODIFY)

OpenLDAP Software 2.4 Administrator's Guide

12.3.1. Overview 100

 Sep 6 09:27:28 slave1 slapd[29274]: syncrepl_entry: be_search (0)
 Sep 6 09:27:28 slave1 slapd[29274]: syncrepl_entry: uid=user1,ou=People,dc=example,dc=com
 Sep 6 09:27:28 slave1 slapd[29274]: syncrepl_entry: be_modify (0)

And on the master you will see this:

 Sep 6 09:23:57 ldapmaster slapd[2961]: conn=55902 op=3 PROXYAUTHZ dn="uid=user1,ou=people,dc=example,dc=com"
 Sep 6 09:23:57 ldapmaster slapd[2961]: conn=55902 op=3 MOD dn="uid=user1,ou=People,dc=example,dc=com"
 Sep 6 09:23:57 ldapmaster slapd[2961]: conn=55902 op=3 MOD attr=mail
 Sep 6 09:23:57 ldapmaster slapd[2961]: conn=55902 op=3 RESULT tag=103 err=0 text=

Note: You can clearly see the PROXYAUTHZ line on the master, indicating the proper identity
assertion for the update on the master. Also note the slave immediately receiving the Syncrepl update
from the master.

12.3.3. Handling Chaining Errors

By default, if chaining fails, the original referral is returned to the client under the assumption that the
client might want to try and follow the referral.

With the following directive however, if the chaining fails at the provider side, the actual error is
returned to the client.

 chain-return-error TRUE

12.3.4. Read-Back of Chained Modifications

Occasionally, applications want to read back the data that they just wrote. If a modification requested
to a shadow server was silently chained to its provider, an immediate read could result in receiving
data not yet synchronized. In those cases, clients should use the dontusecopy control to ensure they
are directed to the authoritative source for that piece of data.

This control usually causes a referral to the actual source of the data to be returned. However, when
the slapo-chain(5) overlay is used, it intercepts the referral being returned in response to the
dontusecopy control, and tries to fetch the requested data.

12.3.5. Further Information

slapo-chain(5)

12.4. Constraints

12.4.1. Overview

This overlay enforces a regular expression constraint on all values of specified attributes during an
LDAP modify request that contains add or modify commands. It is used to enforce a more rigorous
syntax when the underlying attribute syntax is too general.

OpenLDAP Software 2.4 Administrator's Guide

12.3.2. Chaining Configuration 101

12.4.2. Constraint Configuration

Configuration via slapd.conf(5) would look like:

 overlay constraint
 constraint_attribute mail regex ^[[:alnum:]]+@mydomain.com$
 constraint_attribute title uri
 ldap:///dc=catalog,dc=example,dc=com?title?sub?(objectClass=titleCatalog)

A specification like the above would reject any mail attribute which did not look like <alpha-numeric
string>@mydomain.com.

It would also reject any title attribute whose values were not listed in the title attribute of any
titleCatalog entries in the given scope.

An example for use with cn=config:

 dn: olcOverlay=constraint,olcDatabase={1}hdb,cn=config
 changetype: add
 objectClass: olcOverlayConfig
 objectClass: olcConstraintConfig
 olcOverlay: constraint
 olcConstraintAttribute: mail regex ^[[:alnum:]]+@mydomain.com$
 olcConstraintAttribute: title uri ldap:///dc=catalog,dc=example,dc=com?title?sub?(objectClass=titleCatalog)

12.4.3. Further Information

slapo-constraint(5)

12.5. Dynamic Directory Services

12.5.1. Overview

The dds overlay to slapd(8) implements dynamic objects as per RFC2589. The name dds stands for
Dynamic Directory Services. It allows to define dynamic objects, characterized by the dynamicObject
objectClass.

Dynamic objects have a limited lifetime, determined by a time-to-live (TTL) that can be refreshed by
means of a specific refresh extended operation. This operation allows to set the Client Refresh Period
(CRP), namely the period between refreshes that is required to preserve the dynamic object from
expiration. The expiration time is computed by adding the requested TTL to the current time. When
dynamic objects reach the end of their lifetime without being further refreshed, they are automatically
deleted. There is no guarantee of immediate deletion, so clients should not count on it.

12.5.2. Dynamic Directory Service Configuration

A usage of dynamic objects might be to implement dynamic meetings; in this case, all the participants
to the meeting are allowed to refresh the meeting object, but only the creator can delete it (otherwise it
will be deleted when the TTL expires).

OpenLDAP Software 2.4 Administrator's Guide

12.4.2. Constraint Configuration 102

http://www.rfc-editor.org/rfc/rfc2589.txt

If we add the overlay to an example database, specifying a Max TTL of 1 day, a min of 10 seconds,
with a default TTL of 1 hour. We'll also specify an interval of 120 (less than 60s might be too small)
seconds between expiration checks and a tolerance of 5 second (lifetime of a dynamic object will be
entryTtl + tolerance).

 overlay dds
 dds-max-ttl 1d
 dds-min-ttl 10s
 dds-default-ttl 1h
 dds-interval 120s
 dds-tolerance 5s

and add an index:

 entryExpireTimestamp

Creating a meeting is as simple as adding the following:

 dn: cn=OpenLDAP Documentation Meeting,ou=Meetings,dc=example,dc=com
 objectClass: groupOfNames
 objectClass: dynamicObject
 cn: OpenLDAP Documentation Meeting
 member: uid=ghenry,ou=People,dc=example,dc=com
 member: uid=hyc,ou=People,dc=example,dc=com

12.5.2.1. Dynamic Directory Service ACLs

Allow users to start a meeting and to join it; restrict refresh to the member; restrict delete to the
creator:

 access to attrs=userPassword
 by self write
 by * read

 access to dn.base="ou=Meetings,dc=example,dc=com"
 attrs=children
 by users write

 access to dn.onelevel="ou=Meetings,dc=example,dc=com"
 attrs=entry
 by dnattr=creatorsName write
 by * read

 access to dn.onelevel="ou=Meetings,dc=example,dc=com"
 attrs=participant
 by dnattr=creatorsName write
 by users selfwrite
 by * read

 access to dn.onelevel="ou=Meetings,dc=example,dc=com"
 attrs=entryTtl
 by dnattr=member manage
 by * read

In simple terms, the user who created the OpenLDAP Documentation Meeting can add new attendees,
refresh the meeting using (basically complete control):

 ldapexop -x -H ldap://ldaphost "refresh" "cn=OpenLDAP Documentation Meeting,ou=Meetings,dc=example,dc=com" "120" -D "uid=ghenry,ou=People,dc=example,dc=com" -W

OpenLDAP Software 2.4 Administrator's Guide

12.5.2. Dynamic Directory Service Configuration 103

Any user can join the meeting, but not add another attendee, but they can refresh the meeting. The
ACLs above are quite straight forward to understand.

12.5.3. Further Information

slapo-dds(5)

12.6. Dynamic Groups

12.6.1. Overview

This overlay extends the Compare operation to detect members of a dynamic group. This overlay is
now deprecated as all of its functions are available using the Dynamic Lists overlay.

12.6.2. Dynamic Group Configuration

12.7. Dynamic Lists

12.7.1. Overview

This overlay allows expansion of dynamic groups and lists. Instead of having the group members or
list attributes hard coded, this overlay allows us to define an LDAP search whose results will make up
the group or list.

12.7.2. Dynamic List Configuration

This module can behave both as a dynamic list and dynamic group, depending on the configuration.
The syntax is as follows:

 overlay dynlist
 dynlist-attrset <group-oc> <URL-ad> [member-ad]

The parameters to the dynlist-attrset directive have the following meaning:

<group-oc>: specifies which object class triggers the subsequent LDAP search. Whenever
an entry with this object class is retrieved, the search is performed.

•

<URL-ad>: is the name of the attribute which holds the search URI. It has to be a subtype of
labeledURI. The attributes and values present in the search result are added to the entry
unless member-ad is used (see below).

•

member-ad: if present, changes the overlay behavior into a dynamic group. Instead of
inserting the results of the search in the entry, the distinguished name of the results are added
as values of this attribute.

•

Here is an example which will allow us to have an email alias which automatically expands to all
user's emails according to our LDAP filter:

In slapd.conf(5):

 overlay dynlist

OpenLDAP Software 2.4 Administrator's Guide

12.5.3. Further Information 104

 dynlist-attrset nisMailAlias labeledURI

This means that whenever an entry which has the nisMailAlias object class is retrieved, the
search specified in the labeledURI attribute is performed.

Let's say we have this entry in our directory:

 cn=all,ou=aliases,dc=example,dc=com
 cn: all
 objectClass: nisMailAlias
 labeledURI: ldap:///ou=People,dc=example,dc=com?mail?one?(objectClass=inetOrgPerson)

If this entry is retrieved, the search specified in labeledURI will be performed and the results will
be added to the entry just as if they have always been there. In this case, the search filter selects all
entries directly under ou=People that have the inetOrgPerson object class and retrieves the
mail attribute, if it exists.

This is what gets added to the entry when we have two users under ou=People that match the filter:

Figure X.Y: Dynamic List for all emails

The configuration for a dynamic group is similar. Let's see an example which would automatically
populate an allusers group with all the user accounts in the directory.

In slapd.conf(5):

 include /path/to/dyngroup.schema
 ...
 overlay dynlist
 dynlist-attrset groupOfURLs labeledURI member

1. Note: We must include the dyngroup.schema file that defines the2.
groupOfURLs objectClass used in this example.3.

Let's apply it to the following entry:

 cn=allusers,ou=group,dc=example,dc=com
 cn: all
 objectClass: groupOfURLs
 labeledURI: ldap:///ou=people,dc=example,dc=com??one?(objectClass=inetOrgPerson)

The behavior is similar to the dynamic list configuration we had before: whenever an entry with the
groupOfURLs object class is retrieved, the search specified in the labeledURI attribute is
performed. But this time, only the distinguished names of the results are added, and as values of the
member attribute.

OpenLDAP Software 2.4 Administrator's Guide

12.7.2. Dynamic List Configuration 105

This is what we get:

Figure X.Y: Dynamic Group for all users

Note that a side effect of this scheme of dynamic groups is that the members need to be specified as
full DNs. So, if you are planning in using this for posixGroups, be sure to use RFC2307bis and
some attribute which can hold distinguished names. The memberUid attribute used in the
posixGroup object class can hold only names, not DNs, and is therefore not suitable for dynamic
groups.

12.7.3. Further Information

slapo-dynlist(5)

12.8. Reverse Group Membership Maintenance

12.8.1. Overview

In some scenarios, it may be desirable for a client to be able to determine which groups an entry is a
member of, without performing an additional search. Examples of this are applications using the DIT
for access control based on group authorization.

The memberof overlay updates an attribute (by default memberOf) whenever changes occur to the
membership attribute (by default member) of entries of the objectclass (by default groupOfNames)
configured to trigger updates.

Thus, it provides maintenance of the list of groups an entry is a member of, when usual maintenance
of groups is done by modifying the members on the group entry.

12.8.2. Member Of Configuration

The typical use of this overlay requires just enabling the overlay for a specific database. For example,
with the following minimal slapd.conf:

 include /usr/share/openldap/schema/core.schema
 include /usr/share/openldap/schema/cosine.schema

 authz-regexp "gidNumber=0\\\+uidNumber=0,cn=peercred,cn=external,cn=auth"
 "cn=Manager,dc=example,dc=com"
 database bdb
 suffix "dc=example,dc=com"
 rootdn "cn=Manager,dc=example,dc=com"
 rootpw secret
 directory /var/lib/ldap2.4

OpenLDAP Software 2.4 Administrator's Guide

12.7.3. Further Information 106

 checkpoint 256 5
 index objectClass eq
 index uid eq,sub

 overlay memberof

adding the following ldif:

 cat memberof.ldif
 dn: dc=example,dc=com
 objectclass: domain
 dc: example

 dn: ou=Group,dc=example,dc=com
 objectclass: organizationalUnit
 ou: Group

 dn: ou=People,dc=example,dc=com
 objectclass: organizationalUnit
 ou: People

 dn: uid=test1,ou=People,dc=example,dc=com
 objectclass: account
 uid: test1

 dn: cn=testgroup,ou=Group,dc=example,dc=com
 objectclass: groupOfNames
 cn: testgroup
 member: uid=test1,ou=People,dc=example,dc=com

Results in the following output from a search on the test1 user:

 # ldapsearch -LL -Y EXTERNAL -H ldapi:/// "(uid=test1)" -b dc=example,dc=com memberOf
 SASL/EXTERNAL authentication started
 SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth
 SASL SSF: 0
 version: 1

 dn: uid=test1,ou=People,dc=example,dc=com
 memberOf: cn=testgroup,ou=Group,dc=example,dc=com

Note that the memberOf attribute is an operational attribute, so it must be requested explicitly.

12.8.3. Further Information

slapo-memberof(5)

12.9. The Proxy Cache Engine

LDAP servers typically hold one or more subtrees of a DIT. Replica (or shadow) servers hold shadow
copies of entries held by one or more master servers. Changes are propagated from the master server
to replica (slave) servers using LDAP Sync replication. An LDAP cache is a special type of replica
which holds entries corresponding to search filters instead of subtrees.

OpenLDAP Software 2.4 Administrator's Guide

12.8.2. Member Of Configuration 107

12.9.1. Overview

The proxy cache extension of slapd is designed to improve the responsiveness of the ldap and meta
backends. It handles a search request (query) by first determining whether it is contained in any
cached search filter. Contained requests are answered from the proxy cache's local database. Other
requests are passed on to the underlying ldap or meta backend and processed as usual.

E.g. (shoesize>=9) is contained in (shoesize>=8) and (sn=Richardson) is contained in
(sn=Richards*)

Correct matching rules and syntaxes are used while comparing assertions for query containment. To
simplify the query containment problem, a list of cacheable "templates" (defined below) is specified
at configuration time. A query is cached or answered only if it belongs to one of these templates. The
entries corresponding to cached queries are stored in the proxy cache local database while its
associated meta information (filter, scope, base, attributes) is stored in main memory.

A template is a prototype for generating LDAP search requests. Templates are described by a
prototype search filter and a list of attributes which are required in queries generated from the
template. The representation for prototype filter is similar to RFC4515, except that the assertion
values are missing. Examples of prototype filters are: (sn=),(&(sn=)(givenname=)) which are
instantiated by search filters (sn=Doe) and (&(sn=Doe)(givenname=John)) respectively.

The cache replacement policy removes the least recently used (LRU) query and entries belonging to
only that query. Queries are allowed a maximum time to live (TTL) in the cache thus providing weak
consistency. A background task periodically checks the cache for expired queries and removes them.

The Proxy Cache paper (http://www.openldap.org/pub/kapurva/proxycaching.pdf) provides design
and implementation details.

12.9.2. Proxy Cache Configuration

The cache configuration specific directives described below must appear after a overlay pcache
directive within a "database meta" or "database ldap" section of the server's
slapd.conf(5) file.

12.9.2.1. Setting cache parameters

 pcache <DB> <maxentries> <nattrsets> <entrylimit> <period>

This directive enables proxy caching and sets general cache parameters. The <DB> parameter
specifies which underlying database is to be used to hold cached entries. It should be set to bdb or
hdb. The <maxentries> parameter specifies the total number of entries which may be held in the
cache. The <nattrsets> parameter specifies the total number of attribute sets (as specified by the
pcacheAttrset directive) that may be defined. The <entrylimit> parameter specifies the
maximum number of entries in a cacheable query. The <period> specifies the consistency check
period (in seconds). In each period, queries with expired TTLs are removed.

OpenLDAP Software 2.4 Administrator's Guide

12.9.1. Overview 108

http://www.rfc-editor.org/rfc/rfc4515.txt
http://www.openldap.org/pub/kapurva/proxycaching.pdf

12.9.2.2. Defining attribute sets

 pcacheAttrset <index> <attrs...>

Used to associate a set of attributes to an index. Each attribute set is associated with an index number
from 0 to <numattrsets>-1. These indices are used by the pcacheTemplate directive to define
cacheable templates.

12.9.2.3. Specifying cacheable templates

 pcacheTemplate <prototype_string> <attrset_index> <TTL>

Specifies a cacheable template and the "time to live" (in sec) <TTL> for queries belonging to the
template. A template is described by its prototype filter string and set of required attributes identified
by <attrset_index>.

12.9.2.4. Example for slapd.conf

An example slapd.conf(5) database section for a caching server which proxies for the
"dc=example,dc=com" subtree held at server ldap.example.com.

 database ldap
 suffix "dc=example,dc=com"
 rootdn "dc=example,dc=com"
 uri ldap://ldap.example.com/
 overlay pcache
 pcache bdb 100000 1 1000 100
 pcacheAttrset 0 mail postaladdress telephonenumber
 pcacheTemplate (sn=) 0 3600
 pcacheTemplate (&(sn=)(givenName=)) 0 3600
 pcacheTemplate (&(departmentNumber=)(secretary=*)) 0 3600

 cachesize 20
 directory ./testrun/db.2.a
 index objectClass eq
 index cn,sn,uid,mail pres,eq,sub

12.9.2.5. Example for slapd-config

The same example as a LDIF file for back-config for a caching server which proxies for the
"dc=example,dc=com" subtree held at server ldap.example.com.

 dn: olcDatabase={2}ldap
 objectClass: olcDatabaseConfig
 objectClass: olcLDAPConfig
 olcDatabase: {2}ldap
 olcSuffix: dc=example,dc=com
 olcRootDN: dc=example,dc=com
 olcDbURI: "ldap://ldap.example.com"

 dn: olcOverlay={0}pcache
 objectClass: olcOverlayConfig
 objectClass: olcPcacheConfig
 olcOverlay: {0}pcache
 olcPcache: bdb 100000 1 1000 100
 olcPcacheAttrset: 0 mail postalAddress telephoneNumber
 olcPcacheTemplate: "(sn=)" 0 3600 0 0 0

OpenLDAP Software 2.4 Administrator's Guide

12.9.2. Proxy Cache Configuration 109

 olcPcacheTemplate: "(&(sn=)(givenName=))" 0 3600 0 0 0
 olcPcacheTemplate: "(&(departmentNumber=)(secretary=))" 0 3600

 dn: olcDatabase={0}hdb
 objectClass: olcHdbConfig
 objectClass: olcPcacheDatabase
 olcDatabase: {0}hdb
 olcDbDirectory: ./testrun/db.2.a
 olcDbCacheSize: 20
 olcDbIndex: objectClass eq
 olcDbIndex: cn,sn,uid,mail pres,eq,sub

12.9.2.5.1. Cacheable Queries

A LDAP search query is cacheable when its filter matches one of the templates as defined in the
"pcacheTemplate" statements and when it references only the attributes specified in the corresponding
attribute set. In the example above the attribute set number 0 defines that only the attributes: mail
postaladdress telephonenumber are cached for the following pcacheTemplates.

12.9.2.5.2. Examples:

 Filter: (&(sn=Richard*)(givenName=jack))
 Attrs: mail telephoneNumber

is cacheable, because it matches the template (&(sn=)(givenName=)) and its attributes are
contained in pcacheAttrset 0.

 Filter: (&(sn=Richard*)(telephoneNumber))
 Attrs: givenName

is not cacheable, because the filter does not match the template, nor is the attribute givenName stored
in the cache

 Filter: (|(sn=Richard*)(givenName=jack))
 Attrs: mail telephoneNumber

is not cacheable, because the filter does not match the template (logical OR "|" condition instead of
logical AND "&")

12.9.3. Further Information

slapo-pcache(5)

12.10. Password Policies

12.10.1. Overview

This overlay follows the specifications contained in the draft RFC titled
draft-behera-ldap-password-policy-09. While the draft itself is expired, it has been implemented in
several directory servers, including slapd. Nonetheless, it is important to note that it is a draft,
meaning that it is subject to change and is a work-in-progress.

The key abilities of the password policy overlay are as follows:

OpenLDAP Software 2.4 Administrator's Guide

12.9.2. Proxy Cache Configuration 110

Enforce a minimum length for new passwords•
Make sure passwords are not changed too frequently•
Cause passwords to expire, provide warnings before they need to be changed, and allow a
fixed number of 'grace' logins to allow them to be changed after they have expired

•

Maintain a history of passwords to prevent password re-use•
Prevent password guessing by locking a password for a specified period of time after repeated
authentication failures

•

Force a password to be changed at the next authentication•
Set an administrative lock on an account•
Support multiple password policies on a default or a per-object basis.•
Perform arbitrary quality checks using an external loadable module. This is a non-standard
extension of the draft RFC.

•

12.10.2. Password Policy Configuration

Instantiate the module in the database where it will be used, after adding the new ppolicy schema and
loading the ppolicy module. The following example shows the ppolicy module being added to the
database that handles the naming context "dc=example,dc=com". In this example we are also
specifying the DN of a policy object to use if none other is specified in a user's object.

 database bdb
 suffix "dc=example,dc=com"
 [...additional database configuration directives go here...]

 overlay ppolicy
 ppolicy_default "cn=default,ou=policies,dc=example,dc=com"

Now we need a container for the policy objects. In our example the password policy objects are going
to be placed in a section of the tree called "ou=policies,dc=example,dc=com":

 dn: ou=policies,dc=example,dc=com
 objectClass: organizationalUnit
 objectClass: top
 ou: policies

The default policy object that we are creating defines the following policies:

The user is allowed to change his own password. Note that the directory ACLs for this
attribute can also affect this ability (pwdAllowUserChange: TRUE).

•

The name of the password attribute is "userPassword" (pwdAttribute: userPassword). Note
that this is the only value that is accepted by OpenLDAP for this attribute.

•

The server will check the syntax of the password. If the server is unable to check the syntax
(i.e., it was hashed or otherwise encoded by the client) it will return an error refusing the
password (pwdCheckQuality: 2).

•

When a client includes the Password Policy Request control with a bind request, the server
will respond with a password expiration warning if it is going to expire in ten minutes or less
(pwdExpireWarning: 600). The warnings themselves are returned in a Password Policy
Response control.

•

When the password for a DN has expired, the server will allow five additional "grace" logins
(pwdGraceAuthNLimit: 5).

•

The server will maintain a history of the last five passwords that were used for a DN
(pwdInHistory: 5).

•

OpenLDAP Software 2.4 Administrator's Guide

12.10.1. Overview 111

The server will lock the account after the maximum number of failed bind attempts has been
exceeded (pwdLockout: TRUE).

•

When the server has locked an account, the server will keep it locked until an administrator
unlocks it (pwdLockoutDuration: 0)

•

The server will reset its failed bind count after a period of 30 seconds.•
Passwords will not expire (pwdMaxAge: 0).•
Passwords can be changed as often as desired (pwdMinAge: 0).•
Passwords must be at least 5 characters in length (pwdMinLength: 5).•
The password does not need to be changed at the first bind or when the administrator has
reset the password (pwdMustChange: FALSE)

•

The current password does not need to be included with password change requests
(pwdSafeModify: FALSE)

•

The server will only allow five failed binds in a row for a particular DN (pwdMaxFailure: 5).•

The actual policy would be:

 dn: cn=default,ou=policies,dc=example,dc=com
 cn: default
 objectClass: pwdPolicy
 objectClass: person
 objectClass: top
 pwdAllowUserChange: TRUE
 pwdAttribute: userPassword
 pwdCheckQuality: 2
 pwdExpireWarning: 600
 pwdFailureCountInterval: 30
 pwdGraceAuthNLimit: 5
 pwdInHistory: 5
 pwdLockout: TRUE
 pwdLockoutDuration: 0
 pwdMaxAge: 0
 pwdMaxFailure: 5
 pwdMinAge: 0
 pwdMinLength: 5
 pwdMustChange: FALSE
 pwdSafeModify: FALSE
 sn: dummy value

You can create additional policy objects as needed.

There are two ways password policy can be applied to individual objects:

1. The pwdPolicySubentry in a user's object - If a user's object has a pwdPolicySubEntry attribute
specifying the DN of a policy object, then the policy defined by that object is applied.

2. Default password policy - If there is no specific pwdPolicySubentry set for an object, and the
password policy module was configured with the DN of a default policy object and if that object
exists, then the policy defined in that object is applied.

Please see slapo-ppolicy(5) for complete explanations of features and discussion of "Password
Management Issues" at http://www.symas.com/blog/?page_id=66

OpenLDAP Software 2.4 Administrator's Guide

12.10.2. Password Policy Configuration 112

http://www.symas.com/blog/?page_id=66

12.10.3. Further Information

slapo-ppolicy(5)

12.11. Referential Integrity

12.11.1. Overview

This overlay can be used with a backend database such as slapd-bdb(5) to maintain the cohesiveness
of a schema which utilizes reference attributes.

Whenever a modrdn or delete is performed, that is, when an entry's DN is renamed or an entry is
removed, the server will search the directory for references to this DN (in selected attributes: see
below) and update them accordingly. If it was a delete operation, the reference is deleted. If it was a
modrdn operation, then the reference is updated with the new DN.

For example, a very common administration task is to maintain group membership lists, specially
when users are removed from the directory. When an user account is deleted or renamed, all groups
this user is a member of have to be updated. LDAP administrators usually have scripts for that. But
we can use the refint overlay to automate this task. In this example, if the user is removed from the
directory, the overlay will take care to remove the user from all the groups he/she was a member of.
No more scripting for this.

12.11.2. Referential Integrity Configuration

The configuration for this overlay is as follows:

 overlay refint
 refint_attributes <attribute [attribute ...]>
 refint_nothing <string>

refint_attributes: this parameter specifies a space separated list of attributes which
will have the referential integrity maintained. When an entry is removed or has its DN
renamed, the server will do an internal search for any of the refint_attributes that
point to the affected DN and update them accordingly. IMPORTANT: the attributes listed
here must have the distinguishedName syntax, that is, hold DNs as values.

•

refint_nothing: some times, while trying to maintain the referential integrity, the server
has to remove the last attribute of its kind from an entry. This may be prohibited by the
schema: for example, the groupOfNames object class requires at least one member. In
these cases, the server will add the attribute value specified in refint_nothing to the
entry.

•

To illustrate this overlay, we will use the group membership scenario.

In slapd.conf:

 overlay refint
 refint_attributes member
 refint_nothing "cn=admin,dc=example,dc=com"

OpenLDAP Software 2.4 Administrator's Guide

12.10.3. Further Information 113

This configuration tells the overlay to maintain the referential integrity of the member attribute. This
attribute is used in the groupOfNames object class which always needs a member, so we add the
refint_nothing directive to fill in the group with a standard member should all the members
vanish.

If we have the following group membership, the refint overlay will automatically remove john from
the group if his entry is removed from the directory:

Figure X.Y: Maintaining referential integrity in groups

Notice that if we rename (modrdn) the john entry to, say, jsmith, the refint overlay will also
rename the reference in the member attribute, so the group membership stays correct.

If we removed all users from the directory who are a member of this group, then the end result would
be a single member in the group: cn=admin,dc=example,dc=com. This is the
refint_nothing parameter kicking into action so that the schema is not violated.

The rootdn must be set for the database as refint runs as the rootdn to gain access to make its updates.
The rootpw does not need to be set.

12.11.3. Further Information

slapo-refint(5)

12.12. Return Code

12.12.1. Overview

This overlay is useful to test the behavior of clients when server-generated erroneous and/or unusual
responses occur, for example; error codes, referrals, excessive response times and so on.

This would be classed as a debugging tool whilst developing client software or additional Overlays.

For detailed information, please see the slapo-retcode(5) man page.

OpenLDAP Software 2.4 Administrator's Guide

12.11.2. Referential Integrity Configuration 114

12.12.2. Return Code Configuration

The retcode overlay utilizes the "return code" schema described in the man page. This schema is
specifically designed for use with this overlay and is not intended to be used otherwise.

Note: The necessary schema is loaded automatically by the overlay.

An example configuration might be:

 overlay retcode
 retcode-parent "ou=RetCodes,dc=example,dc=com"
 include ./retcode.conf

 retcode-item "cn=Unsolicited" 0x00 unsolicited="0"
 retcode-item "cn=Notice of Disconnect" 0x00 unsolicited="1.3.6.1.4.1.1466.20036"
 retcode-item "cn=Pre-disconnect" 0x34 flags="pre-disconnect"
 retcode-item "cn=Post-disconnect" 0x34 flags="post-disconnect"

Note: retcode.conf can be found in the openldap source at: tests/data/retcode.conf

An excerpt of a retcode.conf would be something like:

 retcode-item "cn=success" 0x00

 retcode-item "cn=success w/ delay" 0x00 sleeptime=2

 retcode-item "cn=operationsError" 0x01
 retcode-item "cn=protocolError" 0x02
 retcode-item "cn=timeLimitExceeded" 0x03 op=search
 retcode-item "cn=sizeLimitExceeded" 0x04 op=search
 retcode-item "cn=compareFalse" 0x05 op=compare
 retcode-item "cn=compareTrue" 0x06 op=compare
 retcode-item "cn=authMethodNotSupported" 0x07
 retcode-item "cn=strongAuthNotSupported" 0x07 text="same as authMethodNotSupported"
 retcode-item "cn=strongAuthRequired" 0x08
 retcode-item "cn=strongerAuthRequired" 0x08 text="same as strongAuthRequired"

Please see tests/data/retcode.conf for a complete retcode.conf

12.12.3. Further Information

slapo-retcode(5)

12.13. Rewrite/Remap

12.13.1. Overview

It performs basic DN/data rewrite and objectClass/attributeType mapping. Its usage is mostly
intended to provide virtual views of existing data either remotely, in conjunction with the proxy
backend described in slapd-ldap(5), or locally, in conjunction with the relay backend described in
slapd-relay(5).

OpenLDAP Software 2.4 Administrator's Guide

12.12.2. Return Code Configuration 115

This overlay is extremely configurable and advanced, therefore recommended reading is the
slapo-rwm(5) man page.

12.13.2. Rewrite/Remap Configuration

12.13.3. Further Information

slapo-rwm(5)

12.14. Sync Provider

12.14.1. Overview

This overlay implements the provider-side support for the LDAP Content Synchronization
(RFC4533) as well as syncrepl replication support, including persistent search functionality.

12.14.2. Sync Provider Configuration

There is very little configuration needed for this overlay, in fact for many situations merely loading
the overlay will suffice.

However, because the overlay creates a contextCSN attribute in the root entry of the database which
is updated for every write operation performed against the database and only updated in memory, it is
recommended to configure a checkpoint so that the contextCSN is written into the underlying
database to minimize recovery time after an unclean shutdown:

 overlay syncprov
 syncprov-checkpoint 100 10

For every 100 operations or 10 minutes, which ever is sooner, the contextCSN will be checkpointed.

The four configuration directives available are syncprov-checkpoint, syncprov-sessionlog,
syncprov-nopresent and syncprov-reloadhint which are covered in the man page discussing various
other scenarios where this overlay can be used.

12.14.3. Further Information

The slapo-syncprov(5) man page and the Configuring the different replication types section

12.15. Translucent Proxy

12.15.1. Overview

This overlay can be used with a backend database such as slapd-bdb(5) to create a "translucent
proxy".

Entries retrieved from a remote LDAP server may have some or all attributes overridden, or new
attributes added, by entries in the local database before being presented to the client.

OpenLDAP Software 2.4 Administrator's Guide

12.13.1. Overview 116

http://www.rfc-editor.org/rfc/rfc4533.txt

A search operation is first populated with entries from the remote LDAP server, the attributes of
which are then overridden with any attributes defined in the local database. Local overrides may be
populated with the add, modify, and modrdn operations, the use of which is restricted to the root user
of the translucent local database.

A compare operation will perform a comparison with attributes defined in the local database record (if
any) before any comparison is made with data in the remote database.

12.15.2. Translucent Proxy Configuration

There are various options available with this overlay, but for this example we will demonstrate adding
new attributes to a remote entry and also searching against these newly added local attributes. For
more information about overriding remote entries and search configuration, please see
slapo-translucent(5)

Note: The Translucent Proxy overlay will disable schema checking in the local database, so that an
entry consisting of overlay attributes need not adhere to the complete schema.

First we configure the overlay in the normal manner:

 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/nis.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

 pidfile ./slapd.pid
 argsfile ./slapd.args

 database bdb
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=trans,dc=suretecsystems,dc=com"
 rootpw secret
 directory ./openldap-data

 index objectClass eq

 overlay translucent
 translucent_local carLicense

 uri ldap://192.168.X.X:389
 lastmod off
 acl-bind binddn="cn=admin,dc=suretecsystems,dc=com" credentials="blahblah"

You will notice the overlay directive and a directive to say what attribute we want to be able to search
against in the local database. We must also load the ldap backend which will connect to the remote
directory server.

Now we take an example LDAP group:

 # itsupport, Groups, suretecsystems.com
 dn: cn=itsupport,ou=Groups,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: sambaGroupMapping
 cn: itsupport
 gidNumber: 1000
 sambaSID: S-1-5-21-XXX

OpenLDAP Software 2.4 Administrator's Guide

12.15.1. Overview 117

 sambaGroupType: 2
 displayName: itsupport
 memberUid: ghenry
 memberUid: joebloggs

and create an LDIF file we can use to add our data to the local database, using some pretty strange
choices of new attributes for demonstration purposes:

 [ghenry@suretec test_configs]$ cat test-translucent-add.ldif
 dn: cn=itsupport,ou=Groups,dc=suretecsystems,dc=com
 businessCategory: frontend-override
 carLicense: LIVID
 employeeType: special
 departmentNumber: 9999999
 roomNumber: 41L-535

Searching against the proxy gives:

 [ghenry@suretec test_configs]$ ldapsearch -x -H ldap://127.0.0.1:9001 "(cn=itsupport)"
 # itsupport, Groups, OxObjects, suretecsystems.com
 dn: cn=itsupport,ou=Groups,ou=OxObjects,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: sambaGroupMapping
 cn: itsupport
 gidNumber: 1003
 SAMBASID: S-1-5-21-XXX
 SAMBAGROUPTYPE: 2
 displayName: itsupport
 memberUid: ghenry
 memberUid: joebloggs
 roomNumber: 41L-535
 departmentNumber: 9999999
 employeeType: special
 carLicense: LIVID
 businessCategory: frontend-override

Here we can see that the 5 new attributes are added to the remote entry before being returned to the
our client.

Because we have configured a local attribute to search against:

 overlay translucent
 translucent_local carLicense

we can also search for that to return the completely fabricated entry:

 ldapsearch -x -H ldap://127.0.0.1:9001 (carLicense=LIVID)

This is an extremely feature because you can then extend a remote directory server locally and also
search against the local entries.

Note: Because the translucent overlay does not perform any DN rewrites, the local and remote
database instances must have the same suffix. Other configurations will probably fail with No Such
Object and other errors

OpenLDAP Software 2.4 Administrator's Guide

12.15.2. Translucent Proxy Configuration 118

12.15.3. Further Information

slapo-translucent(5)

12.16. Attribute Uniqueness

12.16.1. Overview

This overlay can be used with a backend database such as slapd-bdb(5) to enforce the uniqueness of
some or all attributes within a subtree.

12.16.2. Attribute Uniqueness Configuration

This overlay is only effective on new data from the point the overlay is enabled. To check uniqueness
for existing data, you can export and import your data again via the LDAP Add operation, which will
not be suitable for large amounts of data, unlike slapcat.

For the following example, if uniqueness were enforced for the mail attribute, the subtree would be
searched for any other records which also have a mail attribute containing the same value presented
with an add, modify or modrdn operation which are unique within the configured scope. If any are
found, the request is rejected.

Note: If no attributes are specified, for example ldap:///??sub?, then the URI applies to all
non-operational attributes. However, the keyword ignore can be specified to exclude certain
non-operational attributes.

To search at the base dn of the current backend database ensuring uniqueness of the mail attribute, we
simply add the following configuration:

 overlay unique
 unique_uri ldap:///?mail?sub?

For an existing entry of:

 dn: cn=gavin,dc=suretecsystems,dc=com
 objectClass: top
 objectClass: inetorgperson
 cn: gavin
 sn: henry
 mail: ghenry@suretecsystems.com

and we then try to add a new entry of:

 dn: cn=robert,dc=suretecsystems,dc=com
 objectClass: top
 objectClass: inetorgperson
 cn: robert
 sn: jones
 mail: ghenry@suretecsystems.com

would result in an error like so:

OpenLDAP Software 2.4 Administrator's Guide

12.15.3. Further Information 119

 adding new entry "cn=robert,dc=example,dc=com"
 ldap_add: Constraint violation (19)
 additional info: some attributes not unique

The overlay can have multiple URIs specified within a domain, allowing complex selections of
objects and also have multiple unique_uri statements or olcUniqueURI attributes which will create
independent domains.

For more information and details about the strict and ignore keywords, please see the
slapo-unique(5) man page.

12.16.3. Further Information

slapo-unique(5)

12.17. Value Sorting

12.17.1. Overview

The Value Sorting overlay can be used with a backend database to sort the values of specific
multi-valued attributes within a subtree. The sorting occurs whenever the attributes are returned in a
search response.

12.17.2. Value Sorting Configuration

Sorting can be specified in ascending or descending order, using either numeric or alphanumeric sort
methods. Additionally, a "weighted" sort can be specified, which uses a numeric weight prepended to
the attribute values.

The weighted sort is always performed in ascending order, but may be combined with the other
methods for values that all have equal weights. The weight is specified by prepending an integer
weight {<weight>} in front of each value of the attribute for which weighted sorting is desired. This
weighting factor is stripped off and never returned in search results.

Here are a few examples:

 loglevel sync stats

 database hdb
 suffix "dc=suretecsystems,dc=com"
 directory /usr/local/var/openldap-data

 overlay valsort
 valsort-attr memberUid ou=Groups,dc=suretecsystems,dc=com alpha-ascend

For example, ascend:

 # sharedemail, Groups, suretecsystems.com
 dn: cn=sharedemail,ou=Groups,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: top

OpenLDAP Software 2.4 Administrator's Guide

12.16.2. Attribute Uniqueness Configuration 120

 cn: sharedemail
 gidNumber: 517
 memberUid: admin
 memberUid: dovecot
 memberUid: laura
 memberUid: suretec

For weighted, we change our data to:

 # sharedemail, Groups, suretecsystems.com
 dn: cn=sharedemail,ou=Groups,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: top
 cn: sharedemail
 gidNumber: 517
 memberUid: {4}admin
 memberUid: {2}dovecot
 memberUid: {1}laura
 memberUid: {3}suretec

and change the config to:

 overlay valsort
 valsort-attr memberUid ou=Groups,dc=suretecsystems,dc=com weighted

Searching now results in:

 # sharedemail, Groups, OxObjects, suretecsystems.com
 dn: cn=sharedemail,ou=Groups,ou=OxObjects,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: top
 cn: sharedemail
 gidNumber: 517
 memberUid: laura
 memberUid: dovecot
 memberUid: suretec
 memberUid: admin

12.17.3. Further Information

slapo-valsort(5)

12.18. Overlay Stacking

12.18.1. Overview

Overlays can be stacked, which means that more than one overlay can be instantiated for each
database, or for the frontend. As a consequence, each overlays function is called, if defined, when
overlay execution is invoked. Multiple overlays are executed in reverse order (as a stack) with respect
to their definition in slapd.conf (5), or with respect to their ordering in the config database, as
documented in slapd-config (5).

OpenLDAP Software 2.4 Administrator's Guide

12.17.2. Value Sorting Configuration 121

12.18.2. Example Scenarios

12.18.2.1. Samba

OpenLDAP Software 2.4 Administrator's Guide

12.18.2. Example Scenarios 122

13. Schema Specification
This chapter describes how to extend the user schema used by slapd(8). The chapter assumes the
reader is familiar with the LDAP/X.500 information model.

The first section, Distributed Schema Files details optional schema definitions provided in the
distribution and where to obtain other definitions. The second section, Extending Schema, details how
to define new schema items.

This chapter does not discuss how to extend system schema used by slapd(8) as this requires source
code modification. System schema includes all operational attribute types or any object class which
allows or requires an operational attribute (directly or indirectly).

13.1. Distributed Schema Files

OpenLDAP Software is distributed with a set of schema specifications for your use. Each set is
defined in a file suitable for inclusion (using the include directive) in your slapd.conf(5) file. These
schema files are normally installed in the /usr/local/etc/openldap/schema directory.

Table 8.1: Provided Schema Specifications

File Description
core.schema OpenLDAP core (required)
cosine.schema Cosine and Internet X.500 (useful)
inetorgperson.schema InetOrgPerson (useful)
misc.schema Assorted (experimental)
nis.schema Network Information Services (FYI)
openldap.schema OpenLDAP Project (experimental)

To use any of these schema files, you only need to include the desired file in the global definitions
portion of your slapd.conf(5) file. For example:

 # include schema
 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

Additional files may be available. Please consult the OpenLDAP FAQ
(http://www.openldap.org/faq/).

Note: You should not modify any of the schema items defined in provided files.

13.2. Extending Schema

Schema used by slapd(8) may be extended to support additional syntaxes, matching rules, attribute
types, and object classes. This chapter details how to add user application attribute types and object
classes using the syntaxes and matching rules already supported by slapd. slapd can also be extended
to support additional syntaxes, matching rules and system schema, but this requires some
programming and hence is not discussed here.

13. Schema Specification 123

http://www.openldap.org/faq/

There are five steps to defining new schema:

obtain Object Identifier1.
choose a name prefix2.
create local schema file3.
define custom attribute types (if necessary)4.
define custom object classes5.

13.2.1. Object Identifiers

Each schema element is identified by a globally unique Object Identifier (OID). OIDs are also used to
identify other objects. They are commonly found in protocols described by ASN.1. In particular, they
are heavily used by the Simple Network Management Protocol (SNMP). As OIDs are hierarchical,
your organization can obtain one OID and branch it as needed. For example, if your organization were
assigned OID 1.1, you could branch the tree as follows:

Table 8.2: Example OID hierarchy

OID Assignment
1.1 Organization's OID
1.1.1 SNMP Elements
1.1.2 LDAP Elements
1.1.2.1 AttributeTypes
1.1.2.1.1 x-my-Attribute
1.1.2.2 ObjectClasses
1.1.2.2.1 x-my-ObjectClass

You are, of course, free to design a hierarchy suitable to your organizational needs under your
organization's OID. No matter what hierarchy you choose, you should maintain a registry of
assignments you make. This can be a simple flat file or something more sophisticated such as the
OpenLDAP OID Registry (http://www.openldap.org/faq/index.cgi?file=197).

For more information about Object Identifiers (and a listing service) see
http://www.alvestrand.no/objectid/.

Under no circumstances should you hijack OID namespace!

To obtain a registered OID at no cost, apply for a OID under the Internet Assigned Numbers
Authority (ORG:IANA) maintained Private Enterprise arc. Any private enterprise (organization) may
request a Private Enterprise Number (PEN) to be assigned under this arc. Just fill out the IANA form
at http://pen.iana.org/pen/PenApplication.page and your official PEN will be sent to you usually
within a few days. Your base OID will be something like 1.3.6.1.4.1.X where X is an integer.

Note: PENs obtained using this form may be used for any purpose including identifying LDAP
schema elements.

Alternatively, OID name space may be available from a national authority (e.g., ANSI, BSI).

OpenLDAP Software 2.4 Administrator's Guide

13.2. Extending Schema 124

http://www.openldap.org/faq/index.cgi?file=197
http://www.alvestrand.no/objectid/
http://www.iana.org/
http://www.iana.org/
http://pen.iana.org/pen/PenApplication.page
http://www.ansi.org/
http://www.bsi-global.com/

13.2.2. Naming Elements

In addition to assigning a unique object identifier to each schema element, you should provide at least
one textual name for each element. Names should be registered with the IANA or prefixed with "x-"
to place in the "private use" name space.

The name should be both descriptive and not likely to clash with names of other schema elements. In
particular, any name you choose should not clash with present or future Standard Track names (this is
assured if you registered names or use names beginning with "x-").

It is noted that you can obtain your own registered name prefix so as to avoid having to register your
names individually. See RFC4520 for details.

In the examples below, we have used a short prefix 'x-my-'. Such a short prefix would only be
suitable for a very large, global organization. In general, we recommend something like
'x-de-Firm-' (German company) or 'x-com-Example' (elements associated with organization
associated with example.com).

13.2.3. Local schema file

The objectclass and attributeTypes configuration file directives can be used to define
schema rules on entries in the directory. It is customary to create a file to contain definitions of your
custom schema items. We recommend you create a file local.schema in
/usr/local/etc/openldap/schema/local.schema and then include this file in your
slapd.conf(5) file immediately after other schema include directives.

 # include schema
 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema
 # include local schema
 include /usr/local/etc/openldap/schema/local.schema

13.2.4. Attribute Type Specification

The attributetype directive is used to define a new attribute type. The directive uses the same
Attribute Type Description (as defined in RFC4512) used by the attributeTypes attribute found in the
subschema subentry, e.g.:

 attributetype <RFC4512 Attribute Type Description>

where Attribute Type Description is defined by the following ABNF:

 AttributeTypeDescription = "(" whsp
 numericoid whsp ; AttributeType identifier
 ["NAME" qdescrs] ; name used in AttributeType
 ["DESC" qdstring] ; description
 ["OBSOLETE" whsp]
 ["SUP" woid] ; derived from this other
 ; AttributeType
 ["EQUALITY" woid ; Matching Rule name
 ["ORDERING" woid ; Matching Rule name
 ["SUBSTR" woid] ; Matching Rule name

OpenLDAP Software 2.4 Administrator's Guide

13.2.2. Naming Elements 125

http://www.iana.org/
http://www.rfc-editor.org/rfc/rfc4520.txt
http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4512.txt

 ["SYNTAX" whsp noidlen whsp] ; Syntax OID
 ["SINGLE-VALUE" whsp] ; default multi-valued
 ["COLLECTIVE" whsp] ; default not collective
 ["NO-USER-MODIFICATION" whsp]; default user modifiable
 ["USAGE" whsp AttributeUsage]; default userApplications
 whsp ")"

 AttributeUsage =
 "userApplications" /
 "directoryOperation" /
 "distributedOperation" / ; DSA-shared
 "dSAOperation" ; DSA-specific, value depends on server

where whsp is a space (' '), numericoid is a globally unique OID in dotted-decimal form (e.g. 1.1.0),
qdescrs is one or more names, woid is either the name or OID optionally followed by a length
specifier (e.g {10}).

For example, the attribute types name and cn are defined in core.schema as:

 attributeType (2.5.4.41 NAME 'name'
 DESC 'name(s) associated with the object'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768})
 attributeType (2.5.4.3 NAME ('cn' 'commonName')
 DESC 'common name(s) assciated with the object'
 SUP name)

Notice that each defines the attribute's OID, provides a short name, and a brief description. Each name
is an alias for the OID. slapd(8) returns the first listed name when returning results.

The first attribute, name, holds values of directoryString (UTF-8 encoded Unicode) syntax.
The syntax is specified by OID (1.3.6.1.4.1.1466.115.121.1.15 identifies the directoryString syntax).
A length recommendation of 32768 is specified. Servers should support values of this length, but may
support longer values. The field does NOT specify a size constraint, so is ignored on servers (such as
slapd) which don't impose such size limits. In addition, the equality and substring matching uses case
ignore rules. Below are tables listing commonly used syntax and matching rules (slapd(8) supports
these and many more).

Table 8.3: Commonly Used Syntaxes

Name OID Description
boolean 1.3.6.1.4.1.1466.115.121.1.7 boolean value
directoryString 1.3.6.1.4.1.1466.115.121.1.15 Unicode (UTF-8) string
distinguishedName 1.3.6.1.4.1.1466.115.121.1.12 LDAP DN
integer 1.3.6.1.4.1.1466.115.121.1.27 integer
numericString 1.3.6.1.4.1.1466.115.121.1.36 numeric string
OID 1.3.6.1.4.1.1466.115.121.1.38 object identifier
octetString 1.3.6.1.4.1.1466.115.121.1.40 arbitrary octets

Table 8.4: Commonly Used Matching Rules

OpenLDAP Software 2.4 Administrator's Guide

13.2.4. Attribute Type Specification 126

Name Type Description
booleanMatch equality boolean
caseIgnoreMatch equality case insensitive, space insensitive
caseIgnoreOrderingMatch ordering case insensitive, space insensitive
caseIgnoreSubstringsMatch substrings case insensitive, space insensitive
caseExactMatch equality case sensitive, space insensitive
caseExactOrderingMatch ordering case sensitive, space insensitive
caseExactSubstringsMatch substrings case sensitive, space insensitive
distinguishedNameMatch equality distinguished name
integerMatch equality integer
integerOrderingMatch ordering integer
numericStringMatch equality numerical
numericStringOrderingMatch ordering numerical
numericStringSubstringsMatch substrings numerical
octetStringMatch equality octet string
octetStringOrderingMatch ordering octet string
octetStringSubstringsMatch ordering octet st ring
objectIdentiferMatch equality object identifier
The second attribute, cn, is a subtype of name hence it inherits the syntax, matching rules, and usage
of name. commonName is an alternative name.

Neither attribute is restricted to a single value. Both are meant for usage by user applications. Neither
is obsolete nor collective.

The following subsections provide a couple of examples.

13.2.4.1. x-my-UniqueName

Many organizations maintain a single unique name for each user. Though one could use
displayName (RFC2798), this attribute is really meant to be controlled by the user, not the
organization. We could just copy the definition of displayName from
inetorgperson.schema and replace the OID, name, and description, e.g:

 attributetype (1.1.2.1.1 NAME 'x-my-UniqueName'
 DESC 'unique name with my organization'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE)

However, if we want this name to be used in name assertions, e.g. (name=*Jane*), the attribute
could alternatively be defined as a subtype of name, e.g.:

 attributetype (1.1.2.1.1 NAME 'x-my-UniqueName'
 DESC 'unique name with my organization'
 SUP name)

OpenLDAP Software 2.4 Administrator's Guide

13.2.4. Attribute Type Specification 127

http://www.rfc-editor.org/rfc/rfc2798.txt

13.2.4.2. x-my-Photo

Many organizations maintain a photo of each each user. A x-my-Photo attribute type could be
defined to hold a photo. Of course, one could use just use jpegPhoto (RFC2798) (or a subtype) to
hold the photo. However, you can only do this if the photo is in JPEG File Interchange Format.
Alternatively, an attribute type which uses the Octet String syntax can be defined, e.g.:

 attributetype (1.1.2.1.2 NAME 'x-my-Photo'
 DESC 'a photo (application defined format)'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 SINGLE-VALUE)

In this case, the syntax doesn't specify the format of the photo. It's assumed (maybe incorrectly) that
all applications accessing this attribute agree on the handling of values.

If you wanted to support multiple photo formats, you could define a separate attribute type for each
format, prefix the photo with some typing information, or describe the value using ASN.1 and use the
;binary transfer option.

Another alternative is for the attribute to hold a URI pointing to the photo. You can model such an
attribute after labeledURI (RFC2079) or simply create a subtype, e.g.:

 attributetype (1.1.2.1.3 NAME 'x-my-PhotoURI'
 DESC 'URI and optional label referring to a photo'
 SUP labeledURI)

13.2.5. Object Class Specification

The objectclasses directive is used to define a new object class. The directive uses the same Object
Class Description (as defined in RFC4512) used by the objectClasses attribute found in the
subschema subentry, e.g.:

 objectclass <RFC4512 Object Class Description>

where Object Class Description is defined by the following ABNF:

 ObjectClassDescription = "(" whsp
 numericoid whsp ; ObjectClass identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE" whsp]
 ["SUP" oids] ; Superior ObjectClasses
 [("ABSTRACT" / "STRUCTURAL" / "AUXILIARY") whsp]
 ; default structural
 ["MUST" oids] ; AttributeTypes
 ["MAY" oids] ; AttributeTypes
 whsp ")"

where whsp is a space (' '), numericoid is a globally unique OID in dotted-decimal form (e.g. 1.1.0),
qdescrs is one or more names, and oids is one or more names and/or OIDs.

OpenLDAP Software 2.4 Administrator's Guide

13.2.4. Attribute Type Specification 128

http://www.rfc-editor.org/rfc/rfc2798.txt
http://www.rfc-editor.org/rfc/rfc2079.txt
http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4512.txt

13.2.5.1. x-my-PhotoObject

To define an auxiliary object class which allows x-my-Photo to be added to any existing entry.

 objectclass (1.1.2.2.1 NAME 'x-my-PhotoObject'
 DESC 'mixin x-my-Photo'
 AUXILIARY
 MAY x-my-Photo)

13.2.5.2. x-my-Person

If your organization would like have a private structural object class to instantiate users, you can
subclass one of the existing person classes, such as inetOrgPerson (RFC2798), and add any
additional attributes which you desire.

 objectclass (1.1.2.2.2 NAME 'x-my-Person'
 DESC 'my person'
 SUP inetOrgPerson
 MUST (x-my-UniqueName $ givenName)
 MAY x-my-Photo)

The object class inherits the required/allowed attribute types of inetOrgPerson but requires
x-my-UniqueName and givenName and allows x-my-Photo.

13.2.6. OID Macros

To ease the management and use of OIDs, slapd(8) supports Object Identifier macros. The
objectIdentifier directive is used to equate a macro (name) with a OID. The OID may
possibly be derived from a previously defined OID macro. The slapd.conf(5) syntax is:

 objectIdentifier <name> { <oid> | <name>[:<suffix>] }

The following demonstrates definition of a set of OID macros and their use in defining schema
elements:

 objectIdentifier myOID 1.1
 objectIdentifier mySNMP myOID:1
 objectIdentifier myLDAP myOID:2
 objectIdentifier myAttributeType myLDAP:1
 objectIdentifier myObjectClass myLDAP:2
 attributetype (myAttributeType:3 NAME 'x-my-PhotoURI'
 DESC 'URI and optional label referring to a photo'
 SUP labeledURI)
 objectclass (myObjectClass:1 NAME 'x-my-PhotoObject'
 DESC 'mixin x-my-Photo'
 AUXILIARY
 MAY x-my-Photo)

OpenLDAP Software 2.4 Administrator's Guide

13.2.5. Object Class Specification 129

http://www.rfc-editor.org/rfc/rfc2798.txt

14. Security Considerations
OpenLDAP Software is designed to run in a wide variety of computing environments from
tightly-controlled closed networks to the global Internet. Hence, OpenLDAP Software supports many
different security mechanisms. This chapter describes these mechanisms and discusses security
considerations for using OpenLDAP Software.

14.1. Network Security

14.1.1. Selective Listening

By default, slapd(8) will listen on both the IPv4 and IPv6 "any" addresses. It is often desirable to have
slapd listen on select address/port pairs. For example, listening only on the IPv4 address 127.0.0.1
will disallow remote access to the directory server. E.g.:

 slapd -h ldap://127.0.0.1

While the server can be configured to listen on a particular interface address, this doesn't necessarily
restrict access to the server to only those networks accessible via that interface. To selective restrict
remote access, it is recommend that an IP Firewall be used to restrict access.

See Command-line Options and slapd(8) for more information.

14.1.2. IP Firewall

IP firewall capabilities of the server system can be used to restrict access based upon the client's IP
address and/or network interface used to communicate with the client.

Generally, slapd(8) listens on port 389/tcp for ldap:// sessions and port 636/tcp for ldaps://)
sessions. slapd(8) may be configured to listen on other ports.

As specifics of how to configure IP firewall are dependent on the particular kind of IP firewall used,
no examples are provided here. See the document associated with your IP firewall.

14.1.3. TCP Wrappers

slapd(8) supports TCP Wrappers. TCP Wrappers provide a rule-based access control system for
controlling TCP/IP access to the server. For example, the host_options(5) rule:

 slapd: 10.0.0.0/255.0.0.0 127.0.0.1 : ALLOW
 slapd: ALL : DENY

allows only incoming connections from the private network 10.0.0.0 and localhost (127.0.0.1)
to access the directory service.

Note: IP addresses are used as slapd(8) is not normally configured to perform reverse lookups.

It is noted that TCP wrappers require the connection to be accepted. As significant processing is
required just to deny a connection, it is generally advised that IP firewall protection be used instead of

14. Security Considerations 130

TCP wrappers.

See hosts_access(5) for more information on TCP wrapper rules.

14.2. Data Integrity and Confidentiality Protection

Transport Layer Security (TLS) can be used to provide data integrity and confidentiality protection.
OpenLDAP supports negotiation of TLS (SSL) via both StartTLS and ldaps://. See the Using
TLS chapter for more information. StartTLS is the standard track mechanism.

A number of Simple Authentication and Security Layer (SASL) mechanisms, such as DIGEST-MD5
and GSSAPI, also provide data integrity and confidentiality protection. See the Using SASL chapter
for more information.

14.2.1. Security Strength Factors

The server uses Security Strength Factors (SSF) to indicate the relative strength of protection. A SSF
of zero (0) indicates no protections are in place. A SSF of one (1) indicates integrity protection are in
place. A SSF greater than one (>1) roughly correlates to the effective encryption key length. For
example, DES is 56, 3DES is 112, and AES 128, 192, or 256.

A number of administrative controls rely on SSFs associated with TLS and SASL protection in place
on an LDAP session.

security controls disallow operations when appropriate protections are not in place. For example:

 security ssf=1 update_ssf=112

requires integrity protection for all operations and encryption protection, 3DES equivalent, for update
operations (e.g. add, delete, modify, etc.). See slapd.conf(5) for details.

For fine-grained control, SSFs may be used in access controls. See the Access Control section for
more information.

14.3. Authentication Methods

14.3.1. "simple" method

The LDAP "simple" method has three modes of operation:

anonymous,•
unauthenticated, and•
user/password authenticated.•

Anonymous access is requested by providing no name and no password to the "simple" bind
operation. Unauthenticated access is requested by providing a name but no password. Authenticated
access is requested by providing a valid name and password.

OpenLDAP Software 2.4 Administrator's Guide

14.1.3. TCP Wrappers 131

An anonymous bind results in an anonymous authorization association. Anonymous bind mechanism
is enabled by default, but can be disabled by specifying "disallow bind_anon" in slapd.conf(5).

Note: Disabling the anonymous bind mechanism does not prevent anonymous access to the directory.
To require authentication to access the directory, one should instead specify "require authc".

An unauthenticated bind also results in an anonymous authorization association. Unauthenticated bind
mechanism is disabled by default, but can be enabled by specifying "allow bind_anon_cred"
in slapd.conf(5). As a number of LDAP applications mistakenly generate unauthenticated bind request
when authenticated access was intended (that is, they do not ensure a password was provided), this
mechanism should generally remain disabled.

A successful user/password authenticated bind results in a user authorization identity, the provided
name, being associated with the session. User/password authenticated bind is enabled by default.
However, as this mechanism itself offers no eavesdropping protection (e.g., the password is set in the
clear), it is recommended that it be used only in tightly controlled systems or when the LDAP session
is protected by other means (e.g., TLS, IPsec). Where the administrator relies on TLS to protect the
password, it is recommended that unprotected authentication be disabled. This is done using the
security directive's simple_bind option, which provides fine grain control over the level of
confidential protection to require for simple user/password authentication. E.g., using security
simple_bind=56 would require simple binds to use encryption of DES equivalent or better.

The user/password authenticated bind mechanism can be completely disabled by setting "disallow
bind_simple".

Note: An unsuccessful bind always results in the session having an anonymous authorization
association.

14.3.2. SASL method

The LDAP SASL method allows the use of any SASL authentication mechanism. The Using SASL
section discusses the use of SASL.

14.4. Password Storage

LDAP passwords are normally stored in the userPassword attribute. RFC4519 specifies that
passwords are not stored in encrypted (or hashed) form. This allows a wide range of password-based
authentication mechanisms, such as DIGEST-MD5 to be used. This is also the most interoperable
storage scheme.

However, it may be desirable to store a hash of password instead. slapd(8) supports a variety of
storage schemes for the administrator to choose from.

Note: Values of password attributes, regardless of storage scheme used, should be protected as if they
were clear text. Hashed passwords are subject to dictionary attacks and brute-force attacks.

The userPassword attribute is allowed to have more than one value, and it is possible for each value
to be stored in a different form. During authentication, slapd will iterate through the values until it
finds one that matches the offered password or until it runs out of values to inspect. The storage

OpenLDAP Software 2.4 Administrator's Guide

14.3.1. "simple" method 132

http://www.rfc-editor.org/rfc/rfc4519.txt

scheme is stored as a prefix on the value, so a hashed password using the Salted SHA1 (SSHA)
scheme looks like:

 userPassword: {SSHA}DkMTwBl+a/3DQTxCYEApdUtNXGgdUac3

The advantage of hashed passwords is that an attacker which discovers the hash does not have direct
access to the actual password. Unfortunately, as dictionary and brute force attacks are generally quite
easy for attackers to successfully mount, this advantage is marginal at best (this is why all modern
Unix systems use shadow password files).

The disadvantages of hashed storage is that they are non-standard, may cause interoperability
problem, and generally preclude the use of stronger than Simple (or SASL/PLAIN) password-based
authentication mechanisms such as DIGEST-MD5.

14.4.1. SSHA password storage scheme

This is the salted version of the SHA scheme. It is believed to be the most secure password storage
scheme supported by slapd.

These values represent the same password:

 userPassword: {SSHA}DkMTwBl+a/3DQTxCYEApdUtNXGgdUac3
 userPassword: {SSHA}d0Q0626PSH9VUld7yWpR0k6BlpQmtczb

14.4.2. CRYPT password storage scheme

This scheme uses the operating system's crypt(3) hash function. It normally produces the traditional
Unix-style 13 character hash, but on systems with glibc2 it can also generate the more secure
34-byte MD5 hash.

 userPassword: {CRYPT}aUihad99hmev6
 userPassword: {CRYPT}1czBJdDqS$TmkzUAb836oMxg/BmIwN.1

The advantage of the CRYPT scheme is that passwords can be transferred to or from an existing Unix
password file without having to know the cleartext form. Both forms of crypt include salt so they have
some resistance to dictionary attacks.

Note: Since this scheme uses the operating system's crypt(3) hash function, it is therefore operating
system specific.

14.4.3. MD5 password storage scheme

This scheme simply takes the MD5 hash of the password and stores it in base64 encoded form:

 userPassword: {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==

Although safer than cleartext storage, this is not a very secure scheme. The MD5 algorithm is fast,
and because there is no salt the scheme is vulnerable to a dictionary attack.

OpenLDAP Software 2.4 Administrator's Guide

14.4. Password Storage 133

14.4.4. SMD5 password storage scheme

This improves on the basic MD5 scheme by adding salt (random data which means that there are
many possible representations of a given plaintext password). For example, both of these values
represent the same password:

 userPassword: {SMD5}4QWGWZpj9GCmfuqEvm8HtZhZS6E=
 userPassword: {SMD5}g2/J/7D5EO6+oPdklp5p8YtNFk4=

14.4.5. SHA password storage scheme

Like the MD5 scheme, this simply feeds the password through an SHA hash process. SHA is thought
to be more secure than MD5, but the lack of salt leaves the scheme exposed to dictionary attacks.

 userPassword: {SHA}5en6G6MezRroT3XKqkdPOmY/BfQ=

14.4.6. SASL password storage scheme

This is not really a password storage scheme at all. It uses the value of the userPassword attribute to
delegate password verification to another process. See below for more information.

Note: This is not the same as using SASL to authenticate the LDAP session.

14.5. Pass-Through authentication

Since OpenLDAP 2.0 slapd has had the ability to delegate password verification to a separate process.
This uses the sasl_checkpass(3) function so it can use any back-end server that Cyrus SASL supports
for checking passwords. The choice is very wide, as one option is to use saslauthd(8) which in turn
can use local files, Kerberos, an IMAP server, another LDAP server, or anything supported by the
PAM mechanism.

The server must be built with the --enable-spasswd configuration option to enable pass-through
authentication.

Note: This is not the same as using a SASL mechanism to authenticate the LDAP session.

Pass-Through authentication works only with plaintext passwords, as used in the "simple bind" and
"SASL PLAIN" authentication mechanisms.}}

Pass-Through authentication is selective: it only affects users whose userPassword attribute has a
value marked with the "{SASL}" scheme. The format of the attribute is:

 userPassword: {SASL}username@realm

The username and realm are passed to the SASL authentication mechanism and are used to identify
the account whose password is to be verified. This allows arbitrary mapping between entries in
OpenLDAP and accounts known to the backend authentication service.

It would be wise to use access control to prevent users from changing their passwords through LDAP

OpenLDAP Software 2.4 Administrator's Guide

14.4.4. SMD5 password storage scheme 134

where they have pass-through authentication enabled.

14.5.1. Configuring slapd to use an authentication provider

Where an entry has a "{SASL}" password value, OpenLDAP delegates the whole process of
validating that entry's password to Cyrus SASL. All the configuration is therefore done in SASL
config files.

The first file to be considered is confusingly named slapd.conf and is typically found in the SASL
library directory, often /usr/lib/sasl2/slapd.conf This file governs the use of SASL when
talking LDAP to slapd as well as the use of SASL backends for pass-through authentication. See
options.html in the Cyrus SASL docs for full details. Here is a simple example for a server that
will use saslauthd to verify passwords:

 mech_list: plain
 pwcheck_method: saslauthd
 saslauthd_path: /var/run/sasl2/mux

14.5.2. Configuring saslauthd

saslauthd is capable of using many different authentication services: see saslauthd(8) for details. A
common requirement is to delegate some or all authentication to another LDAP server. Here is a
sample saslauthd.conf that uses Microsoft Active Directory (AD):

 ldap_servers: ldap://dc1.example.com/ ldap://dc2.example.com/

 ldap_search_base: cn=Users,DC=ad,DC=example,DC=com
 ldap_filter: (userPrincipalName=%u)

 ldap_bind_dn: cn=saslauthd,cn=Users,DC=ad,DC=example,DC=com
 ldap_password: secret

In this case, saslauthd is run with the ldap authentication mechanism and is set to combine the
SASL realm with the login name:

 saslauthd -a ldap -r

This means that the "username@realm" string from the userPassword attribute ends up being used to
search AD for "userPrincipalName=username@realm" - the password is then verified by attempting
to bind to AD using the entry found by the search and the password supplied by the LDAP client.

14.5.3. Testing pass-through authentication

It is usually best to start with the back-end authentication provider and work through saslauthd and
slapd towards the LDAP client.

In the AD example above, first check that the DN and password that saslauthd will use when it
connects to AD are valid:

 ldapsearch -x -H ldap://dc1.example.com/ \
 -D cn=saslauthd,cn=Users,DC=ad,DC=example,DC=com \
 -w secret \
 -b '' \

OpenLDAP Software 2.4 Administrator's Guide

14.5. Pass-Through authentication 135

http://asg.web.cmu.edu/sasl/sasl-library.html

 -s base

Next check that a sample AD user can be found:

 ldapsearch -x -H ldap://dc1.example.com/ \
 -D cn=saslauthd,cn=Users,DC=ad,DC=example,DC=com \
 -w secret \
 -b cn=Users,DC=ad,DC=example,DC=com \
 "(userPrincipalName=user@ad.example.com)"

Check that the user can bind to AD:

 ldapsearch -x -H ldap://dc1.example.com/ \
 -D cn=user,cn=Users,DC=ad,DC=example,DC=com \
 -w userpassword \
 -b cn=user,cn=Users,DC=ad,DC=example,DC=com \
 -s base \
 "(objectclass=*)"

If all that works then saslauthd should be able to do the same:

 testsaslauthd -u user@ad.example.com -p userpassword
 testsaslauthd -u user@ad.example.com -p wrongpassword

Now put the magic token into an entry in OpenLDAP:

 userPassword: {SASL}user@ad.example.com

It should now be possible to bind to OpenLDAP using the DN of that entry and the password of the
AD user.

OpenLDAP Software 2.4 Administrator's Guide

14.5.3. Testing pass-through authentication 136

15. Using SASL
OpenLDAP clients and servers are capable of authenticating via the Simple Authentication and
Security Layer (SASL) framework, which is detailed in RFC4422. This chapter describes how to
make use of SASL in OpenLDAP.

There are several industry standard authentication mechanisms that can be used with SASL, including
GSSAPI for Kerberos V, DIGEST-MD5, and PLAIN and EXTERNAL for use with Transport Layer
Security (TLS).

The standard client tools provided with OpenLDAP Software, such as ldapsearch(1) and
ldapmodify(1), will by default attempt to authenticate the user to the LDAP directory server using
SASL. Basic authentication service can be set up by the LDAP administrator with a few steps,
allowing users to be authenticated to the slapd server as their LDAP entry. With a few extra steps,
some users and services can be allowed to exploit SASL's proxy authorization feature, allowing them
to authenticate themselves and then switch their identity to that of another user or service.

This chapter assumes you have read Cyrus SASL for System Administrators, provided with the Cyrus
SASL package (in doc/sysadmin.html) and have a working Cyrus SASL installation. You
should use the Cyrus SASL sample_client and sample_server to test your SASL installation
before attempting to make use of it with OpenLDAP Software.

Note that in the following text the term user is used to describe a person or application entity who is
connecting to the LDAP server via an LDAP client, such as ldapsearch(1). That is, the term user not
only applies to both an individual using an LDAP client, but to an application entity which issues
LDAP client operations without direct user control. For example, an e-mail server which uses LDAP
operations to access information held in an LDAP server is an application entity.

15.1. SASL Security Considerations

SASL offers many different authentication mechanisms. This section briefly outlines security
considerations.

Some mechanisms, such as PLAIN and LOGIN, offer no greater security over LDAP simple
authentication. Like LDAP simple authentication, such mechanisms should not be used unless you
have adequate security protections in place. It is recommended that these mechanisms be used only in
conjunction with Transport Layer Security (TLS). Use of PLAIN and LOGIN are not discussed
further in this document.

The DIGEST-MD5 mechanism is the mandatory-to-implement authentication mechanism for
LDAPv3. Though DIGEST-MD5 is not a strong authentication mechanism in comparison with
trusted third party authentication systems (such as Kerberos or public key systems), it does offer
significant protections against a number of attacks. Unlike the CRAM-MD5 mechanism, it prevents
chosen plaintext attacks. DIGEST-MD5 is favored over the use of plaintext password mechanisms.
The CRAM-MD5 mechanism is deprecated in favor of DIGEST-MD5. Use of DIGEST-MD5 is
discussed below.

The GSSAPI mechanism utilizes GSS-API Kerberos V to provide secure authentication services. The
KERBEROS_V4 mechanism is available for those using Kerberos IV. Kerberos is viewed as a secure,

15. Using SASL 137

http://www.rfc-editor.org/rfc/rfc4422.txt
http://asg.web.cmu.edu/sasl/sasl-library.html
http://asg.web.cmu.edu/sasl/sasl-library.html

distributed authentication system suitable for both small and large enterprises. Use of GSSAPI and
KERBEROS_V4 are discussed below.

The EXTERNAL mechanism utilizes authentication services provided by lower level network
services such as TLS (TLS). When used in conjunction with TLS X.509-based public key technology,
EXTERNAL offers strong authentication. Use of EXTERNAL is discussed in the Using TLS chapter.

There are other strong authentication mechanisms to choose from, including OTP (one time
passwords) and SRP (secure remote passwords). These mechanisms are not discussed in this
document.

15.2. SASL Authentication

Getting basic SASL authentication running involves a few steps. The first step configures your slapd
server environment so that it can communicate with client programs using the security system in place
at your site. This usually involves setting up a service key, a public key, or other form of secret. The
second step concerns mapping authentication identities to LDAP DN's, which depends on how entries
are laid out in your directory. An explanation of the first step will be given in the next section using
Kerberos V4 as an example mechanism. The steps necessary for your site's authentication mechanism
will be similar, but a guide to every mechanism available under SASL is beyond the scope of this
chapter. The second step is described in the section Mapping Authentication Identities.

15.2.1. GSSAPI

This section describes the use of the SASL GSSAPI mechanism and Kerberos V with OpenLDAP. It
will be assumed that you have Kerberos V deployed, you are familiar with the operation of the
system, and that your users are trained in its use. This section also assumes you have familiarized
yourself with the use of the GSSAPI mechanism by reading Configuring GSSAPI and Cyrus SASL
(provided with Cyrus SASL in the doc/gssapi file) and successfully experimented with the Cyrus
provided sample_server and sample_client applications. General information about
Kerberos is available at http://web.mit.edu/kerberos/www/.

To use the GSSAPI mechanism with slapd(8) one must create a service key with a principal for ldap
service within the realm for the host on which the service runs. For example, if you run slapd on
directory.example.com and your realm is EXAMPLE.COM, you need to create a service key
with the principal:

 ldap/directory.example.com@EXAMPLE.COM

When slapd(8) runs, it must have access to this key. This is generally done by placing the key into a
keytab file, /etc/krb5.keytab. See your Kerberos and Cyrus SASL documentation for
information regarding keytab location settings.

To use the GSSAPI mechanism to authenticate to the directory, the user obtains a Ticket Granting
Ticket (TGT) prior to running the LDAP client. When using OpenLDAP client tools, the user may
mandate use of the GSSAPI mechanism by specifying -Y GSSAPI as a command option.

For the purposes of authentication and authorization, slapd(8) associates an authentication request DN
of the form:

OpenLDAP Software 2.4 Administrator's Guide

15.1. SASL Security Considerations 138

http://web.mit.edu/kerberos/www/

 uid=<primary[/instance]>,cn=<realm>,cn=gssapi,cn=auth

Continuing our example, a user with the Kerberos principal kurt@EXAMPLE.COM would have the
associated DN:

 uid=kurt,cn=example.com,cn=gssapi,cn=auth

and the principal ursula/admin@FOREIGN.REALM would have the associated DN:

 uid=ursula/admin,cn=foreign.realm,cn=gssapi,cn=auth

The authentication request DN can be used directly ACLs and groupOfNames "member" attributes,
since it is of legitimate LDAP DN format. Or alternatively, the authentication DN could be mapped
before use. See the section Mapping Authentication Identities for details.

15.2.2. KERBEROS_V4

This section describes the use of the SASL KERBEROS_V4 mechanism with OpenLDAP. It will be
assumed that you are familiar with the workings of the Kerberos IV security system, and that your site
has Kerberos IV deployed. Your users should be familiar with authentication policy, how to receive
credentials in a Kerberos ticket cache, and how to refresh expired credentials.

Note: KERBEROS_V4 and Kerberos IV are deprecated in favor of GSSAPI and Kerberos V.

Client programs will need to be able to obtain a session key for use when connecting to your LDAP
server. This allows the LDAP server to know the identity of the user, and allows the client to know it
is connecting to a legitimate server. If encryption layers are to be used, the session key can also be
used to help negotiate that option.

The slapd server runs the service called "ldap", and the server will require a srvtab file with a service
key. SASL aware client programs will be obtaining an "ldap" service ticket with the user's ticket
granting ticket (TGT), with the instance of the ticket matching the hostname of the OpenLDAP
server. For example, if your realm is named EXAMPLE.COM and the slapd server is running on the
host named directory.example.com, the /etc/srvtab file on the server will have a service
key

 ldap.directory@EXAMPLE.COM

When an LDAP client is authenticating a user to the directory using the KERBEROS_IV mechanism,
it will request a session key for that same principal, either from the ticket cache or by obtaining a new
one from the Kerberos server. This will require the TGT to be available and valid in the cache as well.
If it is not present or has expired, the client may print out the message:

 ldap_sasl_interactive_bind_s: Local error

When the service ticket is obtained, it will be passed to the LDAP server as proof of the user's
identity. The server will extract the identity and realm out of the service ticket using SASL library
calls, and convert them into an authentication request DN of the form

 uid=<username>,cn=<realm>,cn=<mechanism>,cn=auth

OpenLDAP Software 2.4 Administrator's Guide

15.2.1. GSSAPI 139

So in our above example, if the user's name were "adamson", the authentication request DN would be:

 uid=adamsom,cn=example.com,cn=kerberos_v4,cn=auth

This authentication request DN can be used directly ACLs or, alternatively, mapped prior to use. See
the section Mapping Authentication Identities for details.

15.2.3. DIGEST-MD5

This section describes the use of the SASL DIGEST-MD5 mechanism using secrets stored either in
the directory itself or in Cyrus SASL's own database. DIGEST-MD5 relies on the client and the server
sharing a "secret", usually a password. The server generates a challenge and the client a response
proving that it knows the shared secret. This is much more secure than simply sending the secret over
the wire.

Cyrus SASL supports several shared-secret mechanisms. To do this, it needs access to the plaintext
password (unlike mechanisms which pass plaintext passwords over the wire, where the server can
store a hashed version of the password).

The server's copy of the shared-secret may be stored in Cyrus SASL's own sasldb database, in an
external system accessed via saslauthd, or in LDAP database itself. In either case it is very important
to apply file access controls and LDAP access controls to prevent exposure of the passwords. The
configuration and commands discussed in this section assume the use of Cyrus SASL 2.1.

To use secrets stored in sasldb, simply add users with the saslpasswd2 command:

 saslpasswd2 -c <username>

The passwords for such users must be managed with the saslpasswd2 command.

To use secrets stored in the LDAP directory, place plaintext passwords in the userPassword
attribute. It will be necessary to add an option to slapd.conf to make sure that passwords set using
the LDAP Password Modify Operation are stored in plaintext:

 password-hash {CLEARTEXT}

Passwords stored in this way can be managed either with ldappasswd(1) or by simply modifying the
userPassword attribute. Regardless of where the passwords are stored, a mapping will be needed
from authentication request DN to user's DN.

The DIGEST-MD5 mechanism produces authentication IDs of the form:

 uid=<username>,cn=<realm>,cn=digest-md5,cn=auth

If the default realm is used, the realm name is omitted from the ID, giving:

 uid=<username>,cn=digest-md5,cn=auth

See Mapping Authentication Identities below for information on optional mapping of identities.

With suitable mappings in place, users can specify SASL IDs when performing LDAP operations, and

OpenLDAP Software 2.4 Administrator's Guide

15.2.2. KERBEROS_V4 140

the password stored in sasldb or in the directory itself will be used to verify the authentication. For
example, the user identified by the directory entry:

 dn: cn=Andrew Findlay+uid=u000997,dc=example,dc=com
 objectclass: inetOrgPerson
 objectclass: person
 sn: Findlay
 uid: u000997
 userPassword: secret

can issue commands of the form:

 ldapsearch -Y DIGEST-MD5 -U u000997 ...

Note: in each of the above cases, no authorization identity (e.g. -X) was provided. Unless you are
attempting SASL Proxy Authorization, no authorization identity should be specified. The server will
infer an authorization identity from authentication identity (as described below).

15.2.4. Mapping Authentication Identities

The authentication mechanism in the slapd server will use SASL library calls to obtain the
authenticated user's "username", based on whatever underlying authentication mechanism was used.
This username is in the namespace of the authentication mechanism, and not in the normal LDAP
namespace. As stated in the sections above, that username is reformatted into an authentication
request DN of the form

 uid=<username>,cn=<realm>,cn=<mechanism>,cn=auth

or

 uid=<username>,cn=<mechanism>,cn=auth

depending on whether or not <mechanism> employs the concept of "realms". Note also that the realm
part will be omitted if the default realm was used in the authentication.

The ldapwhoami(1) command may be used to determine the identity associated with the user. It is
very useful for determining proper function of mappings.

It is not intended that you should add LDAP entries of the above form to your LDAP database.
Chances are you have an LDAP entry for each of the persons that will be authenticating to LDAP,
laid out in your directory tree, and the tree does not start at cn=auth. But if your site has a clear
mapping between the "username" and an LDAP entry for the person, you will be able to configure
your LDAP server to automatically map a authentication request DN to the user's authentication DN.

Note: it is not required that the authentication request DN nor the user's authentication DN resulting
from the mapping refer to an entry held in the directory. However, additional capabilities become
available (see below).

The LDAP administrator will need to tell the slapd server how to map an authentication request DN to
a user's authentication DN. This is done by adding one or more authz-regexp directives to the
slapd.conf(5) file. This directive takes two arguments:

OpenLDAP Software 2.4 Administrator's Guide

15.2.3. DIGEST-MD5 141

 authz-regexp <search pattern> <replacement pattern>

The authentication request DN is compared to the search pattern using the regular expression
functions regcomp() and regexec(), and if it matches, it is rewritten as the replacement pattern. If there
are multiple authz-regexp directives, only the first whose search pattern matches the
authentication identity is used. The string that is output from the replacement pattern should be the
authentication DN of the user or an LDAP URL. If replacement string produces a DN, the entry
named by this DN need not be held by this server. If the replace string produces an LDAP URL, that
LDAP URL must evaluate to one and only one entry held by this server.

The search pattern can contain any of the regular expression characters listed in regexec(3C). The
main characters of note are dot ".", asterisk "*", and the open and close parenthesis "(" and ")".
Essentially, the dot matches any character, the asterisk allows zero or more repeats of the immediately
preceding character or pattern, and terms in parenthesis are remembered for the replacement pattern.

The replacement pattern will produce either a DN or URL referring to the user. Anything from the
authentication request DN that matched a string in parenthesis in the search pattern is stored in the
variable "$1". That variable "$1" can appear in the replacement pattern, and will be replaced by the
string from the authentication request DN. If there were multiple sets of parentheses in the search
pattern, the variables $2, $3, etc are used.

15.2.5. Direct Mapping

Where possible, direct mapping of the authentication request DN to the user's DN is generally
recommended. Aside from avoiding the expense of searching for the user's DN, it allows mapping to
DNs which refer to entries not held by this server.

Suppose the authentication request DN is written as:

 uid=adamson,cn=example.com,cn=gssapi,cn=auth

and the user's actual LDAP entry is:

 uid=adamson,ou=people,dc=example,dc=com

then the following authz-regexp directive in slapd.conf(5) would provide for direct mapping.

 authz-regexp
 uid=([^,]*),cn=example.com,cn=gssapi,cn=auth
 uid=$1,ou=people,dc=example,dc=com

An even more lenient rule could be written as

 authz-regexp
 uid=([^,]*),cn=[^,]*,cn=auth
 uid=$1,ou=people,dc=example,dc=com

Be careful about setting the search pattern too leniently, however, since it may mistakenly allow
persons to become authenticated as a DN to which they should not have access. It is better to write
several strict directives than one lenient directive which has security holes. If there is only one
authentication mechanism in place at your site, and zero or one realms in use, you might be able to
map between authentication identities and LDAP DN's with a single authz-regexp directive.

OpenLDAP Software 2.4 Administrator's Guide

15.2.4. Mapping Authentication Identities 142

Don't forget to allow for the case where the realm is omitted as well as the case with an explicitly
specified realm. This may well require a separate authz-regexp directive for each case, with the
explicit-realm entry being listed first.

15.2.6. Search-based mappings

There are a number of cases where mapping to a LDAP URL may be appropriate. For instance, some
sites may have person objects located in multiple areas of the LDAP tree, such as if there were an
ou=accounting tree and an ou=engineering tree, with persons interspersed between them.
Or, maybe the desired mapping must be based upon information in the user's information. Consider
the need to map the above authentication request DN to user whose entry is as follows:

 dn: cn=Mark Adamson,ou=People,dc=Example,dc=COM
 objectclass: person
 cn: Mark Adamson
 uid: adamson

The information in the authentication request DN is insufficient to allow the user's DN to be directly
derived, instead the user's DN must be searched for. For these situations, a replacement pattern which
produces a LDAP URL can be used in the authz-regexp directives. This URL will then be used
to perform an internal search of the LDAP database to find the person's authentication DN.

An LDAP URL, similar to other URL's, is of the form

 ldap://<host>/<base>?<attrs>?<scope>?<filter>

This contains all of the elements necessary to perform an LDAP search: the name of the server
<host>, the LDAP DN search base <base>, the LDAP attributes to retrieve <attrs>, the search scope
<scope> which is one of the three options "base", "one", or "sub", and lastly an LDAP search filter
<filter>. Since the search is for an LDAP DN within the current server, the <host> portion should be
empty. The <attrs> field is also ignored since only the DN is of concern. These two elements are left
in the format of the URL to maintain the clarity of what information goes where in the string.

Suppose that the person in the example from above did in fact have an authentication username of
"adamson" and that information was kept in the attribute "uid" in their LDAP entry. The
authz-regexp directive might be written as

 authz-regexp
 uid=([^,]*),cn=example.com,cn=gssapi,cn=auth
 ldap:///ou=people,dc=example,dc=com??one?(uid=$1)

This will initiate an internal search of the LDAP database inside the slapd server. If the search returns
exactly one entry, it is accepted as being the DN of the user. If there are more than one entries
returned, or if there are zero entries returned, the authentication fails and the user's connection is left
bound as the authentication request DN.

The attributes that are used in the search filter <filter> in the URL should be indexed to allow faster
searching. If they are not, the authentication step alone can take uncomfortably long periods, and
users may assume the server is down.

A more complex site might have several realms in use, each mapping to a different subtree in the
directory. These can be handled with statements of the form:

OpenLDAP Software 2.4 Administrator's Guide

15.2.5. Direct Mapping 143

 # Match Engineering realm
 authz-regexp
 uid=([^,]*),cn=engineering.example.com,cn=digest-md5,cn=auth
 ldap:///dc=eng,dc=example,dc=com??one?(&(uid=$1)(objectClass=person))

 # Match Accounting realm
 authz-regexp
 uid=([^,].*),cn=accounting.example.com,cn=digest-md5,cn=auth
 ldap:///dc=accounting,dc=example,dc=com??one?(&(uid=$1)(objectClass=person))

 # Default realm is customers.example.com
 authz-regexp
 uid=([^,]*),cn=digest-md5,cn=auth
 ldap:///dc=customers,dc=example,dc=com??one?(&(uid=$1)(objectClass=person))

Note that the explicitly-named realms are handled first, to avoid the realm name becoming part of the
UID. Also note the use of scope and filters to limit matching to desirable entries.

Note as well that authz-regexp internal search are subject to access controls. Specifically, the
authentication identity must have auth access.

See slapd.conf(5) for more detailed information.

15.3. SASL Proxy Authorization

The SASL offers a feature known as proxy authorization, which allows an authenticated user to
request that they act on the behalf of another user. This step occurs after the user has obtained an
authentication DN, and involves sending an authorization identity to the server. The server will then
make a decision on whether or not to allow the authorization to occur. If it is allowed, the user's
LDAP connection is switched to have a binding DN derived from the authorization identity, and the
LDAP session proceeds with the access of the new authorization DN.

The decision to allow an authorization to proceed depends on the rules and policies of the site where
LDAP is running, and thus cannot be made by SASL alone. The SASL library leaves it up to the
server to make the decision. The LDAP administrator sets the guidelines of who can authorize to what
identity by adding information into the LDAP database entries. By default, the authorization features
are disabled, and must be explicitly configured by the LDAP administrator before use.

15.3.1. Uses of Proxy Authorization

This sort of service is useful when one entity needs to act on the behalf of many other users. For
example, users may be directed to a web page to make changes to their personal information in their
LDAP entry. The users authenticate to the web server to establish their identity, but the web server
CGI cannot authenticate to the LDAP server as that user to make changes for them. Instead, the web
server authenticates itself to the LDAP server as a service identity, say,

 cn=WebUpdate,dc=example,dc=com

and then it will SASL authorize to the DN of the user. Once so authorized, the CGI makes changes to
the LDAP entry of the user, and as far as the slapd server can tell for its ACLs, it is the user themself
on the other end of the connection. The user could have connected to the LDAP server directly and
authenticated as themself, but that would require the user to have more knowledge of LDAP clients,
knowledge which the web page provides in an easier format.

OpenLDAP Software 2.4 Administrator's Guide

15.2.6. Search-based mappings 144

Proxy authorization can also be used to limit access to an account that has greater access to the
database. Such an account, perhaps even the root DN specified in slapd.conf(5), can have a strict list
of people who can authorize to that DN. Changes to the LDAP database could then be only allowed
by that DN, and in order to become that DN, users must first authenticate as one of the persons on the
list. This allows for better auditing of who made changes to the LDAP database. If people were
allowed to authenticate directly to the privileged account, possibly through the rootpw slapd.conf(5)
directive or through a userPassword attribute, then auditing becomes more difficult.

Note that after a successful proxy authorization, the original authentication DN of the LDAP
connection is overwritten by the new DN from the authorization request. If a service program is able
to authenticate itself as its own authentication DN and then authorize to other DN's, and it is planning
on switching to several different identities during one LDAP session, it will need to authenticate itself
each time before authorizing to another DN (or use a different proxy authorization mechanism). The
slapd server does not keep record of the service program's ability to switch to other DN's. On
authentication mechanisms like Kerberos this will not require multiple connections being made to the
Kerberos server, since the user's TGT and "ldap" session key are valid for multiple uses for the
several hours of the ticket lifetime.

15.3.2. SASL Authorization Identities

The SASL authorization identity is sent to the LDAP server via the -X switch for ldapsearch(1) and
other tools, or in the *authzid parameter to the lutil_sasl_defaults() call. The identity can be in one
of two forms, either

 u:<username>

or

 dn:<dn>

In the first form, the <username> is from the same namespace as the authentication identities above. It
is the user's username as it is referred to by the underlying authentication mechanism. Authorization
identities of this form are converted into a DN format by the same function that the authentication
process used, producing an authorization request DN of the form

 uid=<username>,cn=<realm>,cn=<mechanism>,cn=auth

That authorization request DN is then run through the same authz-regexp process to convert it
into a legitimate authorization DN from the database. If it cannot be converted due to a failed search
from an LDAP URL, the authorization request fails with "inappropriate access". Otherwise, the DN
string is now a legitimate authorization DN ready to undergo approval.

If the authorization identity was provided in the second form, with a "dn:" prefix, the string after the
prefix is already in authorization DN form, ready to undergo approval.

15.3.3. Proxy Authorization Rules

Once slapd has the authorization DN, the actual approval process begins. There are two attributes that
the LDAP administrator can put into LDAP entries to allow authorization:

 authzTo

OpenLDAP Software 2.4 Administrator's Guide

15.3.1. Uses of Proxy Authorization 145

 authzFrom

Both can be multivalued. The authzTo attribute is a source rule, and it is placed into the entry
associated with the authentication DN to tell what authorization DNs the authenticated DN is allowed
to assume. The second attribute is a destination rule, and it is placed into the entry associated with the
requested authorization DN to tell which authenticated DNs may assume it.

The choice of which authorization policy attribute to use is up to the administrator. Source rules are
checked first in the person's authentication DN entry, and if none of the authzTo rules specify the
authorization is permitted, the authzFrom rules in the authorization DN entry are then checked. If
neither case specifies that the request be honored, the request is denied. Since the default behavior is
to deny authorization requests, rules only specify that a request be allowed; there are no negative rules
telling what authorizations to deny.

The value(s) in the two attributes are of the same form as the output of the replacement pattern of a
authz-regexp directive: either a DN or an LDAP URL. For example, if a authzTo value is a
DN, that DN is one the authenticated user can authorize to. On the other hand, if the authzTo value
is an LDAP URL, the URL is used as an internal search of the LDAP database, and the authenticated
user can become ANY DN returned by the search. If an LDAP entry looked like:

 dn: cn=WebUpdate,dc=example,dc=com
 authzTo: ldap:///dc=example,dc=com??sub?(objectclass=person)

then any user who authenticated as cn=WebUpdate,dc=example,dc=com could authorize to
any other LDAP entry under the search base dc=example,dc=com which has an objectClass of
Person.

15.3.3.1. Notes on Proxy Authorization Rules

An LDAP URL in a authzTo or authzFrom attribute will return a set of DNs. Each DN returned
will be checked. Searches which return a large set can cause the authorization process to take an
uncomfortably long time. Also, searches should be performed on attributes that have been indexed by
slapd.

To help produce more sweeping rules for authzFrom and authzTo, the values of these attributes
are allowed to be DNs with regular expression characters in them. This means a source rule like

 authzTo: dn.regex:^uid=[^,]*,dc=example,dc=com$

would allow that authenticated user to authorize to any DN that matches the regular expression
pattern given. This regular expression comparison can be evaluated much faster than an LDAP search
for (uid=*).

Also note that the values in an authorization rule must be one of the two forms: an LDAP URL or a
DN (with or without regular expression characters). Anything that does not begin with "ldap://" is
taken as a DN. It is not permissible to enter another authorization identity of the form
"u:<username>" as an authorization rule.

OpenLDAP Software 2.4 Administrator's Guide

15.3.3. Proxy Authorization Rules 146

15.3.3.2. Policy Configuration

The decision of which type of rules to use, authzFrom or authzTo, will depend on the site's
situation. For example, if the set of people who may become a given identity can easily be written as a
search filter, then a single destination rule could be written. If the set of people is not easily defined
by a search filter, and the set of people is small, it may be better to write a source rule in the entries of
each of those people who should be allowed to perform the proxy authorization.

By default, processing of proxy authorization rules is disabled. The authz-policy directive must
be set in the slapd.conf(5) file to enable authorization. This directive can be set to none for no rules
(the default), to for source rules, from for destination rules, or both for both source and destination
rules.

Source rules are extremely powerful. If ordinary users have access to write the authzTo attribute in
their own entries, then they can write rules that would allow them to authorize as anyone else. As
such, when using source rules, the authzTo attribute should be protected with an ACL that only
allows privileged users to set its values.

OpenLDAP Software 2.4 Administrator's Guide

15.3.3. Proxy Authorization Rules 147

16. Using TLS
OpenLDAP clients and servers are capable of using the Transport Layer Security (TLS) framework to
provide integrity and confidentiality protections and to support LDAP authentication using the SASL
EXTERNAL mechanism. TLS is defined in RFC4346.

Note: For generating certifcates, please reference http://www.openldap.org/faq/data/cache/185.html

16.1. TLS Certificates

TLS uses X.509 certificates to carry client and server identities. All servers are required to have valid
certificates, whereas client certificates are optional. Clients must have a valid certificate in order to
authenticate via SASL EXTERNAL. For more information on creating and managing certificates, see
the OpenSSL, GnuTLS, or MozNSS documentation, depending on which TLS implementation
libraries you are using.

16.1.1. Server Certificates

The DN of a server certificate must use the CN attribute to name the server, and the CN must carry the
server's fully qualified domain name. Additional alias names and wildcards may be present in the
subjectAltName certificate extension. More details on server certificate names are in RFC4513.

16.1.2. Client Certificates

The DN of a client certificate can be used directly as an authentication DN. Since X.509 is a part of
the X.500 standard and LDAP is also based on X.500, both use the same DN formats and generally
the DN in a user's X.509 certificate should be identical to the DN of their LDAP entry. However,
sometimes the DNs may not be exactly the same, and so the mapping facility described in Mapping
Authentication Identities can be applied to these DNs as well.

16.2. TLS Configuration

After obtaining the required certificates, a number of options must be configured on both the client
and the server to enable TLS and make use of the certificates. At a minimum, the clients must be
configured with the name of the file containing all of the Certificate Authority (CA) certificates it will
trust. The server must be configured with the CA certificates and also its own server certificate and
private key.

Typically a single CA will have issued the server certificate and all of the trusted client certificates, so
the server only needs to trust that one signing CA. However, a client may wish to connect to a variety
of secure servers managed by different organizations, with server certificates generated by many
different CAs. As such, a client is likely to need a list of many different trusted CAs in its
configuration.

16.2.1. Server Configuration

The configuration directives for slapd belong in the global directives section of slapd.conf(5).

16. Using TLS 148

http://www.rfc-editor.org/rfc/rfc4346.txt
http://www.openldap.org/faq/data/cache/185.html
http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS
http://www.rfc-editor.org/rfc/rfc4513.txt

16.2.1.1. TLSCACertificateFile <filename>

This directive specifies the PEM-format file containing certificates for the CA's that slapd will trust.
The certificate for the CA that signed the server certificate must be included among these certificates.
If the signing CA was not a top-level (root) CA, certificates for the entire sequence of CA's from the
signing CA to the top-level CA should be present. Multiple certificates are simply appended to the
file; the order is not significant.

16.2.1.2. TLSCACertificatePath <path>

This directive specifies the path of a directory that contains individual CA certificates in separate
files. In addition, this directory must be specially managed using the OpenSSL c_rehash utility. When
using this feature, the OpenSSL library will attempt to locate certificate files based on a hash of their
name and serial number. The c_rehash utility is used to generate symbolic links with the hashed
names that point to the actual certificate files. As such, this option can only be used with a filesystem
that actually supports symbolic links. In general, it is simpler to use the TLSCACertificateFile
directive instead.

When using Mozilla NSS, this directive can be used to specify the path of the directory containing the
NSS certificate and key database files. The certutil command can be used to add a CA certificate:

 certutil -d <path> -A -n "name of CA cert" -t CT,, -a -i /path/to/cacertfile.pem

This command will add a CA certficate stored in the PEM (ASCII) formatted
file named /path/to/cacertfile.pem. -t CT,, means that the certificate is
trusted to be a CA issuing certs for use in TLS clients and servers.

16.2.1.3. TLSCertificateFile <filename>

This directive specifies the file that contains the slapd server certificate. Certificates are generally
public information and require no special protection.

When using Mozilla NSS, if using a cert/key database (specified with TLSCACertificatePath),
this directive specifies the name of the certificate to use:

 TLSCertificateFile Server-Cert

If using a token other than the internal built in token, specify the
token name first, followed by a colon:

 TLSCertificateFile my hardware device:Server-Cert

Use certutil -L to list the certificates by name:

 certutil -d /path/to/certdbdir -L

16.2.1.4. TLSCertificateKeyFile <filename>

This directive specifies the file that contains the private key that matches the certificate stored in the
TLSCertificateFile file. Private keys themselves are sensitive data and are usually password
encrypted for protection. However, the current implementation doesn't support encrypted keys so the

OpenLDAP Software 2.4 Administrator's Guide

16.2.1. Server Configuration 149

key must not be encrypted and the file itself must be protected carefully.

When using Mozilla NSS, this directive specifies the name of a file that contains the password for the
key for the certificate specified with TLSCertificateFile. The modutil command can be used
to turn off password protection for the cert/key database. For example, if
TLSCACertificatePath specifes /etc/openldap/certdb as the location of the cert/key database,
use modutil to change the password to the empty string:

 modutil -dbdir /etc/openldap/certdb -changepw 'NSS Certificate DB'

You must have the old password, if any. Ignore the WARNING about the running
browser. Press 'Enter' for the new password.

16.2.1.5. TLSCipherSuite <cipher-suite-spec>

This directive configures what ciphers will be accepted and the preference order.
<cipher-suite-spec> should be a cipher specification for OpenSSL. You can use the command

 openssl ciphers -v ALL

to obtain a verbose list of available cipher specifications.

Besides the individual cipher names, the specifiers HIGH, MEDIUM, LOW, EXPORT, and EXPORT40
may be helpful, along with TLSv1, SSLv3, and SSLv2.

To obtain the list of ciphers in GnuTLS use:

 gnutls-cli -l

When using Mozilla NSS, the OpenSSL cipher suite specifications are used and translated into the
format used internally by Mozilla NSS. There isn't an easy way to list the cipher suites from the
command line. The authoritative list is in the source code for Mozilla NSS in the file sslinfo.c in the
structure

 static const SSLCipherSuiteInfo suiteInfo[]

16.2.1.6. TLSRandFile <filename>

This directive specifies the file to obtain random bits from when /dev/urandom is not available. If
the system provides /dev/urandom then this option is not needed, otherwise a source of random
data must be configured. Some systems (e.g. Linux) provide /dev/urandom by default, while
others (e.g. Solaris) require the installation of a patch to provide it, and others may not support it at
all. In the latter case, EGD or PRNGD should be installed, and this directive should specify the name
of the EGD/PRNGD socket. The environment variable RANDFILE can also be used to specify the
filename. Also, in the absence of these options, the .rnd file in the slapd user's home directory may
be used if it exists. To use the .rnd file, just create the file and copy a few hundred bytes of arbitrary
data into the file. The file is only used to provide a seed for the pseudo-random number generator, and
it doesn't need very much data to work.

This directive is ignored with GnuTLS and Mozilla NSS.

OpenLDAP Software 2.4 Administrator's Guide

16.2.1. Server Configuration 150

16.2.1.7. TLSEphemeralDHParamFile <filename>

This directive specifies the file that contains parameters for Diffie-Hellman ephemeral key exchange.
This is required in order to use a DSA certificate on the server side (i.e.
TLSCertificateKeyFile points to a DSA key). Multiple sets of parameters can be included in
the file; all of them will be processed. Parameters can be generated using the following command

 openssl dhparam [-dsaparam] -out <filename> <numbits>

This directive is ignored with GnuTLS and Mozilla NSS.

16.2.1.8. TLSVerifyClient { never | allow | try | demand }

This directive specifies what checks to perform on client certificates in an incoming TLS session, if
any. This option is set to never by default, in which case the server never asks the client for a
certificate. With a setting of allow the server will ask for a client certificate; if none is provided the
session proceeds normally. If a certificate is provided but the server is unable to verify it, the
certificate is ignored and the session proceeds normally, as if no certificate had been provided. With a
setting of try the certificate is requested, and if none is provided, the session proceeds normally. If a
certificate is provided and it cannot be verified, the session is immediately terminated. With a setting
of demand the certificate is requested and a valid certificate must be provided, otherwise the session
is immediately terminated.

Note: The server must request a client certificate in order to use the SASL EXTERNAL
authentication mechanism with a TLS session. As such, a non-default TLSVerifyClient setting
must be configured before SASL EXTERNAL authentication may be attempted, and the SASL
EXTERNAL mechanism will only be offered to the client if a valid client certificate was received.

16.2.2. Client Configuration

Most of the client configuration directives parallel the server directives. The names of the directives
are different, and they go into ldap.conf(5) instead of slapd.conf(5), but their functionality is mostly
the same. Also, while most of these options may be configured on a system-wide basis, they may all
be overridden by individual users in their .ldaprc files.

The LDAP Start TLS operation is used in LDAP to initiate TLS negotiation. All OpenLDAP
command line tools support a -Z and -ZZ flag to indicate whether a Start TLS operation is to be
issued. The latter flag indicates that the tool is to cease processing if TLS cannot be started while the
former allows the command to continue.

In LDAPv2 environments, TLS is normally started using the LDAP Secure URI scheme
(ldaps://) instead of the normal LDAP URI scheme (ldap://). OpenLDAP command line tools
allow either scheme to used with the -H flag and with the URI ldap.conf(5) option.

16.2.2.1. TLS_CACERT <filename>

This is equivalent to the server's TLSCACertificateFile option. As noted in the TLS
Configuration section, a client typically may need to know about more CAs than a server, but
otherwise the same considerations apply.

OpenLDAP Software 2.4 Administrator's Guide

16.2.1. Server Configuration 151

16.2.2.2. TLS_CACERTDIR <path>

This is equivalent to the server's TLSCACertificatePath option. The specified directory must
be managed with the OpenSSL c_rehash utility as well. If using Mozilla NSS, <path> may contain a
cert/key database.

16.2.2.3. TLS_CERT <filename>

This directive specifies the file that contains the client certificate. This is a user-only directive and can
only be specified in a user's .ldaprc file.

When using Mozilla NSS, if using a cert/key database (specified with TLS_CACERTDIR), this
directive specifies the name of the certificate to use:

 TLS_CERT Certificate for Sam Carter

If using a token other than the internal built in token, specify the
token name first, followed by a colon:

 TLS_CERT my hardware device:Certificate for Sam Carter

Use certutil -L to list the certificates by name:

 certutil -d /path/to/certdbdir -L

16.2.2.4. TLS_KEY <filename>

This directive specifies the file that contains the private key that matches the certificate stored in the
TLS_CERT file. The same constraints mentioned for TLSCertificateKeyFile apply here. This
is also a user-only directive.

16.2.2.5. TLS_RANDFILE <filename>

This directive is the same as the server's TLSRandFile option.

16.2.2.6. TLS_REQCERT { never | allow | try | demand }

This directive is equivalent to the server's TLSVerifyClient option. However, for clients the
default value is demand and there generally is no good reason to change this setting.

OpenLDAP Software 2.4 Administrator's Guide

16.2.2. Client Configuration 152

17. Constructing a Distributed Directory
Service
For many sites, running one or more slapd(8) that hold an entire subtree of data is sufficient. But often
it is desirable to have one slapd refer to other directory services for a certain part of the tree (which
may or may not be running slapd).

slapd supports subordinate and superior knowledge information. Subordinate knowledge information
is held in referral objects (RFC3296).

17.1. Subordinate Knowledge Information

Subordinate knowledge information may be provided to delegate a subtree. Subordinate knowledge
information is maintained in the directory as a special referral object at the delegate point. The
referral object acts as a delegation point, gluing two services together. This mechanism allows for
hierarchical directory services to be constructed.

A referral object has a structural object class of referral and has the same Distinguished Name as
the delegated subtree. Generally, the referral object will also provide the auxiliary object class
extensibleObject. This allows the entry to contain appropriate Relative Distinguished Name
values. This is best demonstrated by example.

If the server a.example.net holds dc=example,dc=net and wished to delegate the subtree
ou=subtree,dc=example,dc=net to another server b.example.net, the following named
referral object would be added to a.example.net:

 dn: dc=subtree,dc=example,dc=net
 objectClass: referral
 objectClass: extensibleObject
 dc: subtree
 ref: ldap://b.example.net/dc=subtree,dc=example,dc=net

The server uses this information to generate referrals and search continuations to subordinate servers.

For those familiar with X.500, a named referral object is similar to an X.500 knowledge reference
held in a subr DSE.

17.2. Superior Knowledge Information

Superior knowledge information may be specified using the referral directive. The value is a list
of URIs referring to superior directory services. For servers without immediate superiors, such as for
a.example.net in the example above, the server can be configured to use a directory service with
global knowledge, such as the OpenLDAP Root Service
(http://www.openldap.org/faq/index.cgi?file=393).

 referral ldap://root.openldap.org/

However, as a.example.net is the immediate superior to b.example.net, b.example.net
would be configured as follows:

17. Constructing a Distributed Directory Service 153

http://www.rfc-editor.org/rfc/rfc3296.txt
http://www.openldap.org/faq/index.cgi?file=393

 referral ldap://a.example.net/

The server uses this information to generate referrals for operations acting upon entries not within or
subordinate to any of the naming contexts held by the server.

For those familiar with X.500, this use of the ref attribute is similar to an X.500 knowledge
reference held in a Supr DSE.

17.3. The ManageDsaIT Control

Adding, modifying, and deleting referral objects is generally done using ldapmodify(1) or similar
tools which support the ManageDsaIT control. The ManageDsaIT control informs the server that you
intend to manage the referral object as a regular entry. This keeps the server from sending a referral
result for requests which interrogate or update referral objects.

The ManageDsaIT control should not be specified when managing regular entries.

The -M option of ldapmodify(1) (and other tools) enables ManageDsaIT. For example:

 ldapmodify -M -f referral.ldif -x -D "cn=Manager,dc=example,dc=net" -W

or with ldapsearch(1):

 ldapsearch -M -b "dc=example,dc=net" -x "(objectclass=referral)" '*' ref

Note: the ref attribute is operational and must be explicitly requested when desired in search results.

Note: the use of referrals to construct a Distributed Directory Service is extremely clumsy and not
well supported by common clients. If an existing installation has already been built using referrals, the
use of the chain overlay to hide the referrals will greatly improve the usability of the Directory
system. A better approach would be to use explicitly defined local and proxy databases in subordinate
configurations to provide a seamless view of the Distributed Directory.

Note: LDAP operations, even subtree searches, normally access only one database. That can be
changed by gluing databases together with the subordinate/olcSubordinate keyword. Please see
slapd.conf(5) and slapd-config(5).

OpenLDAP Software 2.4 Administrator's Guide

17.2. Superior Knowledge Information 154

18. Replication
Replicated directories are a fundamental requirement for delivering a resilient enterprise deployment.

OpenLDAP has various configuration options for creating a replicated directory. In previous releases,
replication was discussed in terms of a master server and some number of slave servers. A master
accepted directory updates from other clients, and a slave only accepted updates from a (single)
master. The replication structure was rigidly defined and any particular database could only fulfill a
single role, either master or slave.

As OpenLDAP now supports a wide variety of replication topologies, these terms have been
deprecated in favor of provider and consumer: A provider replicates directory updates to consumers;
consumers receive replication updates from providers. Unlike the rigidly defined master/slave
relationships, provider/consumer roles are quite fluid: replication updates received in a consumer can
be further propagated by that consumer to other servers, so a consumer can also act simultaneously as
a provider. Also, a consumer need not be an actual LDAP server; it may be just an LDAP client.

The following sections will describe the replication technology and discuss the various replication
options that are available.

18.1. Replication Technology

18.1.1. LDAP Sync Replication

The LDAP Sync Replication engine, syncrepl for short, is a consumer-side replication engine that
enables the consumer LDAP server to maintain a shadow copy of a DIT fragment. A syncrepl engine
resides at the consumer and executes as one of the slapd(8) threads. It creates and maintains a
consumer replica by connecting to the replication provider to perform the initial DIT content load
followed either by periodic content polling or by timely updates upon content changes.

Syncrepl uses the LDAP Content Synchronization protocol (or LDAP Sync for short) as the replica
synchronization protocol. LDAP Sync provides a stateful replication which supports both pull-based
and push-based synchronization and does not mandate the use of a history store. In pull-based
replication the consumer periodically polls the provider for updates. In push-based replication the
consumer listens for updates that are sent by the provider in realtime. Since the protocol does not
require a history store, the provider does not need to maintain any log of updates it has received (Note
that the syncrepl engine is extensible and additional replication protocols may be supported in the
future.).

Syncrepl keeps track of the status of the replication content by maintaining and exchanging
synchronization cookies. Because the syncrepl consumer and provider maintain their content status,
the consumer can poll the provider content to perform incremental synchronization by asking for the
entries required to make the consumer replica up-to-date with the provider content. Syncrepl also
enables convenient management of replicas by maintaining replica status. The consumer replica can
be constructed from a consumer-side or a provider-side backup at any synchronization status.
Syncrepl can automatically resynchronize the consumer replica up-to-date with the current provider
content.

18. Replication 155

http://www.openldap.org/

Syncrepl supports both pull-based and push-based synchronization. In its basic refreshOnly
synchronization mode, the provider uses pull-based synchronization where the consumer servers need
not be tracked and no history information is maintained. The information required for the provider to
process periodic polling requests is contained in the synchronization cookie of the request itself. To
optimize the pull-based synchronization, syncrepl utilizes the present phase of the LDAP Sync
protocol as well as its delete phase, instead of falling back on frequent full reloads. To further
optimize the pull-based synchronization, the provider can maintain a per-scope session log as a
history store. In its refreshAndPersist mode of synchronization, the provider uses a push-based
synchronization. The provider keeps track of the consumer servers that have requested a persistent
search and sends them necessary updates as the provider replication content gets modified.

With syncrepl, a consumer server can create a replica without changing the provider's configurations
and without restarting the provider server, if the consumer server has appropriate access privileges for
the DIT fragment to be replicated. The consumer server can stop the replication also without the need
for provider-side changes and restart.

Syncrepl supports partial, sparse, and fractional replications. The shadow DIT fragment is defined by
a general search criteria consisting of base, scope, filter, and attribute list. The replica content is also
subject to the access privileges of the bind identity of the syncrepl replication connection.

18.1.1.1. The LDAP Content Synchronization Protocol

The LDAP Sync protocol allows a client to maintain a synchronized copy of a DIT fragment. The
LDAP Sync operation is defined as a set of controls and other protocol elements which extend the
LDAP search operation. This section introduces the LDAP Content Sync protocol only briefly. For
more information, refer to RFC4533.

The LDAP Sync protocol supports both polling and listening for changes by defining two respective
synchronization operations: refreshOnly and refreshAndPersist. Polling is implemented by the
refreshOnly operation. The consumer polls the provider using an LDAP Search request with an LDAP
Sync control attached. The consumer copy is synchronized to the provider copy at the time of polling
using the information returned in the search. The provider finishes the search operation by returning
SearchResultDone at the end of the search operation as in the normal search. Listening is
implemented by the refreshAndPersist operation. As the name implies, it begins with a search, like
refreshOnly. Instead of finishing the search after returning all entries currently matching the search
criteria, the synchronization search remains persistent in the provider. Subsequent updates to the
synchronization content in the provider cause additional entry updates to be sent to the consumer.

The refreshOnly operation and the refresh stage of the refreshAndPersist operation can be performed
with a present phase or a delete phase.

In the present phase, the provider sends the consumer the entries updated within the search scope
since the last synchronization. The provider sends all requested attributes, be they changed or not, of
the updated entries. For each unchanged entry which remains in the scope, the provider sends a
present message consisting only of the name of the entry and the synchronization control representing
state present. The present message does not contain any attributes of the entry. After the consumer
receives all update and present entries, it can reliably determine the new consumer copy by adding the
entries added to the provider, by replacing the entries modified at the provider, and by deleting entries
in the consumer copy which have not been updated nor specified as being present at the provider.

OpenLDAP Software 2.4 Administrator's Guide

18.1.1. LDAP Sync Replication 156

http://www.rfc-editor.org/rfc/rfc4533.txt

The transmission of the updated entries in the delete phase is the same as in the present phase. The
provider sends all the requested attributes of the entries updated within the search scope since the last
synchronization to the consumer. In the delete phase, however, the provider sends a delete message
for each entry deleted from the search scope, instead of sending present messages. The delete message
consists only of the name of the entry and the synchronization control representing state delete. The
new consumer copy can be determined by adding, modifying, and removing entries according to the
synchronization control attached to the SearchResultEntry message.

In the case that the LDAP Sync provider maintains a history store and can determine which entries are
scoped out of the consumer copy since the last synchronization time, the provider can use the delete
phase. If the provider does not maintain any history store, cannot determine the scoped-out entries
from the history store, or the history store does not cover the outdated synchronization state of the
consumer, the provider should use the present phase. The use of the present phase is much more
efficient than a full content reload in terms of the synchronization traffic. To reduce the
synchronization traffic further, the LDAP Sync protocol also provides several optimizations such as
the transmission of the normalized entryUUIDs and the transmission of multiple entryUUIDs in a
single syncIdSet message.

At the end of the refreshOnly synchronization, the provider sends a synchronization cookie to the
consumer as a state indicator of the consumer copy after the synchronization is completed. The
consumer will present the received cookie when it requests the next incremental synchronization to
the provider.

When refreshAndPersist synchronization is used, the provider sends a synchronization cookie at the
end of the refresh stage by sending a Sync Info message with refreshDone=TRUE. It also sends a
synchronization cookie by attaching it to SearchResultEntry messages generated in the persist stage of
the synchronization search. During the persist stage, the provider can also send a Sync Info message
containing the synchronization cookie at any time the provider wants to update the consumer-side
state indicator.

In the LDAP Sync protocol, entries are uniquely identified by the entryUUID attribute value. It can
function as a reliable identifier of the entry. The DN of the entry, on the other hand, can be changed
over time and hence cannot be considered as the reliable identifier. The entryUUID is attached to
each SearchResultEntry or SearchResultReference as a part of the synchronization control.

18.1.1.2. Syncrepl Details

The syncrepl engine utilizes both the refreshOnly and the refreshAndPersist operations of the LDAP
Sync protocol. If a syncrepl specification is included in a database definition, slapd(8) launches a
syncrepl engine as a slapd(8) thread and schedules its execution. If the refreshOnly operation is
specified, the syncrepl engine will be rescheduled at the interval time after a synchronization
operation is completed. If the refreshAndPersist operation is specified, the engine will remain active
and process the persistent synchronization messages from the provider.

The syncrepl engine utilizes both the present phase and the delete phase of the refresh
synchronization. It is possible to configure a session log in the provider which stores the
entryUUIDs of a finite number of entries deleted from a database. Multiple replicas share the same
session log. The syncrepl engine uses the delete phase if the session log is present and the state of the
consumer server is recent enough that no session log entries are truncated after the last
synchronization of the client. The syncrepl engine uses the present phase if no session log is
configured for the replication content or if the consumer replica is too outdated to be covered by the

OpenLDAP Software 2.4 Administrator's Guide

18.1.1. LDAP Sync Replication 157

session log. The current design of the session log store is memory based, so the information contained
in the session log is not persistent over multiple provider invocations. It is not currently supported to
access the session log store by using LDAP operations. It is also not currently supported to impose
access control to the session log.

As a further optimization, even in the case the synchronization search is not associated with any
session log, no entries will be transmitted to the consumer server when there has been no update in the
replication context.

The syncrepl engine, which is a consumer-side replication engine, can work with any backends. The
LDAP Sync provider can be configured as an overlay on any backend, but works best with the
back-bdb or back-hdb backend.

The LDAP Sync provider maintains a contextCSN for each database as the current synchronization
state indicator of the provider content. It is the largest entryCSN in the provider context such that no
transactions for an entry having smaller entryCSN value remains outstanding. The contextCSN
could not just be set to the largest issued entryCSN because entryCSN is obtained before a
transaction starts and transactions are not committed in the issue order.

The provider stores the contextCSN of a context in the contextCSN attribute of the context
suffix entry. The attribute is not written to the database after every update operation though; instead it
is maintained primarily in memory. At database start time the provider reads the last saved
contextCSN into memory and uses the in-memory copy exclusively thereafter. By default, changes
to the contextCSN as a result of database updates will not be written to the database until the server
is cleanly shut down. A checkpoint facility exists to cause the contextCSN to be written out more
frequently if desired.

Note that at startup time, if the provider is unable to read a contextCSN from the suffix entry, it
will scan the entire database to determine the value, and this scan may take quite a long time on a
large database. When a contextCSN value is read, the database will still be scanned for any
entryCSN values greater than it, to make sure the contextCSN value truly reflects the greatest
committed entryCSN in the database. On databases which support inequality indexing, setting an eq
index on the entryCSN attribute and configuring contextCSN checkpoints will greatly speed up this
scanning step.

If no contextCSN can be determined by reading and scanning the database, a new value will be
generated. Also, if scanning the database yielded a greater entryCSN than was previously recorded
in the suffix entry's contextCSN attribute, a checkpoint will be immediately written with the new
value.

The consumer also stores its replica state, which is the provider's contextCSN received as a
synchronization cookie, in the contextCSN attribute of the suffix entry. The replica state
maintained by a consumer server is used as the synchronization state indicator when it performs
subsequent incremental synchronization with the provider server. It is also used as a provider-side
synchronization state indicator when it functions as a secondary provider server in a cascading
replication configuration. Since the consumer and provider state information are maintained in the
same location within their respective databases, any consumer can be promoted to a provider (and
vice versa) without any special actions.

Because a general search filter can be used in the syncrepl specification, some entries in the context
may be omitted from the synchronization content. The syncrepl engine creates a glue entry to fill in

OpenLDAP Software 2.4 Administrator's Guide

18.1.1. LDAP Sync Replication 158

the holes in the replica context if any part of the replica content is subordinate to the holes. The glue
entries will not be returned in the search result unless ManageDsaIT control is provided.

Also as a consequence of the search filter used in the syncrepl specification, it is possible for a
modification to remove an entry from the replication scope even though the entry has not been deleted
on the provider. Logically the entry must be deleted on the consumer but in refreshOnly mode the
provider cannot detect and propagate this change without the use of the session log on the provider.

For configuration, please see the Syncrepl section.

18.2. Deployment Alternatives

While the LDAP Sync specification only defines a narrow scope for replication, the OpenLDAP
implementation is extremely flexible and supports a variety of operating modes to handle other
scenarios not explicitly addressed in the spec.

18.2.1. Delta-syncrepl replication

Disadvantages of LDAP Sync replication:•

LDAP Sync replication is an object-based replication mechanism. When any attribute value in a
replicated object is changed on the provider, each consumer fetches and processes the complete
changed object, including both the changed and unchanged attribute values during replication.
One advantage of this approach is that when multiple changes occur to a single object, the precise
sequence of those changes need not be preserved; only the final state of the entry is significant. But
this approach may have drawbacks when the usage pattern involves single changes to multiple
objects.

For example, suppose you have a database consisting of 100,000 objects of 1 KB each. Further,
suppose you routinely run a batch job to change the value of a single two-byte attribute value that
appears in each of the 100,000 objects on the master. Not counting LDAP and TCP/IP protocol
overhead, each time you run this job each consumer will transfer and process 1 GB of data to process
200KB of changes!

99.98% of the data that is transmitted and processed in a case like this will be redundant, since it
represents values that did not change. This is a waste of valuable transmission and processing
bandwidth and can cause an unacceptable replication backlog to develop. While this situation is
extreme, it serves to demonstrate a very real problem that is encountered in some LDAP deployments.

Where Delta-syncrepl comes in:•

Delta-syncrepl, a changelog-based variant of syncrepl, is designed to address situations like the one
described above. Delta-syncrepl works by maintaining a changelog of a selectable depth on the
provider. The replication consumer checks the changelog for the changes it needs and, as long as the
changelog contains the needed changes, the consumer fetches the changes from the changelog and
applies them to its database. If, however, a replica is too far out of sync (or completely empty),
conventional syncrepl is used to bring it up to date and replication then switches back to the
delta-syncrepl mode.

For configuration, please see the Delta-syncrepl section.

OpenLDAP Software 2.4 Administrator's Guide

18.2. Deployment Alternatives 159

18.2.2. N-Way Multi-Master replication

Multi-Master replication is a replication technique using Syncrepl to replicate data to multiple
provider ("Master") Directory servers.

18.2.2.1. Valid Arguments for Multi-Master replication

If any provider fails, other providers will continue to accept updates•
Avoids a single point of failure•
Providers can be located in several physical sites i.e. distributed across the network/globe.•
Good for Automatic failover/High Availability•

18.2.2.2. Invalid Arguments for Multi-Master replication

(These are often claimed to be advantages of Multi-Master replication but those claims are false):

It has NOTHING to do with load balancing•
Providers must propagate writes to all the other servers, which means the network traffic and
write load spreads across all of the servers the same as for single-master.

•

Server utilization and performance are at best identical for Multi-Master and Single-Master
replication; at worst Single-Master is superior because indexing can be tuned differently to
optimize for the different usage patterns between the provider and the consumers.

•

18.2.2.3. Arguments against Multi-Master replication

Breaks the data consistency guarantees of the directory model•
http://www.openldap.org/faq/data/cache/1240.html•
If connectivity with a provider is lost because of a network partition, then "automatic
failover" can just compound the problem

•

Typically, a particular machine cannot distinguish between losing contact with a peer because
that peer crashed, or because the network link has failed

•

If a network is partitioned and multiple clients start writing to each of the "masters" then
reconciliation will be a pain; it may be best to simply deny writes to the clients that are
partitioned from the single provider

•

For configuration, please see the N-Way Multi-Master section below

18.2.3. MirrorMode replication

MirrorMode is a hybrid configuration that provides all of the consistency guarantees of single-master
replication, while also providing the high availability of multi-master. In MirrorMode two providers
are set up to replicate from each other (as a multi-master configuration), but an external frontend is
employed to direct all writes to only one of the two servers. The second provider will only be used for
writes if the first provider crashes, at which point the frontend will switch to directing all writes to the
second provider. When a crashed provider is repaired and restarted it will automatically catch up to
any changes on the running provider and resync.

OpenLDAP Software 2.4 Administrator's Guide

18.2.2. N-Way Multi-Master replication 160

http://www.openldap.org/faq/data/cache/1240.html

18.2.3.1. Arguments for MirrorMode

Provides a high-availability (HA) solution for directory writes (replicas handle reads)•
As long as one provider is operational, writes can safely be accepted•
Provider nodes replicate from each other, so they are always up to date and can be ready to
take over (hot standby)

•

Syncrepl also allows the provider nodes to re-synchronize after any downtime•

18.2.3.2. Arguments against MirrorMode

MirrorMode is not what is termed as a Multi-Master solution. This is because writes have to
go to just one of the mirror nodes at a time

•

MirrorMode can be termed as Active-Active Hot-Standby, therefore an external server (slapd
in proxy mode) or device (hardware load balancer) is needed to manage which provider is
currently active

•

Backups are managed slightly differently
If backing up the Berkeley database itself and periodically backing up the transaction
log files, then the same member of the mirror pair needs to be used to collect logfiles
until the next database backup is taken

♦

To ensure that both databases are consistent, each database might have to be put in
read-only mode while performing a slapcat.

♦

•

Delta-Syncrepl is not yet supported•

For configuration, please see the MirrorMode section below

18.2.4. Syncrepl Proxy Mode

While the LDAP Sync protocol supports both pull- and push-based replication, the push mode
(refreshAndPersist) must still be initiated from the consumer before the provider can begin pushing
changes. In some network configurations, particularly where firewalls restrict the direction in which
connections can be made, a provider-initiated push mode may be needed.

This mode can be configured with the aid of the LDAP Backend (Backends and slapd-ldap(8)).
Instead of running the syncrepl engine on the actual consumer, a slapd-ldap proxy is set up near (or
collocated with) the provider that points to the consumer, and the syncrepl engine runs on the proxy.

For configuration, please see the Syncrepl Proxy section.

18.2.4.1. Replacing Slurpd

The old slurpd mechanism only operated in provider-initiated push mode. Slurpd replication was
deprecated in favor of Syncrepl replication and has been completely removed from OpenLDAP 2.4.

The slurpd daemon was the original replication mechanism inherited from UMich's LDAP and
operated in push mode: the master pushed changes to the slaves. It was replaced for many reasons, in
brief:

It was not reliable
It was extremely sensitive to the ordering of records in the replog♦
It could easily go out of sync, at which point manual intervention was required to♦

•

OpenLDAP Software 2.4 Administrator's Guide

18.2.3. MirrorMode replication 161

resync the slave database with the master directory
It wasn't very tolerant of unavailable servers. If a slave went down for a long time, the
replog could grow to a size that was too large for slurpd to process

♦

It only worked in push mode•
It required stopping and restarting the master to add new slaves•
It only supported single master replication•

Syncrepl has none of those weaknesses:

Syncrepl is self-synchronizing; you can start with a consumer database in any state from
totally empty to fully synced and it will automatically do the right thing to achieve and
maintain synchronization

It is completely insensitive to the order in which changes occur♦
It guarantees convergence between the consumer and the provider content without
manual intervention

♦

It can resynchronize regardless of how long a consumer stays out of contact with the
provider

♦

•

Syncrepl can operate in either direction•
Consumers can be added at any time without touching anything on the provider•
Multi-master replication is supported•

18.3. Configuring the different replication types

18.3.1. Syncrepl

18.3.1.1. Syncrepl configuration

Because syncrepl is a consumer-side replication engine, the syncrepl specification is defined in
slapd.conf(5) of the consumer server, not in the provider server's configuration file. The initial loading
of the replica content can be performed either by starting the syncrepl engine with no synchronization
cookie or by populating the consumer replica by loading an LDIF file dumped as a backup at the
provider.

When loading from a backup, it is not required to perform the initial loading from the up-to-date
backup of the provider content. The syncrepl engine will automatically synchronize the initial
consumer replica to the current provider content. As a result, it is not required to stop the provider
server in order to avoid the replica inconsistency caused by the updates to the provider content during
the content backup and loading process.

When replicating a large scale directory, especially in a bandwidth constrained environment, it is
advised to load the consumer replica from a backup instead of performing a full initial load using
syncrepl.

18.3.1.2. Set up the provider slapd

The provider is implemented as an overlay, so the overlay itself must first be configured in
slapd.conf(5) before it can be used. The provider has only two configuration directives, for setting
checkpoints on the contextCSN and for configuring the session log. Because the LDAP Sync
search is subject to access control, proper access control privileges should be set up for the replicated
content.

OpenLDAP Software 2.4 Administrator's Guide

18.2.4. Syncrepl Proxy Mode 162

The contextCSN checkpoint is configured by the

 syncprov-checkpoint <ops> <minutes>

directive. Checkpoints are only tested after successful write operations. If <ops> operations or more
than <minutes> time has passed since the last checkpoint, a new checkpoint is performed.

The session log is configured by the

 syncprov-sessionlog <size>

directive, where <size> is the maximum number of session log entries the session log can record.
When a session log is configured, it is automatically used for all LDAP Sync searches within the
database.

Note that using the session log requires searching on the entryUUID attribute. Setting an eq index on
this attribute will greatly benefit the performance of the session log on the provider.

A more complete example of the slapd.conf(5) content is thus:

 database bdb
 suffix dc=Example,dc=com
 rootdn dc=Example,dc=com
 directory /var/ldap/db
 index objectclass,entryCSN,entryUUID eq

 overlay syncprov
 syncprov-checkpoint 100 10
 syncprov-sessionlog 100

18.3.1.3. Set up the consumer slapd

The syncrepl replication is specified in the database section of slapd.conf(5) for the replica context.
The syncrepl engine is backend independent and the directive can be defined with any database type.

 database hdb
 suffix dc=Example,dc=com
 rootdn dc=Example,dc=com
 directory /var/ldap/db
 index objectclass,entryCSN,entryUUID eq

 syncrepl rid=123
 provider=ldap://provider.example.com:389
 type=refreshOnly
 interval=01:00:00:00
 searchbase="dc=example,dc=com"
 filter="(objectClass=organizationalPerson)"
 scope=sub
 attrs="cn,sn,ou,telephoneNumber,title,l"
 schemachecking=off
 bindmethod=simple
 binddn="cn=syncuser,dc=example,dc=com"
 credentials=secret

In this example, the consumer will connect to the provider slapd(8) at port 389 of
ldap://provider.example.com to perform a polling (refreshOnly) mode of synchronization

OpenLDAP Software 2.4 Administrator's Guide

18.3.1. Syncrepl 163

once a day. It will bind as cn=syncuser,dc=example,dc=com using simple authentication
with password "secret". Note that the access control privilege of
cn=syncuser,dc=example,dc=com should be set appropriately in the provider to retrieve the
desired replication content. Also the search limits must be high enough on the provider to allow the
syncuser to retrieve a complete copy of the requested content. The consumer uses the rootdn to write
to its database so it always has full permissions to write all content.

The synchronization search in the above example will search for the entries whose objectClass is
organizationalPerson in the entire subtree rooted at dc=example,dc=com. The requested attributes
are cn, sn, ou, telephoneNumber, title, and l. The schema checking is turned off, so that the
consumer slapd(8) will not enforce entry schema checking when it processes updates from the
provider slapd(8).

For more detailed information on the syncrepl directive, see the syncrepl section of The slapd
Configuration File chapter of this admin guide.

18.3.1.4. Start the provider and the consumer slapd

The provider slapd(8) is not required to be restarted. contextCSN is automatically generated as
needed: it might be originally contained in the LDIF file, generated by slapadd (8), generated upon
changes in the context, or generated when the first LDAP Sync search arrives at the provider. If an
LDIF file is being loaded which did not previously contain the contextCSN, the -w option should be
used with slapadd (8) to cause it to be generated. This will allow the server to startup a little quicker
the first time it runs.

When starting a consumer slapd(8), it is possible to provide a synchronization cookie as the -c cookie
command line option in order to start the synchronization from a specific state. The cookie is a
comma separated list of name=value pairs. Currently supported syncrepl cookie fields are csn=<csn>
and rid=<rid>. <csn> represents the current synchronization state of the consumer replica. <rid>
identifies a consumer replica locally within the consumer server. It is used to relate the cookie to the
syncrepl definition in slapd.conf(5) which has the matching replica identifier. The <rid> must have
no more than 3 decimal digits. The command line cookie overrides the synchronization cookie stored
in the consumer replica database.

18.3.2. Delta-syncrepl

18.3.2.1. Delta-syncrepl Provider configuration

Setting up delta-syncrepl requires configuration changes on both the master and replica servers:

 # Give the replica DN unlimited read access. This ACL needs to be
 # merged with other ACL statements, and/or moved within the scope
 # of a database. The "by * break" portion causes evaluation of
 # subsequent rules. See slapd.access(5) for details.
 access to *
 by dn.base="cn=replicator,dc=symas,dc=com" read
 by * break

 # Set the module path location
 modulepath /opt/symas/lib/openldap

 # Load the hdb backend
 moduleload back_hdb.la

OpenLDAP Software 2.4 Administrator's Guide

18.3.1. Syncrepl 164

 # Load the accesslog overlay
 moduleload accesslog.la

 #Load the syncprov overlay
 moduleload syncprov.la

 # Accesslog database definitions
 database hdb
 suffix cn=accesslog
 directory /db/accesslog
 rootdn cn=accesslog
 index default eq
 index entryCSN,objectClass,reqEnd,reqResult,reqStart

 overlay syncprov
 syncprov-nopresent TRUE
 syncprov-reloadhint TRUE

 # Let the replica DN have limitless searches
 limits dn.exact="cn=replicator,dc=symas,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited

 # Primary database definitions
 database hdb
 suffix "dc=symas,dc=com"
 rootdn "cn=manager,dc=symas,dc=com"

 ## Whatever other configuration options are desired

 # syncprov specific indexing
 index entryCSN eq
 index entryUUID eq

 # syncrepl Provider for primary db
 overlay syncprov
 syncprov-checkpoint 1000 60

 # accesslog overlay definitions for primary db
 overlay accesslog
 logdb cn=accesslog
 logops writes
 logsuccess TRUE
 # scan the accesslog DB every day, and purge entries older than 7 days
 logpurge 07+00:00 01+00:00

 # Let the replica DN have limitless searches
 limits dn.exact="cn=replicator,dc=symas,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited

For more information, always consult the relevant man pages (slapo-accesslog(5) and slapd.conf(5))

18.3.2.2. Delta-syncrepl Consumer configuration

 # Replica database configuration
 database hdb
 suffix "dc=symas,dc=com"
 rootdn "cn=manager,dc=symas,dc=com"

 ## Whatever other configuration bits for the replica, like indexing
 ## that you want

 # syncrepl specific indices

OpenLDAP Software 2.4 Administrator's Guide

18.3.2. Delta-syncrepl 165

 index entryUUID eq

 # syncrepl directives
 syncrepl rid=0
 provider=ldap://ldapmaster.symas.com:389
 bindmethod=simple
 binddn="cn=replicator,dc=symas,dc=com"
 credentials=secret
 searchbase="dc=symas,dc=com"
 logbase="cn=accesslog"
 logfilter="(&(objectClass=auditWriteObject)(reqResult=0))"
 schemachecking=on
 type=refreshAndPersist
 retry="60 +"
 syncdata=accesslog

 # Refer updates to the master
 updateref ldap://ldapmaster.symas.com

The above configuration assumes that you have a replicator identity defined in your database that can
be used to bind to the provider. In addition, all of the databases (primary, replica, and the accesslog
storage database) should also have properly tuned DB_CONFIG files that meet your needs.

18.3.3. N-Way Multi-Master

For the following example we will be using 3 Master nodes. Keeping in line with
test050-syncrepl-multimaster of the OpenLDAP test suite, we will be configuring slapd(8) via
cn=config

This sets up the config database:

 dn: cn=config
 objectClass: olcGlobal
 cn: config
 olcServerID: 1

 dn: olcDatabase={0}config,cn=config
 objectClass: olcDatabaseConfig
 olcDatabase: {0}config
 olcRootPW: secret

second and third servers will have a different olcServerID obviously:

 dn: cn=config
 objectClass: olcGlobal
 cn: config
 olcServerID: 2

 dn: olcDatabase={0}config,cn=config
 objectClass: olcDatabaseConfig
 olcDatabase: {0}config
 olcRootPW: secret

This sets up syncrepl as a provider (since these are all masters):

 dn: cn=module,cn=config
 objectClass: olcModuleList
 cn: module

OpenLDAP Software 2.4 Administrator's Guide

18.3.3. N-Way Multi-Master 166

 olcModulePath: /usr/local/libexec/openldap
 olcModuleLoad: syncprov.la

Now we setup the first Master Node (replace $URI1, $URI2 and $URI3 etc. with your actual ldap
urls):

 dn: cn=config
 changetype: modify
 replace: olcServerID
 olcServerID: 1 $URI1
 olcServerID: 2 $URI2
 olcServerID: 3 $URI3

 dn: olcOverlay=syncprov,olcDatabase={0}config,cn=config
 changetype: add
 objectClass: olcOverlayConfig
 objectClass: olcSyncProvConfig
 olcOverlay: syncprov

 dn: olcDatabase={0}config,cn=config
 changetype: modify
 add: olcSyncRepl
 olcSyncRepl: rid=001 provider=$URI1 binddn="cn=config" bindmethod=simple
 credentials=secret searchbase="cn=config" type=refreshAndPersist
 retry="5 5 300 5" timeout=1
 olcSyncRepl: rid=002 provider=$URI2 binddn="cn=config" bindmethod=simple
 credentials=secret searchbase="cn=config" type=refreshAndPersist
 retry="5 5 300 5" timeout=1
 olcSyncRepl: rid=003 provider=$URI3 binddn="cn=config" bindmethod=simple
 credentials=secret searchbase="cn=config" type=refreshAndPersist
 retry="5 5 300 5" timeout=1
 -
 add: olcMirrorMode
 olcMirrorMode: TRUE

Now start up the Master and a consumer/s, also add the above LDIF to the first consumer, second
consumer etc. It will then replicate cn=config. You now have N-Way Multimaster on the config
database.

We still have to replicate the actual data, not just the config, so add to the master (all active and
configured consumers/masters will pull down this config, as they are all syncing). Also, replace all
${} variables with whatever is applicable to your setup:

 dn: olcDatabase={1}$BACKEND,cn=config
 objectClass: olcDatabaseConfig
 objectClass: olc${BACKEND}Config
 olcDatabase: {1}$BACKEND
 olcSuffix: $BASEDN
 olcDbDirectory: ./db
 olcRootDN: $MANAGERDN
 olcRootPW: $PASSWD
 olcLimits: dn.exact="$MANAGERDN" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited
 olcSyncRepl: rid=004 provider=$URI1 binddn="$MANAGERDN" bindmethod=simple
 credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
 interval=00:00:00:10 retry="5 5 300 5" timeout=1
 olcSyncRepl: rid=005 provider=$URI2 binddn="$MANAGERDN" bindmethod=simple
 credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
 interval=00:00:00:10 retry="5 5 300 5" timeout=1
 olcSyncRepl: rid=006 provider=$URI3 binddn="$MANAGERDN" bindmethod=simple

OpenLDAP Software 2.4 Administrator's Guide

18.3.3. N-Way Multi-Master 167

 credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
 interval=00:00:00:10 retry="5 5 300 5" timeout=1
 olcMirrorMode: TRUE

 dn: olcOverlay=syncprov,olcDatabase={1}${BACKEND},cn=config
 changetype: add
 objectClass: olcOverlayConfig
 objectClass: olcSyncProvConfig
 olcOverlay: syncprov

Note: All of your servers' clocks must be tightly synchronized using e.g. NTP http://www.ntp.org/,
atomic clock, or some other reliable time reference.

Note: As stated in slapd-config(5), URLs specified in olcSyncRepl directives are the URLs of the
servers from which to replicate. These must exactly match the URLs slapd listens on (-h in
Command-Line Options). Otherwise slapd may attempt to replicate from itself, causing a loop.

18.3.4. MirrorMode

MirrorMode configuration is actually very easy. If you have ever setup a normal slapd syncrepl
provider, then the only change is the following two directives:

 mirrormode on
 serverID 1

Note: You need to make sure that the serverID of each mirror node is different and add it as a global
configuration option.

18.3.4.1. Mirror Node Configuration

The first step is to configure the syncrepl provider the same as in the Set up the provider slapd section.

Note: Delta-syncrepl is not yet supported with MirrorMode.

Here's a specific cut down example using LDAP Sync Replication in refreshAndPersist mode:

MirrorMode node 1:

 # Global section
 serverID 1
 # database section

 # syncrepl directive
 syncrepl rid=001
 provider=ldap://ldap-sid2.example.com
 bindmethod=simple
 binddn="cn=mirrormode,dc=example,dc=com"
 credentials=mirrormode
 searchbase="dc=example,dc=com"
 schemachecking=on
 type=refreshAndPersist
 retry="60 +"

OpenLDAP Software 2.4 Administrator's Guide

18.3.4. MirrorMode 168

http://www.ntp.org/

 mirrormode on

MirrorMode node 2:

 # Global section
 serverID 2
 # database section

 # syncrepl directive
 syncrepl rid=001
 provider=ldap://ldap-sid1.example.com
 bindmethod=simple
 binddn="cn=mirrormode,dc=example,dc=com"
 credentials=mirrormode
 searchbase="dc=example,dc=com"
 schemachecking=on
 type=refreshAndPersist
 retry="60 +"

 mirrormode on

It's simple really; each MirrorMode node is setup exactly the same, except that the serverID is
unique, and each consumer is pointed to the other server.

18.3.4.1.1. Failover Configuration

There are generally 2 choices for this; 1. Hardware proxies/load-balancing or dedicated proxy
software, 2. using a Back-LDAP proxy as a syncrepl provider

A typical enterprise example might be:

Figure X.Y: MirrorMode in a Dual Data Center Configuration

OpenLDAP Software 2.4 Administrator's Guide

18.3.4. MirrorMode 169

18.3.4.1.2. Normal Consumer Configuration

This is exactly the same as the Set up the consumer slapd section. It can either setup in normal
syncrepl replication mode, or in delta-syncrepl replication mode.

18.3.4.2. MirrorMode Summary

You will now have a directory architecture that provides all of the consistency guarantees of
single-master replication, while also providing the high availability of multi-master replication.

18.3.5. Syncrepl Proxy

Figure X.Y: Replacing slurpd

The following example is for a self-contained push-based replication solution:

 ###
 # Standard OpenLDAP Master/Provider
 ###

 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/nis.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

 include /usr/local/etc/openldap/slapd.acl

 modulepath /usr/local/libexec/openldap
 moduleload back_hdb.la
 moduleload syncprov.la
 moduleload back_monitor.la

OpenLDAP Software 2.4 Administrator's Guide

18.3.4. MirrorMode 170

 moduleload back_ldap.la

 pidfile /usr/local/var/slapd.pid
 argsfile /usr/local/var/slapd.args

 loglevel sync stats

 database hdb
 suffix "dc=suretecsystems,dc=com"
 directory /usr/local/var/openldap-data

 checkpoint 1024 5
 cachesize 10000
 idlcachesize 10000

 index objectClass eq
 # rest of indexes
 index default sub

 rootdn "cn=admin,dc=suretecsystems,dc=com"
 rootpw testing

 # syncprov specific indexing
 index entryCSN eq
 index entryUUID eq

 # syncrepl Provider for primary db
 overlay syncprov
 syncprov-checkpoint 1000 60

 # Let the replica DN have limitless searches
 limits dn.exact="cn=replicator,dc=suretecsystems,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited

 database monitor

 database config
 rootpw testing

 ##
 # Consumer Proxy that pulls in data via Syncrepl and pushes out via slapd-ldap
 ##

 database ldap
 # ignore conflicts with other databases, as we need to push out to same suffix
 hidden on
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=slapd-ldap"
 uri ldap://localhost:9012/

 lastmod on

 # We don't need any access to this DSA
 restrict all

 acl-bind bindmethod=simple
 binddn="cn=replicator,dc=suretecsystems,dc=com"
 credentials=testing

 syncrepl rid=001
 provider=ldap://localhost:9011/
 binddn="cn=replicator,dc=suretecsystems,dc=com"
 bindmethod=simple

OpenLDAP Software 2.4 Administrator's Guide

18.3.5. Syncrepl Proxy 171

 credentials=testing
 searchbase="dc=suretecsystems,dc=com"
 type=refreshAndPersist
 retry="5 5 300 5"

 overlay syncprov

A replica configuration for this type of setup could be:

 ###
 # Standard OpenLDAP Slave without Syncrepl
 ###

 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/nis.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

 include /usr/local/etc/openldap/slapd.acl

 modulepath /usr/local/libexec/openldap
 moduleload back_hdb.la
 moduleload syncprov.la
 moduleload back_monitor.la
 moduleload back_ldap.la

 pidfile /usr/local/var/slapd.pid
 argsfile /usr/local/var/slapd.args

 loglevel sync stats

 database hdb
 suffix "dc=suretecsystems,dc=com"
 directory /usr/local/var/openldap-slave/data

 checkpoint 1024 5
 cachesize 10000
 idlcachesize 10000

 index objectClass eq
 # rest of indexes
 index default sub

 rootdn "cn=admin,dc=suretecsystems,dc=com"
 rootpw testing

 # Let the replica DN have limitless searches
 limits dn.exact="cn=replicator,dc=suretecsystems,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited

 updatedn "cn=replicator,dc=suretecsystems,dc=com"

 # Refer updates to the master
 updateref ldap://localhost:9011

 database monitor

 database config
 rootpw testing

You can see we use the updatedn directive here and example ACLs
(usr/local/etc/openldap/slapd.acl) for this could be:

OpenLDAP Software 2.4 Administrator's Guide

18.3.5. Syncrepl Proxy 172

 # Give the replica DN unlimited read access. This ACL may need to be
 # merged with other ACL statements.

 access to *
 by dn.base="cn=replicator,dc=suretecsystems,dc=com" write
 by * break

 access to dn.base=""
 by * read

 access to dn.base="cn=Subschema"
 by * read

 access to dn.subtree="cn=Monitor"
 by dn.exact="uid=admin,dc=suretecsystems,dc=com" write
 by users read
 by * none

 access to *
 by self write
 by * read

In order to support more replicas, just add more database ldap sections and increment the syncrepl rid
number accordingly.

Note: You must populate the Master and Slave directories with the same data, unlike when using
normal Syncrepl

If you do not have access to modify the master directory configuration you can configure a standalone
ldap proxy, which might look like:

Figure X.Y: Replacing slurpd with a standalone version

OpenLDAP Software 2.4 Administrator's Guide

18.3.5. Syncrepl Proxy 173

The following configuration is an example of a standalone LDAP Proxy:

 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/nis.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

 include /usr/local/etc/openldap/slapd.acl

 modulepath /usr/local/libexec/openldap
 moduleload syncprov.la
 moduleload back_ldap.la

 ##
 # Consumer Proxy that pulls in data via Syncrepl and pushes out via slapd-ldap
 ##

 database ldap
 # ignore conflicts with other databases, as we need to push out to same suffix
 hidden on
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=slapd-ldap"
 uri ldap://localhost:9012/

 lastmod on

 # We don't need any access to this DSA
 restrict all

 acl-bind bindmethod=simple
 binddn="cn=replicator,dc=suretecsystems,dc=com"
 credentials=testing

 syncrepl rid=001
 provider=ldap://localhost:9011/
 binddn="cn=replicator,dc=suretecsystems,dc=com"
 bindmethod=simple
 credentials=testing
 searchbase="dc=suretecsystems,dc=com"
 type=refreshAndPersist
 retry="5 5 300 5"

 overlay syncprov

As you can see, you can let your imagination go wild using Syncrepl and slapd-ldap(8) tailoring your
replication to fit your specific network topology.

OpenLDAP Software 2.4 Administrator's Guide

18.3.5. Syncrepl Proxy 174

19. Maintenance
System Administration is all about maintenance, so it is only fair that we discuss how to correctly
maintain an OpenLDAP deployment.

19.1. Directory Backups

Backup strategies largely depend on the amount of change in the database and how much of that
change an administrator might be willing to lose in a catastrophic failure. There are two basic
methods that can be used:

1. Backup the Berkeley database itself and periodically back up the transaction log files:

Berkeley DB produces transaction logs that can be used to reconstruct changes from a given point in
time. For example, if an administrator were willing to only lose one hour's worth of changes, they
could take down the server in the middle of the night, copy the Berkeley database files offsite, and
bring the server back online. Then, on an hourly basis, they could force a database checkpoint, capture
the log files that have been generated in the past hour, and copy them offsite. The accumulated log
files, in combination with the previous database backup, could be used with db_recover to reconstruct
the database up to the time the last collection of log files was copied offsite. This method affords good
protection, with minimal space overhead.

2. Periodically run slapcat and back up the LDIF file:

Slapcat can be run while slapd is active. However, one runs the risk of an inconsistent database- not
from the point of slapd, but from the point of the applications using LDAP. For example, if a
provisioning application performed tasks that consisted of several LDAP operations, and the slapcat
took place concurrently with those operations, then there might be inconsistencies in the LDAP
database from the point of view of that provisioning application and applications that depended on it.
One must, therefore, be convinced something like that won't happen. One way to do that would be to
put the database in read-only mode while performing the slapcat. The other disadvantage of this
approach is that the generated LDIF files can be rather large and the accumulation of the day's
backups could add up to a substantial amount of space.

You can use slapcat(8) to generate an LDIF file for each of your slapd(8) back-bdb or back-hdb
databases.

 slapcat -f slapd.conf -b "dc=example,dc=com"

For back-bdb and back-hdb, this command may be ran while slapd(8) is running.

MORE on actual Berkeley DB backups later covering db_recover etc.

19.2. Berkeley DB Logs

Berkeley DB log files grow, and the administrator has to deal with it. The procedure is known as log
file archival or log file rotation.

Note: The actual log file rotation is handled by the Berkeley DB engine.

19. Maintenance 175

Logs of current transactions need to be stored into files so that the database can be recovered in the
event of an application crash. Administrators can change the size limit of a single log file (by default
10MB), and have old log files removed automatically, by setting up DB environment (see below). The
reason Berkeley DB never deletes any log files by default is that the administrator may wish to
backup the log files before removal to make database recovery possible even after a catastrophic
failure, such as file system corruption.

Log file names are log.XXXXXXXXXX (X is a digit). By default the log files are located in the BDB
backend directory. The db_archive tool knows what log files are used in current transactions, and
what are not. Administrators can move unused log files to a backup media, and delete them. To have
them removed automatically, place set_flags DB_LOG_AUTOREMOVE directive in DB_CONFIG.

Note: If the log files are removed automatically, recovery after a catastrophic failure is likely to be
impossible.

The files with names __db.001, __db.002, etc are just shared memory regions (or whatever).
These ARE NOT 'logs', they must be left alone. Don't be afraid of them, they do not grow like logs
do.

To understand the db_archive interface, the reader should refer to chapter 9 of the Berkeley DB
guide. In particular, the following chapters are recommended:

Database and log file archival -
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/archival.html

•

Log file removal -
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/logfile.html

•

Recovery procedures -
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/recovery.html

•

Hot failover -
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/hotfail.html

•

Complete list of Berkeley DB flags -
http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html

•

Advanced installations can use special environment settings to fine-tune some Berkeley DB options
(change the log file limit, etc). This can be done by using the DB_CONFIG file. This magic file can be
created in BDB backend directory set up by slapd.conf(5). More information on this file can be found
in File naming chapter. Specific directives can be found in C Interface, look for DB_ENV->set_XXXX
calls.

Note: options set in DB_CONFIG file override options set by OpenLDAP. Use them with extreme
caution. Do not use them unless You know what You are doing.

The advantages of DB_CONFIG usage can be the following:

to keep data files and log files on different mediums (i.e. disks) to improve performance
and/or reliability;

•

to fine-tune some specific options (such as shared memory region sizes);•
to set the log file limit (please read Log file limits before doing this).•

OpenLDAP Software 2.4 Administrator's Guide

19.2. Berkeley DB Logs 176

http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/archival.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/logfile.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/recovery.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/hotfail.html
http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html

To figure out the best-practice BDB backup scenario, the reader is highly recommended to read the
whole Chapter 9: Berkeley DB Transactional Data Store Applications. This chapter is a set of small
pages with examples in C language. Non-programming people can skip these examples without loss
of knowledge.

19.3. Checkpointing

MORE/TIDY

If you put "checkpoint 1024 5" in slapd.conf (to checkpoint after 1024kb or 5 minutes, for example),
this does not checkpoint every 5 minutes as you may think. The explanation from Howard is:

'In OpenLDAP 2.1 and 2.2 the checkpoint directive acts as follows - *when there is a write
operation*, and more than <check> minutes have occurred since the last checkpoint, perform the
checkpoint. If more than <check> minutes pass after a write without any other write operations
occurring, no checkpoint is performed, so it's possible to lose the last write that occurred.''

In other words, a write operation occurring less than "check" minutes after the last checkpoint will not
be checkpointed until the next write occurs after "check" minutes have passed since the checkpoint.

This has been modified in 2.3 to indeed checkpoint every so often; in the meantime a workaround is
to invoke "db_checkpoint" from a cron script every so often, say 5 minutes.

19.4. Migration

The simplest steps needed to migrate between versions or upgrade, depending on your deployment
type are:

Stop the current server when convenient1.

slapcat the current data out2.

Clear out the current data directory (/usr/local/var/openldap-data/) leaving
DB_CONFIG in place

3.

Perform the software upgrades4.

slapadd the exported data back into the directory5.

Start the server6.

Obviously this doesn't cater for any complicated deployments like MirrorMode or N-Way
Multi-Master, but following the above sections and using either commercial support or community
support should help. Also check the Troubleshooting section.

OpenLDAP Software 2.4 Administrator's Guide

19.3. Checkpointing 177

20. Monitoring
slapd(8) supports an optional LDAP monitoring interface you can use to obtain information regarding
the current state of your slapd instance. For instance, the interface allows you to determine how many
clients are connected to the server currently. The monitoring information is provided by a specialized
backend, the monitor backend. A manual page, slapd-monitor(5) is available.

When the monitoring interface is enabled, LDAP clients may be used to access information provided
by the monitor backend, subject to access and other controls.

When enabled, the monitor backend dynamically generates and returns objects in response to search
requests in the cn=Monitor subtree. Each object contains information about a particular aspect of the
server. The information is held in a combination of user applications and operational attributes. This
information can be access with ldapsearch(1), with any general-purpose LDAP browser, or with
specialized monitoring tools. The Accessing Monitoring Information section provides a brief tutorial
on how to use ldapsearch(1) to access monitoring information, while the Monitor information section
details monitoring information base and its organization.

While support for the monitor backend is included in default builds of slapd(8), this support requires
some configuration to become active. This may be done using either cn=config or slapd.conf(5).
The former is discussed in the Monitor configuration via cn=config section of this of this chapter. The
latter is discussed in the Monitor configuration via slapd.conf(5) section of this chapter. These
sections assume monitor backend is built into slapd (e.g., --enable-monitor=yes, the default).
If the monitor backend was built as a module (e.g., --enable-monitor=mod, this module must
loaded. Loading of modules is discussed in the Configuring slapd and The slapd Configuration File
chapters.

20.1. Monitor configuration via cn=config(5)

This section has yet to be written.

20.2. Monitor configuration via slapd.conf(5)

Configuration of the slapd.conf(5) to support LDAP monitoring is quite simple.

First, ensure core.schema schema configuration file is included by your slapd.conf(5) file. The
monitor backend requires it.

Second, instantiate the monitor backend by adding a database monitor directive below your existing
database sections. For instance:

 database monitor

Lastly, add additional global or database directives as needed.

Like most other database backends, the monitor backend does honor slapd(8) access and other
administrative controls. As some monitor information may be sensitive, it is generally recommend
access to cn=monitor be restricted to directory administrators and their monitoring agents. Adding an
access directive immediately below the database monitor directive is a clear and effective approach

20. Monitoring 178

for controlling access. For instance, the addition of the following access directive immediately below
the database monitor directive restricts access to monitoring information to the specified directory
manager.

 access to *
 by dn.exact="cn=Manager,dc=example,dc=com
 by * none

More information on slapd(8) access controls, see The access Control Directive section of the The
slapd Configuration File chapter and slapd.access(5).

After restarting slapd(8), you are ready to start exploring the monitoring information provided in
cn=config as discussed in the Accessing Monitoring Information section of this chapter.

One can verify slapd(8) is properly configured to provide monitoring information by attempting to
read the cn=monitor object. For instance, if the following ldapsearch(1) command returns the
cn=monitor object (with, as requested, no attributes), it's working.

 ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
 -b 'cn=Monitor' -s base 1.1

Note that unlike general purpose database backends, the database suffix is hardcoded. It's always
cn=Monitor. So no suffix directive should be provided. Also note that general purpose database
backends, the monitor backend cannot be instantiated multiple times. That is, there can only be one
(or zero) occurrences of database monitor in the server's configuration.

20.3. Accessing Monitoring Information

As previously discussed, when enabled, the monitor backend dynamically generates and returns
objects in response to search requests in the cn=Monitor subtree. Each object contains information
about a particular aspect of the server. The information is held in a combination of user applications
and operational attributes. This information can be access with ldapsearch(1), with any
general-purpose LDAP browser, or with specialized monitoring tools.

This section provides a provides a brief tutorial on how to use ldapsearch(1) to access monitoring
information.

To inspect any particular monitor object, one performs search operation on the object with a
baseObject scope and a (objectClass=*) filter. As the monitoring information is contained in a
combination of user applications and operational attributes, the return all user applications attributes
(e.g., '*') and all operational attributes (e.g., '+') should be requested. For instance, to read the
cn=Monitor object itself, the ldapsearch(1) command (modified to fit your configuration) can be
used:

 ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
 -b 'cn=Monitor' -s base '(objectClass=*)' '*' '+'

When run against your server, this should produce output similar to:

 dn: cn=Monitor
 objectClass: monitorServer
 structuralObjectClass: monitorServer

OpenLDAP Software 2.4 Administrator's Guide

20.2. Monitor configuration via slapd.conf(5) 179

 cn: Monitor
 creatorsName:
 modifiersName:
 createTimestamp: 20061208223558Z
 modifyTimestamp: 20061208223558Z
 description: This subtree contains monitoring/managing objects.
 description: This object contains information about this server.
 description: Most of the information is held in operational attributes, which
 must be explicitly requested.
 monitoredInfo: OpenLDAP: slapd 2.4 (Dec 7 2006 17:30:29)
 entryDN: cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: TRUE

To reduce the number of uninteresting attributes returned, one can be more selective when requesting
which attributes are to be returned. For instance, one could request the return of all attributes allowed
by the monitorServer object class (e.g., @objectClass) instead of all user and all operational
attributes:

 ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
 -b 'cn=Monitor' -s base '(objectClass=*)' '@monitorServer'

This limits the output as follows:

 dn: cn=Monitor
 objectClass: monitorServer
 cn: Monitor
 description: This subtree contains monitoring/managing objects.
 description: This object contains information about this server.
 description: Most of the information is held in operational attributes, which
 must be explicitly requested.
 monitoredInfo: OpenLDAP: slapd 2.X (Dec 7 2006 17:30:29)

To return the names of all the monitoring objects, one performs a search of cn=Monitor with
subtree scope and (objectClass=*) filter and requesting no attributes (e.g., 1.1) be returned.

 ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W -b 'cn=Monitor' -s sub 1.1

If you run this command you will discover that there are many objects in the cn=Monitor subtree. The
following section describes some of the commonly available monitoring objects.

20.4. Monitor Information

The monitor backend provides a wealth of information useful for monitoring the slapd(8) contained in
set of monitor objects. Each object contains information about a particular aspect of the server, such
as a backends, a connection, or a thread. Some objects serve as containers for other objects and used
to construct a hierarchy of objects.

In this hierarchy, the most superior object is {cn=Monitor}. While this object primarily serves as a
container for other objects, most of which are containers, this object provides information about this
server. In particular, it provides the slapd(8) version string. Example:

 dn: cn=Monitor
 monitoredInfo: OpenLDAP: slapd 2.X (Dec 7 2006 17:30:29)

OpenLDAP Software 2.4 Administrator's Guide

20.3. Accessing Monitoring Information 180

Note: Examples in this section (and its subsections) have been trimmed to show only key information.

20.4.1. Backends

The cn=Backends,cn=Monitor object, itself, provides a list of available backends. The list of
available backends all builtin backends, as well as backends loaded by modules. For example:

 dn: cn=Backends,cn=Monitor
 monitoredInfo: config
 monitoredInfo: ldif
 monitoredInfo: monitor
 monitoredInfo: bdb
 monitoredInfo: hdb

This indicates the config, ldif, monitor, bdb, and hdb backends are available.

The cn=Backends,cn=Monitor object is also a container for available backend objects. Each
available backend object contains information about a particular backend. For example:

 dn: cn=Backend 0,cn=Backends,cn=Monitor
 monitoredInfo: config
 monitorRuntimeConfig: TRUE
 supportedControl: 2.16.840.1.113730.3.4.2
 seeAlso: cn=Database 0,cn=Databases,cn=Monitor

 dn: cn=Backend 1,cn=Backends,cn=Monitor
 monitoredInfo: ldif
 monitorRuntimeConfig: TRUE
 supportedControl: 2.16.840.1.113730.3.4.2

 dn: cn=Backend 2,cn=Backends,cn=Monitor
 monitoredInfo: monitor
 monitorRuntimeConfig: TRUE
 supportedControl: 2.16.840.1.113730.3.4.2
 seeAlso: cn=Database 2,cn=Databases,cn=Monitor

 dn: cn=Backend 3,cn=Backends,cn=Monitor
 monitoredInfo: bdb
 monitorRuntimeConfig: TRUE
 supportedControl: 1.3.6.1.1.12
 supportedControl: 2.16.840.1.113730.3.4.2
 supportedControl: 1.3.6.1.4.1.4203.666.5.2
 supportedControl: 1.2.840.113556.1.4.319
 supportedControl: 1.3.6.1.1.13.1
 supportedControl: 1.3.6.1.1.13.2
 supportedControl: 1.3.6.1.4.1.4203.1.10.1
 supportedControl: 1.2.840.113556.1.4.1413
 supportedControl: 1.3.6.1.4.1.4203.666.11.7.2
 seeAlso: cn=Database 1,cn=Databases,cn=Monitor

 dn: cn=Backend 4,cn=Backends,cn=Monitor
 monitoredInfo: hdb
 monitorRuntimeConfig: TRUE
 supportedControl: 1.3.6.1.1.12
 supportedControl: 2.16.840.1.113730.3.4.2
 supportedControl: 1.3.6.1.4.1.4203.666.5.2
 supportedControl: 1.2.840.113556.1.4.319
 supportedControl: 1.3.6.1.1.13.1
 supportedControl: 1.3.6.1.1.13.2

OpenLDAP Software 2.4 Administrator's Guide

20.4. Monitor Information 181

 supportedControl: 1.3.6.1.4.1.4203.1.10.1
 supportedControl: 1.2.840.113556.1.4.1413
 supportedControl: 1.3.6.1.4.1.4203.666.11.7.2

For each of these objects, monitorInfo indicates which backend the information in the object is about.
For instance, the cn=Backend 3,cn=Backends,cn=Monitor object contains (in the example)
information about the bdb backend.

Attribute Description
monitoredInfo Name of backend
supportedControl supported LDAP control extensions
seeAlso Database objects of instances of this backend

20.4.2. Connections

The main entry is empty; it should contain some statistics on the number of connections.

Dynamic child entries are created for each open connection, with stats on the activity on that
connection (the format will be detailed later). There are two special child entries that show the
number of total and current connections respectively.

For example:

Total Connections:

 dn: cn=Total,cn=Connections,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 4
 entryDN: cn=Total,cn=Connections,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

Current Connections:

 dn: cn=Current,cn=Connections,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 2
 entryDN: cn=Current,cn=Connections,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.3. Databases

The main entry contains the naming context of each configured database; the child entries contain, for
each database, the type and the naming context.

For example:

 dn: cn=Database 2,cn=Databases,cn=Monitor
 structuralObjectClass: monitoredObject
 monitoredInfo: monitor
 monitorIsShadow: FALSE
 monitorContext: cn=Monitor
 readOnly: FALSE

OpenLDAP Software 2.4 Administrator's Guide

20.4.1. Backends 182

 entryDN: cn=Database 2,cn=Databases,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.4. Listener

It contains the description of the devices the server is currently listening on:

 dn: cn=Listener 0,cn=Listeners,cn=Monitor
 structuralObjectClass: monitoredObject
 monitorConnectionLocalAddress: IP=0.0.0.0:389
 entryDN: cn=Listener 0,cn=Listeners,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.5. Log

It contains the currently active log items. The Log subsystem allows user modify operations on the
description attribute, whose values MUST be in the list of admittable log switches:

 Trace
 Packets
 Args
 Conns
 BER
 Filter
 Config
 ACL
 Stats
 Stats2
 Shell
 Parse
 Sync

These values can be added, replaced or deleted; they affect what messages are sent to the syslog
device. Custom values could be added by custom modules.

20.4.6. Operations

It shows some statistics on the operations performed by the server:

 Initiated
 Completed

and for each operation type, i.e.:

 Bind
 Unbind
 Add
 Delete
 Modrdn
 Modify
 Compare
 Search
 Abandon
 Extended

OpenLDAP Software 2.4 Administrator's Guide

20.4.3. Databases 183

There are too many types to list example here, so please try for yourself using Monitor search
example

20.4.7. Overlays

The main entry contains the type of overlays available at run-time; the child entries, for each overlay,
contain the type of the overlay.

It should also contain the modules that have been loaded if dynamic overlays are enabled:

 # Overlays, Monitor
 dn: cn=Overlays,cn=Monitor
 structuralObjectClass: monitorContainer
 monitoredInfo: syncprov
 monitoredInfo: accesslog
 monitoredInfo: glue
 entryDN: cn=Overlays,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: TRUE

20.4.8. SASL

Currently empty.

20.4.9. Statistics

It shows some statistics on the data sent by the server:

 Bytes
 PDU
 Entries
 Referrals

e.g.

 # Entries, Statistics, Monitor
 dn: cn=Entries,cn=Statistics,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 612248
 entryDN: cn=Entries,cn=Statistics,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.10. Threads

It contains the maximum number of threads enabled at startup and the current backload.

e.g.

 # Max, Threads, Monitor
 dn: cn=Max,cn=Threads,cn=Monitor
 structuralObjectClass: monitoredObject
 monitoredInfo: 16
 entryDN: cn=Max,cn=Threads,cn=Monitor

OpenLDAP Software 2.4 Administrator's Guide

20.4.6. Operations 184

 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.11. Time

It contains two child entries with the start time and the current time of the server.

e.g.

Start time:

 dn: cn=Start,cn=Time,cn=Monitor
 structuralObjectClass: monitoredObject
 monitorTimestamp: 20061205124040Z
 entryDN: cn=Start,cn=Time,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

Current time:

 dn: cn=Current,cn=Time,cn=Monitor
 structuralObjectClass: monitoredObject
 monitorTimestamp: 20061207120624Z
 entryDN: cn=Current,cn=Time,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.12. TLS

Currently empty.

20.4.13. Waiters

It contains the number of current read waiters.

e.g.

Read waiters:

 dn: cn=Read,cn=Waiters,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 7
 entryDN: cn=Read,cn=Waiters,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

Write waiters:

 dn: cn=Write,cn=Waiters,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 0
 entryDN: cn=Write,cn=Waiters,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

OpenLDAP Software 2.4 Administrator's Guide

20.4.10. Threads 185

Add new monitored things here and discuss, referencing man pages and present examples

OpenLDAP Software 2.4 Administrator's Guide

20.4.13. Waiters 186

21. Tuning
This is perhaps one of the most important chapters in the guide, because if you have not tuned
slapd(8) correctly or grasped how to design your directory and environment, you can expect very poor
performance.

Reading, understanding and experimenting using the instructions and information in the following
sections, will enable you to fully understand how to tailor your directory server to your specific
requirements.

It should be noted that the following information has been collected over time from our community
based FAQ. So obviously the benefit of this real world experience and advice should be of great value
to the reader.

21.1. Performance Factors

Various factors can play a part in how your directory performs on your chosen hardware and
environment. We will attempt to discuss these here.

21.1.1. Memory

Scale your cache to use available memory and increase system memory if you can.

See Caching

21.1.2. Disks

Use fast subsystems. Put each database and logs on separate disks configurable via DB_CONFIG:

 # Data Directory
 set_data_dir /data/db

 # Transaction Log settings
 set_lg_dir /logs

21.1.3. Network Topology

http://www.openldap.org/faq/data/cache/363.html

Drawing here.

21.1.4. Directory Layout Design

Reference to other sections and good/bad drawing here.

21.1.5. Expected Usage

Discussion.

21. Tuning 187

21.2. Indexes

21.2.1. Understanding how a search works

If you're searching on a filter that has been indexed, then the search reads the index and pulls exactly
the entries that are referenced by the index. If the filter term has not been indexed, then the search
must read every single entry in the target scope and test to see if each entry matches the filter.
Obviously indexing can save a lot of work when it's used correctly.

21.2.2. What to index

You should create indices to match the actual filter terms used in search queries.

 index cn,sn,givenname,mail eq

Each attribute index can be tuned further by selecting the set of index types to generate. For example,
substring and approximate search for organizations (o) may make little sense (and isn't like done very
often). And searching for userPassword likely makes no sense what so ever.

General rule: don't go overboard with indexes. Unused indexes must be maintained and hence can
only slow things down.

See slapd.conf(8) and slapdindex(8) for more information

21.2.3. Presence indexing

If your client application uses presence filters and if the target attribute exists on the majority of
entries in your target scope, then all of those entries are going to be read anyway, because they are
valid members of the result set. In a subtree where 100% of the entries are going to contain the same
attributes, the presence index does absolutely NOTHING to benefit the search, because 100% of the
entries match that presence filter.

So the resource cost of generating the index is a complete waste of CPU time, disk, and memory.
Don't do it unless you know that it will be used, and that the attribute in question occurs very
infrequently in the target data.

Almost no applications use presence filters in their search queries. Presence indexing is pointless
when the target attribute exists on the majority of entries in the database. In most LDAP deployments,
presence indexing should not be done, it's just wasted overhead.

See the Logging section below on what to watch our for if you have a frequently searched for attribute
that is unindexed.

21.3. Logging

21.3.1. What log level to use

The default of loglevel stats (256) is really the best bet. There's a corollary to this when problems
do arise, don't try to trace them using syslog. Use the debug flag instead, and capture slapd's stderr

OpenLDAP Software 2.4 Administrator's Guide

21.2. Indexes 188

output. syslog is too slow for debug tracing, and it's inherently lossy - it will throw away messages
when it can't keep up.

Contrary to popular belief, loglevel 0 is not ideal for production as you won't be able to track when
problems first arise.

21.3.2. What to watch out for

The most common message you'll see that you should pay attention to is:

 "<= bdb_equality_candidates: (foo) index_param failed (18)"

That means that some application tried to use an equality filter (foo=<somevalue>) and attribute foo
does not have an equality index. If you see a lot of these messages, you should add the index. If you
see one every month or so, it may be acceptable to ignore it.

The default syslog level is stats (256) which logs the basic parameters of each request; it usually
produces 1-3 lines of output. On Solaris and systems that only provide synchronous syslog, you may
want to turn it off completely, but usually you want to leave it enabled so that you'll be able to see
index messages whenever they arise. On Linux you can configure syslogd to run asynchronously, in
which case the performance hit for moderate syslog traffic pretty much disappears.

21.3.3. Improving throughput

You can improve logging performance on some systems by configuring syslog not to sync the file
system with every write (man syslogd/syslog.conf). In Linux, you can prepend the log file name with
a "-" in syslog.conf. For example, if you are using the default LOCAL4 logging you could try:

 # LDAP logs
 LOCAL4.* -/var/log/ldap

For syslog-ng, add or modify the following line in syslog-ng.conf:

 options { sync(n); };

where n is the number of lines which will be buffered before a write.

21.4. Caching

We all know what caching is, don't we?

In brief, "A cache is a block of memory for temporary storage of data likely to be used again" -
http://en.wikipedia.org/wiki/Cache

There are 3 types of caches, BerkeleyDB's own cache, slapd(8) entry cache and IDL (IDL) cache.

21.4.1. Berkeley DB Cache

There are two ways to tune for the BDB cachesize:

OpenLDAP Software 2.4 Administrator's Guide

21.3.1. What log level to use 189

http://en.wikipedia.org/wiki/Cache

(a) BDB cache size necessary to load the database via slapadd in optimal time

(b) BDB cache size necessary to have a high performing running slapd once the data is loaded

For (a), the optimal cachesize is the size of the entire database. If you already have the database
loaded, this is simply a

 du -c -h *.bdb

in the directory containing the OpenLDAP (/usr/local/var/openldap-data) data.

For (b), the optimal cachesize is just the size of the id2entry.bdb file, plus about 10% for growth.

The tuning of DB_CONFIG should be done for each BDB type database instantiated (back-bdb,
back-hdb).

Note that while the BDB cache is just raw chunks of memory and configured as a memory size, the
slapd(8) entry cache holds parsed entries, and the size of each entry is variable.

There is also an IDL cache which is used for Index Data Lookups. If you can fit all of your database
into slapd's entry cache, and all of your index lookups fit in the IDL cache, that will provide the
maximum throughput.

If not, but you can fit the entire database into the BDB cache, then you should do that and shrink the
slapd entry cache as appropriate.

Failing that, you should balance the BDB cache against the entry cache.

It is worth noting that it is not absolutely necessary to configure a BerkeleyDB cache equal in size to
your entire database. All that you need is a cache that's large enough for your "working set."

That means, large enough to hold all of the most frequently accessed data, plus a few less-frequently
accessed items.

For more information, please see:
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/am_conf/cachesize.html

21.4.1.1. Calculating Cachesize

The back-bdb database lives in two main files, dn2id.bdb and id2entry.bdb. These are B-tree
databases. We have never documented the back-bdb internal layout before, because it didn't seem like
something anyone should have to worry about, nor was it necessarily cast in stone. But here's how it
works today, in OpenLDAP 2.4.

A B-tree is a balanced tree; it stores data in its leaf nodes and bookkeeping data in its interior nodes
(If you don't know what tree data structures look like in general, Google for some references, because
that's getting far too elementary for the purposes of this discussion).

For decent performance, you need enough cache memory to contain all the nodes along the path from
the root of the tree down to the particular data item you're accessing. That's enough cache for a single
search. For the general case, you want enough cache to contain all the internal nodes in the database.

OpenLDAP Software 2.4 Administrator's Guide

21.4.1. Berkeley DB Cache 190

http://www.oracle.com/technology/documentation/berkeley-db/db/ref/am_conf/cachesize.html

 db_stat -d

will tell you how many internal pages are present in a database. You should check this number for
both dn2id and id2entry.

Also note that id2entry always uses 16KB per "page", while dn2id uses whatever the underlying
filesystem uses, typically 4 or 8KB. To avoid thrashing the, your cache must be at least as large as the
number of internal pages in both the dn2id and id2entry databases, plus some extra space to
accommodate the actual leaf data pages.

For example, in my OpenLDAP 2.4 test database, I have an input LDIF file that's about 360MB. With
the back-hdb backend this creates a dn2id.bdb that's 68MB, and an id2entry that's 800MB. db_stat
tells me that dn2id uses 4KB pages, has 433 internal pages, and 6378 leaf pages. The id2entry uses
16KB pages, has 52 internal pages, and 45912 leaf pages. In order to efficiently retrieve any single
entry in this database, the cache should be at least

 (433+1) * 4KB + (52+1) * 16KB in size: 1736KB + 848KB =~ 2.5MB.

This doesn't take into account other library overhead, so this is even lower than the barest minimum.
The default cache size, when nothing is configured, is only 256KB.

This 2.5MB number also doesn't take indexing into account. Each indexed attribute uses another
database file of its own, using a Hash structure.

Unlike the B-trees, where you only need to touch one data page to find an entry of interest, doing an
index lookup generally touches multiple keys, and the point of a hash structure is that the keys are
evenly distributed across the data space. That means there's no convenient compact subset of the
database that you can keep in the cache to insure quick operation, you can pretty much expect
references to be scattered across the whole thing. My strategy here would be to provide enough cache
for at least 50% of all of the hash data.

 (Number of hash buckets + number of overflow pages + number of duplicate pages) * page size / 2.

The objectClass index for my example database is 5.9MB and uses 3 hash buckets and 656 duplicate
pages. So:

 (3 + 656) * 4KB / 2 =~ 1.3MB.

With only this index enabled, I'd figure at least a 4MB cache for this backend. (Of course you're using
a single cache shared among all of the database files, so the cache pages will most likely get used for
something other than what you accounted for, but this gives you a fighting chance.)

With this 4MB cache I can slapcat this entire database on my 1.3GHz PIII in 1 minute, 40 seconds.
With the cache doubled to 8MB, it still takes the same 1:40s. Once you've got enough cache to fit the
B-tree internal pages, increasing it further won't have any effect until the cache really is large enough
to hold 100% of the data pages. I don't have enough free RAM to hold all the 800MB id2entry data,
so 4MB is good enough.

With back-bdb and back-hdb you can use "db_stat -m" to check how well the database cache is
performing.

OpenLDAP Software 2.4 Administrator's Guide

21.4.1. Berkeley DB Cache 191

For more information on db_stat:
http://www.oracle.com/technology/documentation/berkeley-db/db/utility/db_stat.html

21.4.2. slapd(8) Entry Cache (cachesize)

The slapd(8) entry cache operates on decoded entries. The rationale - entries in the entry cache can be
used directly, giving the fastest response. If an entry isn't in the entry cache but can be extracted from
the BDB page cache, that will avoid an I/O but it will still require parsing, so this will be slower.

If the entry is in neither cache then BDB will have to flush some of its current cached pages and bring
in the needed pages, resulting in a couple of expensive I/Os as well as parsing.

The most optimal value is of course, the entire number of entries in the database. However, most
directory servers don't consistently serve out their entire database, so setting this to a lesser number
that more closely matches the believed working set of data is sufficient. This is the second most
important parameter for the DB.

As far as balancing the entry cache vs the BDB cache - parsed entries in memory are generally about
twice as large as they are on disk.

As we have already mentioned, not having a proper database cache size will cause performance
issues. These issues are not an indication of corruption occurring in the database. It is merely the fact
that the cache is thrashing itself that causes performance/response time to slowdown.

21.4.3. IDL Cache (idlcachesize)

Each IDL holds the search results from a given query, so the IDL cache will end up holding the most
frequently requested search results. For back-bdb, it is generally recommended to match the
"cachesize" setting. For back-hdb, it is generally recommended to be 3x"cachesize".

{NOTE: The idlcachesize setting directly affects search performance}

21.4.4. slapd(8) Threads

slapd(8) can process requests via a configurable number of thread, which in turn affects the in/out rate
of connections.

This value should generally be a function of the number of "real" cores on the system, for example on
a server with 2 CPUs with one core each, set this to 8, or 4 threads per real core. This is a "read"
maximized value. The more threads that are configured per core, the slower slapd(8) responds for
"read" operations. On the flip side, it appears to handle write operations faster in a heavy write/low
read scenario.

The upper bound for good read performance appears to be 16 threads (which also happens to be the
default setting).

OpenLDAP Software 2.4 Administrator's Guide

21.4.2. slapd(8) Entry Cache (cachesize) 192

http://www.oracle.com/technology/documentation/berkeley-db/db/utility/db_stat.html

22. Troubleshooting
If you're having trouble using OpenLDAP, get onto the OpenLDAP-Software mailing list, or:

Browse the list archives at http://www.openldap.org/lists/#archives•
Search the FAQ at http://www.openldap.org/faq/•
Search the Issue Tracking System at http://www.openldap.org/its/•

Chances are the problem has been solved and explained in detail many times before.

22.1. User or Software errors?

More often than not, an error is caused by a configuration problem or a misunderstanding of what you
are trying to implement and/or achieve.

We will now attempt to discuss common user errors.

22.2. Checklist

The following checklist can help track down your problem. Please try to use if before posting to the
list, or in the rare circumstances of reporting a bug.

Use the slaptest tool to verify configurations before starting slapd1.

Verify that slapd is listening to the specified port(s) (389 and 636, generally) before
trying the ldapsearch

2.

Can you issue an ldapsearch?3.

If not, have you enabled complex ACLs without fully understanding them?4.

Do you have a system wide LDAP setting pointing to the wrong LDAP Directory?5.

Are you using TLS?6.

Have your certificates expired?7.

22.3. OpenLDAP Bugs

Sometimes you may encounter an actual OpenLDAP bug, in which case please visit our Issue
Tracking system http://www.openldap.org/its/ and report it. However, make sure it's not already a
known bug or a common user problem.

bugs in historic versions of OpenLDAP will not be considered;•
bugs in released versions that are no longer present in HEAD code, either because they have
been fixed or because they no longer apply, will not be considered as well;

•

22. Troubleshooting 193

http://www.openldap.org/lists/#archives
http://www.openldap.org/faq/
http://www.openldap.org/its/
http://www.openldap.org/its/

bugs in distributions of OpenLDAP software that are not related to the software as provided
by OpenLDAP will not be considered; in those cases please refer to the distributor.

•

Note: Our Issue Tracking system is NOT for OpenLDAP Support, please join our mailing Lists:
http://www.openldap.org/lists/ for that.

The information you should provide in your bug report is discussed in our FAQ-O-MATIC at
http://www.openldap.org/faq/data/cache/59.html

22.4. 3rd party software error

The OpenLDAP Project only supports OpenLDAP software.

You may however seek commercial support (http://www.openldap.org/support/) or join the general
LDAP forum for non-commercial discussions and information relating to LDAP at:
http://www.umich.edu/~dirsvcs/ldap/mailinglist.html

22.5. How to contact the OpenLDAP Project

Mailing Lists: http://www.openldap.org/lists/•
Project: http://www.openldap.org/project/•
Issue Tracking: http://www.openldap.org/its/•

22.6. How to present your problem

22.7. Debugging slapd(8)

After reading through the above sections and before e-mailing the OpenLDAP lists, you might want
to try out some of the following to track down the cause of your problems:

Loglevel stats (256) is generally a good first loglevel to try for getting information useful to
list members on issues

•

Running slapd -d -1 can often track down fairly simple issues, such as missing schemas and
incorrect file permissions for the slapd user to things like certs

•

Check your logs for errors, as discussed at http://www.openldap.org/faq/data/cache/358.html•

22.8. Commercial Support

The firms listed at http://www.openldap.org/support/ offer technical support services catering to
OpenLDAP community.

The listing of any given firm should not be viewed as an endorsement or recommendation of any
kind, nor as otherwise indicating there exists a business relationship or an affiliation between any
listed firm and the OpenLDAP Foundation or the OpenLDAP Project or its contributors.

OpenLDAP Software 2.4 Administrator's Guide

22.3. OpenLDAP Bugs 194

http://www.openldap.org/lists/
http://www.openldap.org/faq/data/cache/59.html
http://www.openldap.org/support/
http://www.umich.edu/~dirsvcs/ldap/mailinglist.html
http://www.openldap.org/lists/
http://www.openldap.org/project/
http://www.openldap.org/its/
http://www.openldap.org/faq/data/cache/358.html
http://www.openldap.org/support/

A. Changes Since Previous Release
The following sections attempt to summarize the new features and changes in OpenLDAP software
since the 2.3.x release and the OpenLDAP Admin Guide.

A.1. New Guide Sections

In order to make the Admin Guide more thorough and cover the majority of questions asked on the
OpenLDAP mailing lists and scenarios discussed there, we have added the following new sections:

When should I use LDAP?•
When should I not use LDAP?•
LDAP vs RDBMS•
Access Control•
Backends•
Overlays•
Replication•
Maintenance•
Monitoring•
Tuning•
Troubleshooting•
Changes Since Previous Release•
Upgrading from 2.3.x•
Common errors encountered when using OpenLDAP Software•
Recommended OpenLDAP Software Dependency Versions•
Real World OpenLDAP Deployments and Examples•
OpenLDAP Software Contributions•
Configuration File Examples•
LDAP Result Codes•
Glossary•

Also, the table of contents is now 3 levels deep to ease navigation.

A.2. New Features and Enhancements in 2.4

A.2.1. Better cn=config functionality

There is a new slapd-config(5) manpage for the cn=config backend. The original design called for
auto-renaming of config entries when you insert or delete entries with ordered names, but that was not
implemented in 2.3. It is now in 2.4. This means, e.g., if you have

 olcDatabase={1}bdb,cn=config
 olcSuffix: dc=example,dc=com

and you want to add a new subordinate, now you can ldapadd:

 olcDatabase={1}bdb,cn=config
 olcSuffix: dc=foo,dc=example,dc=com

A. Changes Since Previous Release 195

This will insert a new BDB database in slot 1 and bump all following databases down one, so the
original BDB database will now be named:

 olcDatabase={2}bdb,cn=config
 olcSuffix: dc=example,dc=com

A.2.2. Better cn=schema functionality

In 2.3 you were only able to add new schema elements, not delete or modify existing elements. In 2.4
you can modify schema at will. (Except for the hardcoded system schema, of course.)

A.2.3. More sophisticated Syncrepl configurations

The original implementation of Syncrepl in OpenLDAP 2.2 was intended to support multiple
consumers within the same database, but that feature never worked and was removed from
OpenLDAP 2.3; you could only configure a single consumer in any database.

In 2.4 you can configure multiple consumers in a single database. The configuration possibilities here
are quite complex and numerous. You can configure consumers over arbitrary subtrees of a database
(disjoint or overlapping). Any portion of the database may in turn be provided to other consumers
using the Syncprov overlay. The Syncprov overlay works with any number of consumers over a
single database or over arbitrarily many glued databases.

A.2.4. N-Way Multimaster Replication

As a consequence of the work to support multiple consumer contexts, the syncrepl system now
supports full N-Way multimaster replication with entry-level conflict resolution. There are some
important constraints, of course: In order to maintain consistent results across all servers, you must
maintain tightly synchronized clocks across all participating servers (e.g., you must use NTP on all
servers).

The entryCSNs used for replication now record timestamps with microsecond resolution, instead of
just seconds. The delta-syncrepl code has not been updated to support multimaster usage yet, that will
come later in the 2.4 cycle.

A.2.5. Replicating slapd Configuration (syncrepl and cn=config)

Syncrepl was explicitly disabled on cn=config in 2.3. It is now fully supported in 2.4; you can use
syncrepl to replicate an entire server configuration from one server to arbitrarily many other servers.
It's possible to clone an entire running slapd using just a small (less than 10 lines) seed configuration,
or you can just replicate the schema subtrees, etc. Tests 049 and 050 in the test suite provide working
examples of these capabilities.

A.2.6. Push-Mode Replication

In 2.3 you could configure syncrepl as a full push-mode replicator by using it in conjunction with a
back-ldap pointed at the target server. But because the back-ldap database needs to have a suffix
corresponding to the target's suffix, you could only configure one instance per slapd.

OpenLDAP Software 2.4 Administrator's Guide

A.2.1. Better cn=config functionality 196

In 2.4 you can define a database to be "hidden", which means that its suffix is ignored when checking
for name collisions, and the database will never be used to answer requests received by the frontend.
Using this "hidden" database feature allows you to configure multiple databases with the same suffix,
allowing you to set up multiple back-ldap instances for pushing replication of a single database to
multiple targets. There may be other uses for hidden databases as well (e.g., using a syncrepl
consumer to maintain a *local* mirror of a database on a separate filesystem).

A.2.7. More extensive TLS configuration control

In 2.3, the TLS configuration in slapd was only used by the slapd listeners. For outbound connections
used by e.g. back-ldap or syncrepl their TLS parameters came from the system's ldap.conf file.

In 2.4 all of these sessions inherit their settings from the main slapd configuration, but settings can be
individually overridden on a per-config-item basis. This is particularly helpful if you use
certificate-based authentication and need to use a different client certificate for different destinations.

A.2.8. Performance enhancements

Too many to list. Some notable changes - ldapadd used to be a couple of orders of magnitude slower
than "slapadd -q". It's now at worst only about half the speed of slapadd -q. Some comparisons of all
the 2.x OpenLDAP releases are available at http://www.openldap.org/pub/hyc/scale2007.pdf

That compared 2.0.27, 2.1.30, 2.2.30, 2.3.33, and HEAD). Toward the latter end of the "Cached
Search Performance" chart it gets hard to see the difference because the run times are so small, but the
new code is about 25% faster than 2.3, which was about 20% faster than 2.2, which was about 100%
faster than 2.1, which was about 100% faster than 2.0, in that particular search scenario. That test
basically searched a 1.3GB DB of 380836 entries (all in the slapd entry cache) in under 1 second. i.e.,
on a 2.4GHz CPU with DDR400 ECC/Registered RAM we can search over 500 thousand entries per
second. The search was on an unindexed attribute using a filter that would not match any entry,
forcing slapd to examine every entry in the DB, testing the filter for a match.

Essentially the slapd entry cache in back-bdb/back-hdb is so efficient the search processing time is
almost invisible; the runtime is limited only by the memory bandwidth of the machine. (The search
data rate corresponds to about 3.5GB/sec; the memory bandwidth on the machine is only about
4GB/sec due to ECC and register latency.)

A.2.9. New overlays

slapo-constraint (Attribute value constraints)•
slapo-dds (Dynamic Directory Services, RFC 2589)•
slapo-memberof (reverse group membership maintenance)•

A.2.10. New features in existing Overlays

slapo-pcache
Inspection/Maintenance

the cache database can be directly accessed via LDAP by adding a specific
control to each LDAP request; a specific extended operation allows to
consistently remove cached entries and entire cached queries

◊
♦

Hot Restart♦

•

OpenLDAP Software 2.4 Administrator's Guide

A.2.6. Push-Mode Replication 197

http://www.openldap.org/pub/hyc/scale2007.pdf

cached queries are saved on disk at shutdown, and reloaded if not expired yet
at subsequent restart

◊

slapo-rwm can safely interoperate with other overlays•
Dyngroup/Dynlist merge, plus security enhancements

added dgIdentity support (draft-haripriya-dynamicgroup)♦
•

A.2.11. New features in slapd

monitoring of back-{b,h}db: cache fill-in, non-indexed searches,•
session tracking control (draft-wahl-ldap-session)•
subtree delete in back-sql (draft-armijo-ldap-treedelete)•
sorted values in multivalued attributes for faster matching•
lightweight dispatcher for greater throughput under heavy load and on multiprocessor
machines. (33% faster than 2.3 on AMD quad-socket dual-core server.)

•

A.2.12. New features in libldap

ldap_sync client API (LDAP Content Sync Operation, RFC 4533)•

A.2.13. New clients, tools and tool enhancements

ldapexop for arbitrary extended operations•
Complete support of controls in request/response for all clients•
LDAP Client tools now honor SRV records•

A.2.14. New build options

Support for building against GnuTLS•

A.3. Obsolete Features Removed From 2.4

These features were strongly deprecated in 2.3 and removed in 2.4.

A.3.1. Slurpd

Please read the Replication section as to why this is no longer in OpenLDAP

A.3.2. back-ldbm

back-ldbm was both slow and unreliable. Its byzantine indexing code was prone to spontaneous
corruption, as were the underlying database libraries that were commonly used (e.g. GDBM or
NDBM). back-bdb and back-hdb are superior in every aspect, with simplified indexing to avoid index
corruption, fine-grained locking for greater concurrency, hierarchical caching for greater
performance, streamlined on-disk format for greater efficiency and portability, and full transaction
support for greater reliability.

OpenLDAP Software 2.4 Administrator's Guide

A.2.10. New features in existing Overlays 198

B. Upgrading from 2.3.x
The following sections attempt to document the steps you will need to take in order to upgrade from
the latest 2.3.x OpenLDAP version.

The normal upgrade procedure, as discussed in the Maintenance section, should of course still be
followed prior to doing any of this.

B.1. cn=config olc* attributes

Quite a few olc* attributes have now become obsolete, if you see in your logs entries like below, just
remove them from the relevant ldif file.

 olcReplicationInterval: value #0: <olcReplicationInterval> keyword is obsolete (ignored)

B.2. ACLs: searches require privileges on the search
base

Search operations now require "search" privileges on the "entry" pseudo-attribute of the search base.
While upgrading from 2.3.x, make sure your ACLs grant such privileges to all desired search bases.

For example, assuming you have the following ACL:

 access to dn.sub="ou=people,dc=example,dc=com" by * search

Searches using a base of "dc=example,dc=com" will only be allowed if you add the following ACL:

 access to dn.base="dc=example,dc=com" attrs=entry by * search

Note: The slapd.access(5) man page states that this requirement was introduced with OpenLDAP 2.3.
However, it is the default behavior only since 2.4.

ADD MORE HERE

B. Upgrading from 2.3.x 199

C. Common errors encountered when using
OpenLDAP Software
The following sections attempt to summarize the most common causes of LDAP errors when using
OpenLDAP

C.1. Common causes of LDAP errors

C.1.1. ldap_*: Can't contact LDAP server

The Can't contact LDAP server error is usually returned when the LDAP server cannot be
contacted. This may occur for many reasons:

the LDAP server is not running; this can be checked by running, for example,•

 telnet <host> <port>

replacing <host> and <port> with the hostname and the port the server is supposed to listen on.

the client has not been instructed to contact a running server; with OpenLDAP command-line
tools this is accomplished by providing the -H switch, whose argument is a valid LDAP url
corresponding to the interface the server is supposed to be listening on.

•

C.1.2. ldap_*: No such object

The no such object error is generally returned when the target DN of the operation cannot be located.
This section details reasons common to all operations. You should also look for answers specific to
the operation (as indicated in the error message).

The most common reason for this error is non-existence of the named object. First, check for typos.

Also note that, by default, a new directory server holds no objects (except for a few system entries).
So, if you are setting up a new directory server and get this message, it may simply be that you have
yet to add the object you are trying to locate.

The error commonly occurs because a DN was not specified and a default was not properly
configured.

If you have a suffix specified in slapd.conf eg.

 suffix "dc=example,dc=com"

You should use

 ldapsearch -b 'dc=example,dc=com' '(cn=jane*)'

to tell it where to start the search.

C. Common errors encountered when using OpenLDAP Software 200

The -b should be specified for all LDAP commands unless you have an ldap.conf(5) default
configured.

See ldapsearch(1), ldapmodify(1)

Also, slapadd(8) and its ancillary programs are very strict about the syntax of the LDIF file.

Some liberties in the LDIF file may result in an apparently successful creation of the database, but
accessing some parts of it may be difficult.

One known common error in database creation is putting a blank line before the first entry in the
LDIF file. There must be no leading blank lines in the LDIF file.

It is generally recommended that ldapadd(1) be used instead of slapadd(8) when adding new entries
your directory. slapadd(8) should be used to bulk load entries known to be valid.

Another cause of this message is a referral ({SECT:Constructing a Distributed Directory Service}})
entry to an unpopulated directory.

Either remove the referral, or add a single record with the referral base DN to the empty directory.

This error may also occur when slapd is unable to access the contents of its database because of file
permission problems. For instance, on a Red Hat Linux system, slapd runs as user 'ldap'. When
slapadd is run as root to create a database from scratch, the contents of /var/lib/ldap are created
with user and group root and with permission 600, making the contents inaccessible to the slapd
server.

C.1.3. ldap_*: Can't chase referral

This is caused by the line

 referral ldap://root.openldap.org

In slapd.conf, it was provided as an example for how to use referrals in the original file. However
if your machine is not permanently connected to the Internet, it will fail to find the server, and hence
produce an error message.

To resolve, just place a # in front of line and restart slapd or point it to an available ldap server.

See also: ldapadd(1), ldapmodify(1) and slapd.conf(5)

C.1.4. ldap_*: server is unwilling to perform

slapd will return an unwilling to perform error if the backend holding the target entry does not support
the given operation.

The password backend is only willing to perform searches. It will return an unwilling to perform error
for all other operations.

The shell backend is configurable and may support a limited subset of operations. Check for other

OpenLDAP Software 2.4 Administrator's Guide

C.1.2. ldap_*: No such object 201

errors indicating a shortage of resources required by the directory server. i.e. you may have a full disk
etc

C.1.5. ldap_*: Insufficient access

This error occurs when server denies the operation due to insufficient access. This is usually caused
by binding to a DN with insufficient privileges (or binding anonymously) to perform the operation.

You can bind as the rootdn/rootpw specified in slapd.conf(5) to gain full access. Otherwise, you must
bind to an entry which has been granted the appropriate rights through access controls.

C.1.6. ldap_*: Invalid DN syntax

The target (or other) DN of the operation is invalid. This implies that either the string representation
of the DN is not in the required form, one of the types in the attribute value assertions is not defined,
or one of the values in the attribute value assertions does not conform to the appropriate syntax.

C.1.7. ldap_*: Referral hop limit exceeded

This error generally occurs when the client chases a referral which refers itself back to a server it
already contacted. The server responds as it did before and the client loops. This loop is detected
when the hop limit is exceeded.

This is most often caused through misconfiguration of the server's default referral. The default referral
should not be itself:

That is, on ldap://myldap/ the default referral should not be ldap://myldap/ (or any
hostname/ip which is equivalent to myldap).

C.1.8. ldap_*: operations error

In some versions of slapd(8), operationsError was returned instead of other.

C.1.9. ldap_*: other error

The other result code indicates an internal error has occurred. While the additional information
provided with the result code might provide some hint as to the problem, often one will need to
consult the server's log files.

C.1.10. ldap_add/modify: Invalid syntax

This error is reported when a value of an attribute does not conform to syntax restrictions. Additional
information is commonly provided stating which value of which attribute was found to be invalid.
Double check this value and other values (the server will only report the first error it finds).

Common causes include:

extraneous whitespace (especially trailing whitespace)•
improperly encoded characters (LDAPv3 uses UTF-8 encoded Unicode)•

OpenLDAP Software 2.4 Administrator's Guide

C.1.4. ldap_*: server is unwilling to perform 202

empty values (few syntaxes allow empty values)•

For certain syntax, like OBJECT IDENTIFIER (OID), this error can indicate that the OID descriptor
(a "short name") provided is unrecognized. For instance, this error is returned if the objectClass value
provided is unrecognized.

C.1.11. ldap_add/modify: Object class violation

This error is returned with the entry to be added or the entry as modified violates the object class
schema rules. Normally additional information is returned the error detailing the violation. Some of
these are detailed below.

Violations related to the entry's attributes:

 Attribute not allowed

A provided attribute is not allowed by the entry's object class(es).

 Missing required attribute

An attribute required by the entry's object class(es) was not provided.

Violations related to the entry's class(es):

 Entry has no objectClass attribute

The entry did not state which object classes it belonged to.

 Unrecognized objectClass

One (or more) of the listed objectClass values is not recognized.

 No structural object class provided

None of the listed objectClass values is structural.

 Invalid structural object class chain

Two or more structural objectClass values are not in same structural object class chain.

 Structural object class modification

Modify operation attempts to change the structural class of the entry.

 Instanstantiation of abstract objectClass.

An abstract class is not subordinate to any listed structural or auxiliary class.

 Invalid structural object class

Other structural object class problem.

OpenLDAP Software 2.4 Administrator's Guide

C.1.10. ldap_add/modify: Invalid syntax 203

 No structuralObjectClass operational attribute

This is commonly returned when a shadow server is provided an entry which does not contain the
structuralObjectClass operational attribute.

Note that the above error messages as well as the above answer assumes basic knowledge of
LDAP/X.500 schema.

C.1.12. ldap_add: No such object

The "ldap_add: No such object" error is commonly returned if parent of the entry being added does
not exist. Add the parent entry first...

For example, if you are adding "cn=bob,dc=domain,dc=com" and you get:

 ldap_add: No such object

The entry "dc=domain,dc=com" likely doesn't exist. You can use ldapsearch to see if does exist:

 ldapsearch -b 'dc=domain,dc=com' -s base '(objectclass=*)'

If it doesn't, add it. See A Quick-Start Guide for assistance.

Note: if the entry being added is the same as database suffix, it's parent isn't required. i.e.: if your
suffix is "dc=domain,dc=com", "dc=com" doesn't need to exist to add "dc=domain,dc=com".

This error will also occur if you try to add any entry that the server is not configured to hold.

For example, if your database suffix is "dc=domain,dc=com" and you attempt to add
"dc=domain2,dc=com", "dc=com", "dc=domain,dc=org", "o=domain,c=us", or an other DN in the
"dc=domain,dc=com" subtree, the server will return a "No such object" (or referral) error.

slapd(8) will generally return "no global superior knowledge" as additional information indicating its
return noSuchObject instead of a referral as the server is not configured with knowledge of a global
superior server.

C.1.13. ldap add: invalid structural object class chain

This particular error refers to the rule about STRUCTURAL objectclasses, which states that an object
is of one STRUCTURAL class, the structural class of the object. The object is said to belong to this
class, zero or more auxiliaries classes, and their super classes.

While all of these classes are commonly listed in the objectClass attribute of the entry, one of these
classes is the structural object class of the entry. Thus, it is OK for an objectClass attribute to contain
inetOrgPerson, organizationalPerson, and person because they inherit one from another to form a
single super class chain. That is, inetOrgPerson SUPs organizationPerson SUPs person. On the other
hand, it is invalid for both inetOrgPerson and account to be listed in objectClass as inetOrgPerson and
account are not part of the same super class chain (unless some other class is also listed with is a
subclass of both).

OpenLDAP Software 2.4 Administrator's Guide

C.1.11. ldap_add/modify: Object class violation 204

To resolve this problem, one must determine which class will better serve structural object class for
the entry, adding this class to the objectClass attribute (if not already present), and remove any other
structural class from the entry's objectClass attribute which is not a super class of the structural object
class.

Which object class is better depends on the particulars of the situation. One generally should consult
the documentation for the applications one is using for help in making the determination.

C.1.14. ldap_add: no structuralObjectClass operational attribute

ldapadd(1) may error:

 adding new entry "uid=XXX,ou=People,o=campus,c=ru"
 ldap_add: Internal (implementation specific) error (80)
 additional info: no structuralObjectClass operational attribute

when slapd(8) cannot determine, based upon the contents of the objectClass attribute, what the
structural class of the object should be.

C.1.15. ldap_add/modify/rename: Naming violation

OpenLDAP's slapd checks for naming attributes and distinguished values consistency, according to
RFC 4512.

Naming attributes are those attributeTypes that appear in an entry's RDN; distinguished values are the
values of the naming attributes that appear in an entry's RDN, e.g, in

 cn=Someone+mail=someone@example.com,dc=example,dc=com

the naming attributes are cn and mail, and the distinguished values are Someone and
someone@example.com.

OpenLDAP's slapd checks for consistency when:

adding an entry•
modifying an entry, if the values of the naming attributes are changed•
renaming an entry, if the RDN of the entry changes•

Possible causes of error are:

the naming attributes are not present in the entry; for example:•

 dn: dc=example,dc=com
 objectClass: organization
 o: Example
 # note: "dc: example" is missing

the naming attributes are present in the entry, but in the attributeType definition they are
marked as:

collective♦
operational♦
obsolete♦

•

OpenLDAP Software 2.4 Administrator's Guide

C.1.13. ldap add: invalid structural object class chain 205

the naming attributes are present in the entry, but the distinguished values are not; for
example:

•

 dn: dc=example,dc=com
 objectClass: domain
 dc: foobar
 # note: "dc" is present, but the value is not "example"

the naming attributes are present in the entry, with the distinguished values, but the naming
attributes:

do not have an equality field, so equality cannot be asserted♦
the matching rule is not supported (yet)♦
the matching rule is not appropriate♦

•

the given distinguished values do not comply with their syntax•
other errors occurred during the validation/normalization/match process; this is a catchall:
look at previous logs for details in case none of the above apply to your case.

•

In any case, make sure that the attributeType definition for the naming attributes contains an
appropriate EQUALITY field; or that of the superior, if they are defined based on a superior
attributeType (look at the SUP field). See RFC 4512 for details.

C.1.16. ldap_add/delete/modify/rename: no global superior
knowledge

If the target entry name places is not within any of the databases the server is configured to hold and
the server has no knowledge of a global superior, the server will indicate it is unwilling to perform the
operation and provide the text "no global superior knowledge" as additional text.

Likely the entry name is incorrect, or the server is not properly configured to hold the named entry,
or, in distributed directory environments, a default referral was not configured.

C.1.17. ldap_bind: Insufficient access

Current versions of slapd(8) requires that clients have authentication permission to attribute types
used for authentication purposes before accessing them to perform the bind operation. As all bind
operations are done anonymously (regardless of previous bind success), the auth access must be
granted to anonymous.

In the example ACL below grants the following access:

to anonymous users:
permission to authenticate using values of userPassword♦

•

to authenticated users:
permission to update (but not read) their userPassword♦
permission to read any object excepting values of userPassword♦

•

All other access is denied.

 access to attr=userPassword
 by self =w
 by anonymous auth

OpenLDAP Software 2.4 Administrator's Guide

C.1.15. ldap_add/modify/rename: Naming violation 206

 access *
 by self write
 by users read

C.1.18. ldap_bind: Invalid credentials

The error usually occurs when the credentials (password) provided does not match the userPassword
held in entry you are binding to.

The error can also occur when the bind DN specified is not known to the server.

Check both! In addition to the cases mentioned above you should check if the server denied access to
userPassword on selected parts of the directory. In fact, slapd always returns "Invalid credentials" in
case of failed bind, regardless of the failure reason, since other return codes could reveal the validity
of the user's name.

To debug access rules defined in slapd.conf, add "ACL" to log level.

C.1.19. ldap_bind: Protocol error

There error is generally occurs when the LDAP version requested by the client is not supported by the
server.

The OpenLDAP Software 2.x server, by default, only accepts version 3 LDAP Bind requests but can
be configured to accept a version 2 LDAP Bind request.

Note: The 2.x server expects LDAPv3 [RFC4510] to be used when the client requests version 3 and
expects a limited LDAPv3 variant (basically, LDAPv3 syntax and semantics in an LDAPv2 PDUs) to
be used when version 2 is expected.

This variant is also sometimes referred to as LDAPv2+, but differs from the U-Mich LDAP variant in
a number of ways.

C.1.20. ldap_modify: cannot modify object class

This message is commonly returned when attempting to modify the objectClass attribute in a manner
inconsistent with the LDAP/X.500 information model. In particular, it commonly occurs when one
tries to change the structure of the object from one class to another, for instance, trying to change an
'apple' into a 'pear' or a 'fruit' into a 'pear'.

Such changes are disallowed by the slapd(8) in accordance with LDAP and X.500 restrictions.

C.1.21. ldap_sasl_interactive_bind_s: ...

If you intended to bind using a DN and password and get an error from ldap_sasl_interactive_bind_s,
you likely forgot to provide a '-x' option to the command. By default, SASL authentication is used. '-x'
is necessary to select "simple" authentication.

OpenLDAP Software 2.4 Administrator's Guide

C.1.17. ldap_bind: Insufficient access 207

C.1.22. ldap_sasl_interactive_bind_s: No such Object

This indicates that LDAP SASL authentication function could not read the Root DSE. The error will
occur when the server doesn't provide a root DSE. This may be due to access controls.

C.1.23. ldap_sasl_interactive_bind_s: No such attribute

This indicates that LDAP SASL authentication function could read the Root DSE but it contained no
supportedSASLMechanism attribute.

The supportedSASLmechanism attribute lists mechanisms currently available. The list may be empty
because none of the supported mechanisms are currently available. For example, EXTERNAL is
listed only if the client has established its identity by authenticating at a lower level (e.g. TLS).

Note: the attribute may not be visible due to access controls

Note: SASL bind is the default for all OpenLDAP tools, e.g. ldapsearch(1), ldapmodify(1). To force
use of "simple" bind, use the "-x" option. Use of "simple" bind is not recommended unless one has
adequate confidentiality protection in place (e.g. TLS/SSL, IPSEC).

C.1.24. ldap_sasl_interactive_bind_s: Unknown authentication
method

This indicates that none of the SASL authentication supported by the server are supported by the
client, or that they are too weak or otherwise inappropriate for use by the client. Note that the default
security options disallows the use of certain mechanisms such as ANONYMOUS and PLAIN
(without TLS).

Note: SASL bind is the default for all OpenLDAP tools. To force use of "simple" bind, use the "-x"
option. Use of "simple" bind is not recommended unless one has adequate confidentiality protection
in place (e.g. TLS/SSL, IPSEC).

C.1.25. ldap_sasl_interactive_bind_s: Local error (82)

Apparently not having forward and reverse DNS entries for the LDAP server can result in this error.

C.1.26. ldap_search: Partial results and referral received

This error is returned with the server responses to an LDAPv2 search query with both results (zero or
more matched entries) and references (referrals to other servers). See also: ldapsearch(1).

If the updatedn on the replica does not exist, a referral will be returned. It may do this as well if the
ACL needs tweaking.

OpenLDAP Software 2.4 Administrator's Guide

C.1.22. ldap_sasl_interactive_bind_s: No such Object 208

C.1.27. ldap_start_tls: Operations error

ldapsearch(1) and other tools will return

 ldap_start_tls: Operations error (1)
 additional info: TLS already started

When the user (though command line options and/or ldap.conf(5)) has requested TLS (SSL) be
started twice. For instance, when specifying both "-H ldaps://server.do.main" and "-ZZ".

C.2. Other Errors

C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of
range)

This slapd error generally indicates that the client sent a message that exceeded an administrative
limit. See sockbuf_max_incoming and sockbuf_max_incoming_auth configuration directives in
slapd.conf(5).

C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily
unavailable)

This message is not indicative of abnormal behavior or error. It simply means that expected data is not
yet available from the resource, in this context, a network socket. slapd(8) will process the data once it
does becomes available.

C.2.3. daemon: socket() failed errno=97 (Address family not
supported)

This message indicates that the operating system does not support one of the (protocol) address
families which slapd(8) was configured to support. Most commonly, this occurs when slapd(8) was
configured to support IPv6 yet the operating system kernel wasn't. In such cases, the message can be
ignored.

C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure;
Permission denied;

This message means that slapd is not running as root and, thus, it cannot get its Kerberos 5 key from
the keytab, usually file /etc/krb5.keytab.

A keytab file is used to store keys that are to be used by services or daemons that are started at boot
time. It is very important that these secrets are kept beyond reach of intruders.

That's why the default keytab file is owned by root and protected from being read by others. Do not
mess with these permissions, build a different keytab file for slapd instead, and make sure it is owned
by the user that slapd runs as.

To do this, start kadmin, and enter the following commands:

OpenLDAP Software 2.4 Administrator's Guide

C.1.27. ldap_start_tls: Operations error 209

 addprinc -randkey ldap/ldap.example.com@EXAMPLE.COM
 ktadd -k /etc/openldap/ldap.keytab ldap/ldap.example.com@EXAMPLE.COM

Then, on the shell, do:

 chown ldap:ldap /etc/openldap/ldap.keytab
 chmod 600 /etc/openldap/ldap.keytab

Now you have to tell slapd (well, actually tell the gssapi library in Kerberos 5 that is invoked by
Cyrus SASL) where to find the new keytab. You do this by setting the environment variable
KRB5_KTNAME like this:

 export KRB5_KTNAME="FILE:/etc/openldap/ldap.keytab"

Set that environment variable on the slapd start script (Red Hat users might find /etc/sysconfig/ldap a
perfect place).

This only works if you are using MIT kerberos. It doesn't work with Heimdal, for instance.

In Heimdal there is a function gsskrb5_register_acceptor_identity() that sets the path of the keytab file
you want to use. In Cyrus SASL 2 you can add

 keytab: /path/to/file

to your application's SASL config file to use this feature. This only works with Heimdal.

C.2.5. access from unknown denied

This related to TCP wrappers. See hosts_access(5) for more information. in the log file: "access from
unknown denied" This related to TCP wrappers. See hosts_access(5) for more information. for
example: add the line "slapd: .hosts.you.want.to.allow" in /etc/hosts.allow to get rid of the error.

C.2.6. ldap_read: want=# error=Resource temporarily unavailable

This message occurs normally. It means that pending data is not yet available from the resource, a
network socket. slapd(8) will process the data once it becomes available.

C.2.7. `make test' fails

Some times, `make test' fails at the very first test with an obscure message like

 make test
 make[1]: Entering directory `/ldap_files/openldap-2.4.6/tests'
 make[2]: Entering directory `/ldap_files/openldap-2.4.6/tests'
 Initiating LDAP tests for BDB...
 Cleaning up test run directory leftover from previous run.
 Running ./scripts/all...
 >>>>> Executing all LDAP tests for bdb
 >>>>> Starting test000-rootdse ...
 running defines.sh
 Starting slapd on TCP/IP port 9011...
 Using ldapsearch to retrieve the root DSE...
 Waiting 5 seconds for slapd to start...

OpenLDAP Software 2.4 Administrator's Guide

C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure;Permission denied; 210

 ./scripts/test000-rootdse: line 40: 10607 Segmentation fault $SLAPD -f $CONF1 -h $URI1 -d $LVL $TIMING >$LOG1 2>&1
 Waiting 5 seconds for slapd to start...
 Waiting 5 seconds for slapd to start...
 Waiting 5 seconds for slapd to start...
 Waiting 5 seconds for slapd to start...
 Waiting 5 seconds for slapd to start...
 ./scripts/test000-rootdse: kill: (10607) - No such pid
 ldap_sasl_bind_s: Can't contact LDAP server (-1)
 >>>>> Test failed
 >>>>> ./scripts/test000-rootdse failed (exit 1)
 make[2]: *** [bdb-yes] Error 1
 make[2]: Leaving directory `/ldap_files/openldap-2.4.6/tests'
 make[1]: *** [test] Error 2
 make[1]: Leaving directory `/ldap_files/openldap-2.4.6/tests'
 make: *** [test] Error 2

or so. Usually, the five lines

Waiting 5 seconds for slapd to start...

indicate that slapd didn't start at all.

In tests/testrun/slapd.1.log there is a full log of what slapd wrote while trying to start. The log level
can be increased by setting the environment variable SLAPD_DEBUG to the corresponding value;
see loglevel in slapd.conf(5) for the meaning of log levels.

A typical reason for this behavior is a runtime link problem, i.e. slapd cannot find some dynamic
libraries it was linked against. Try running ldd(1) on slapd (for those architectures that support
runtime linking).

There might well be other reasons; the contents of the log file should help clarifying them.

Tests that fire up multiple instances of slapd typically log to tests/testrun/slapd.<n>.log, with a distinct
<n> for each instance of slapd; list tests/testrun/ for possible values of <n>.

C.2.8. ldap_*: Internal (implementation specific) error (80) -
additional info: entry index delete failed

This seems to be related with wrong ownership of the BDB's dir (/var/lib/ldap) and files. The files
must be owned by the user that slapd runs as.

 chown -R ldap:ldap /var/lib/ldap

fixes it in Debian

C.2.9. ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)

Using SASL, when a client contacts LDAP server, the slapd service dies immediately and client gets
an error :

 SASL/GSSAPI authentication started ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)

Then check the slapd service, it stopped.

OpenLDAP Software 2.4 Administrator's Guide

C.2.7. `make test' fails 211

This may come from incompatible of using different versions of BerkeleyDB for installing of SASL
and installing of OpenLDAP. The problem arises in case of using multiple version of BerkeleyDB.
Solution: - Check which version of BerkeleyDB when install Cyrus SASL.

Reinstall OpenLDAP with the version of BerkeleyDB above.

OpenLDAP Software 2.4 Administrator's Guide

C.2.9. ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1) 212

D. Recommended OpenLDAP Software
Dependency Versions
This appendix details the recommended versions of the software that OpenLDAP depends on.

Please read the Prerequisite software section for more information on the following software
dependencies.

D.1. Dependency Versions

Table 8.5: OpenLDAP Software Dependency Versions

Feature Software Version
 Transport Layer
Security:

 OpenSSL 0.9.7+

 GnuTLS 2.0.1

 MozNSS 3.12.9

 Simple Authentication
and Security Layer Cyrus SASL 2.1.21+

 Kerberos Authentication
Service:

 Heimdal Version

 MIT
Kerberos

Version

Database Software Berkeley
DB:

4.4

4.5

4.6

4.7

4.8

5.0

5.1

Note: It is highly recommended to
apply the patches from Oracle for a
given release.

Threads:
POSIX
pthreads

Version

Mach
CThreads

Version

TCP Wrappers Name Version

D. Recommended OpenLDAP Software Dependency Versions 213

http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS
http://asg.web.cmu.edu/sasl/sasl-library.html
http://www.pdc.kth.se/heimdal/
http://web.mit.edu/kerberos/www/
http://web.mit.edu/kerberos/www/
http://www.oracle.com/database/berkeley-db/db/index.html
http://www.oracle.com/database/berkeley-db/db/index.html

E. Real World OpenLDAP Deployments and
Examples
Examples and discussions

E. Real World OpenLDAP Deployments and Examples 214

F. OpenLDAP Software Contributions
The following sections attempt to summarize the various contributions in OpenLDAP software, as
found in openldap_src/contrib

F.1. Client APIs

Intro and discuss

F.1.1. ldapc++

Intro and discuss

F.1.2. ldaptcl

Intro and discuss

F.2. Overlays

F.2.1. acl

Plugins that implement access rules. Currently only posixGroup, which implements access control
based on posixGroup membership.

F.2.2. addpartial

Treat Add requests as Modify requests if the entry exists.

F.2.3. allop

Return operational attributes for root DSE even when not requested, since some clients expect this.

F.2.4. autogroup

Automated updates of group memberships.

F.2.5. comp_match

Component Matching rules (RFC 3687).

F.2.6. denyop

Deny selected operations, returning unwillingToPerform.

F. OpenLDAP Software Contributions 215

F.2.7. dsaschema

Permit loading DSA-specific schema, including operational attrs.

F.2.8. lastmod

Track the time of the last write operation to a database.

F.2.9. nops

Remove null operations, e.g. changing a value to same as before.

F.2.10. nssov

Handle NSS lookup requests through a local Unix Domain socket.

F.2.11. passwd

Support additional password mechanisms.

F.2.12. proxyOld

Proxy Authorization compatibility with obsolete internet-draft.

F.2.13. smbk5pwd

Make the PasswordModify Extended Operation update Kerberos keys and Samba password hashes as
well as userPassword.

F.2.14. trace

Trace overlay invocation.

F.2.15. usn

Maintain usnCreated and usnChanged attrs similar to Microsoft AD.

F.3. Tools

Intro and discuss

F.3.1. Statistic Logging

statslog

OpenLDAP Software 2.4 Administrator's Guide

F.2.7. dsaschema 216

F.4. SLAPI Plugins

Intro and discuss

F.4.1. addrdnvalues

More

OpenLDAP Software 2.4 Administrator's Guide

F.4. SLAPI Plugins 217

G. Configuration File Examples

G.1. slapd.conf

G.2. ldap.conf

G.3. a-n-other.conf

G. Configuration File Examples 218

H. LDAP Result Codes
For the purposes of this guide, we have incorporated the standard LDAP result codes from Appendix
A. LDAP Result Codes of RFC4511, a copy of which can be found in doc/rfc of the OpenLDAP
source code.

We have expanded the description of each error in relation to the OpenLDAP toolsets. LDAP
extensions may introduce extension-specific result codes, which are not part of RFC4511. OpenLDAP
returns the result codes related to extensions it implements. Their meaning is documented in the
extension they are related to.

H.1. Non-Error Result Codes

These result codes (called "non-error" result codes) do not indicate an error condition:

 success (0),
 compareFalse (5),
 compareTrue (6),
 referral (10), and
 saslBindInProgress (14).

The success, compareTrue, and compareFalse result codes indicate successful completion (and,
hence, are referred to as "successful" result codes).

The referral and saslBindInProgress result codes indicate the client needs to take additional action to
complete the operation.

H.2. Result Codes

Existing LDAP result codes are described as follows:

H.3. success (0)

Indicates the successful completion of an operation.

Note: this code is not used with the Compare operation. See compareFalse (5) and compareTrue (6).

H.4. operationsError (1)

Indicates that the operation is not properly sequenced with relation to other operations (of same or
different type).

For example, this code is returned if the client attempts to StartTLS (RFC4511 Section 4.14) while
there are other uncompleted operations or if a TLS layer was already installed.

H. LDAP Result Codes 219

http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4511.txt

H.5. protocolError (2)

Indicates the server received data that is not well-formed.

For Bind operation only, this code is also used to indicate that the server does not support the
requested protocol version.

For Extended operations only, this code is also used to indicate that the server does not support (by
design or configuration) the Extended operation associated with the requestName.

For request operations specifying multiple controls, this may be used to indicate that the server cannot
ignore the order of the controls as specified, or that the combination of the specified controls is invalid
or unspecified.

H.6. timeLimitExceeded (3)

Indicates that the time limit specified by the client was exceeded before the operation could be
completed.

H.7. sizeLimitExceeded (4)

Indicates that the size limit specified by the client was exceeded before the operation could be
completed.

H.8. compareFalse (5)

Indicates that the Compare operation has successfully completed and the assertion has evaluated to
FALSE or Undefined.

H.9. compareTrue (6)

Indicates that the Compare operation has successfully completed and the assertion has evaluated to
TRUE.

H.10. authMethodNotSupported (7)

Indicates that the authentication method or mechanism is not supported.

H.11. strongerAuthRequired (8)

Indicates the server requires strong(er) authentication in order to complete the operation.

When used with the Notice of Disconnection operation, this code indicates that the server has detected
that an established security association between the client and server has unexpectedly failed or been
compromised.

OpenLDAP Software 2.4 Administrator's Guide

H.5. protocolError (2) 220

H.12. referral (10)

Indicates that a referral needs to be chased to complete the operation (see RFC4511 Section 4.1.10).

H.13. adminLimitExceeded (11)

Indicates that an administrative limit has been exceeded.

H.14. unavailableCriticalExtension (12)

Indicates a critical control is unrecognized (see RFC4511 Section 4.1.11).

H.15. confidentialityRequired (13)

Indicates that data confidentiality protections are required.

H.16. saslBindInProgress (14)

Indicates the server requires the client to send a new bind request, with the same SASL mechanism, to
continue the authentication process (see RFC4511 Section 4.2).

H.17. noSuchAttribute (16)

Indicates that the named entry does not contain the specified attribute or attribute value.

H.18. undefinedAttributeType (17)

Indicates that a request field contains an unrecognized attribute description.

H.19. inappropriateMatching (18)

Indicates that an attempt was made (e.g., in an assertion) to use a matching rule not defined for the
attribute type concerned.

H.20. constraintViolation (19)

Indicates that the client supplied an attribute value that does not conform to the constraints placed
upon it by the data model.

For example, this code is returned when multiple values are supplied to an attribute that has a
SINGLE-VALUE constraint.

H.21. attributeOrValueExists (20)

OpenLDAP Software 2.4 Administrator's Guide

H.12. referral (10) 221

http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4511.txt

Indicates that the client supplied an attribute or value to be added to an entry, but the attribute or value
already exists.

H.22. invalidAttributeSyntax (21)

Indicates that a purported attribute value does not conform to the syntax of the attribute.

H.23. noSuchObject (32)

Indicates that the object does not exist in the DIT.

H.24. aliasProblem (33)

Indicates that an alias problem has occurred. For example, the code may used to indicate an alias has
been dereferenced that names no object.

H.25. invalidDNSyntax (34)

Indicates that an LDAPDN or RelativeLDAPDN field (e.g., search base, target entry, ModifyDN
newrdn, etc.) of a request does not conform to the required syntax or contains attribute values that do
not conform to the syntax of the attribute's type.

H.26. aliasDereferencingProblem (36)

Indicates that a problem occurred while dereferencing an alias. Typically, an alias was encountered in
a situation where it was not allowed or where access was denied.

H.27. inappropriateAuthentication (48)

Indicates the server requires the client that had attempted to bind anonymously or without supplying
credentials to provide some form of credentials.

H.28. invalidCredentials (49)

Indicates that the provided credentials (e.g., the user's name and password) are invalid.

H.29. insufficientAccessRights (50)

Indicates that the client does not have sufficient access rights to perform the operation.

H.30. busy (51)

Indicates that the server is too busy to service the operation.

OpenLDAP Software 2.4 Administrator's Guide

H.21. attributeOrValueExists (20) 222

H.31. unavailable (52)

Indicates that the server is shutting down or a subsystem necessary to complete the operation is
offline.

H.32. unwillingToPerform (53)

Indicates that the server is unwilling to perform the operation.

H.33. loopDetect (54)

Indicates that the server has detected an internal loop (e.g., while dereferencing aliases or chaining an
operation).

H.34. namingViolation (64)

Indicates that the entry's name violates naming restrictions.

H.35. objectClassViolation (65)

Indicates that the entry violates object class restrictions.

H.36. notAllowedOnNonLeaf (66)

Indicates that the operation is inappropriately acting upon a non-leaf entry.

H.37. notAllowedOnRDN (67)

Indicates that the operation is inappropriately attempting to remove a value that forms the entry's
relative distinguished name.

H.38. entryAlreadyExists (68)

Indicates that the request cannot be fulfilled (added, moved, or renamed) as the target entry already
exists.

H.39. objectClassModsProhibited (69)

Indicates that an attempt to modify the object class(es) of an entry's 'objectClass' attribute is
prohibited.

For example, this code is returned when a client attempts to modify the structural object class of an
entry.

OpenLDAP Software 2.4 Administrator's Guide

H.31. unavailable (52) 223

H.40. affectsMultipleDSAs (71)

Indicates that the operation cannot be performed as it would affect multiple servers (DSAs).

H.41. other (80)

Indicates the server has encountered an internal error.

OpenLDAP Software 2.4 Administrator's Guide

H.40. affectsMultipleDSAs (71) 224

I. Glossary

I.1. Terms

Term Definition
3DES Triple DES
ABNF Augmented Backus-Naur Form
ACDF Access Control Decision Function
ACE ASCII Compatible Encoding
ASCII American Standard Code for Information Interchange
ACID Atomicity, Consistency, Isolation, and Durability
ACI Access Control Information
ACL Access Control List
AES Advance Encryption Standard
ABI Application Binary Interface
API Application Program Interface
ASN.1 Abstract Syntax Notation - One
AVA Attribute Value Assertion
AuthcDN Authentication DN
AuthcId Authentication Identity
AuthzDN Authorization DN
AuthzId Authorization Identity
BCP Best Current Practice
BDB Berkeley DB (Backend)
BER Basic Encoding Rules
BNF Backus-Naur Form
C The C Programming Language
CA Certificate Authority
CER Canonical Encoding Rules
CLDAP Connection-less LDAP
CN Common Name
CRAM-MD5 SASL MD5 Challenge/Response Authentication Mechanism
CRL Certificate Revocation List
DAP Directory Access Protocol
DC Domain Component
DER Distinguished Encoding Rules
DES Data Encryption Standard
DIB Directory Information Base
DIGEST-MD5 SASL Digest MD5 Authentication Mechanism
DISP Directory Information Shadowing Protocol
DIT Directory Information Tree
DNS Domain Name System

I. Glossary 225

DN Distinguished Name
DOP Directory Operational Binding Management Protocol
DSAIT DSA Information Tree
DSA Directory System Agent
DSE DSA-specific Entry
DSP Directory System Protocol
DS Draft Standard
DUA Directory User Agent
EXTERNAL SASL External Authentication Mechanism
FAQ Frequently Asked Questions
FTP File Transfer Protocol
FYI For Your Information
GSER Generic String Encoding Rules
GSS-API Generic Security Service Application Program Interface
GSSAPI SASL Kerberos V GSS-API Authentication Mechanism
HDB Hierarchical Database (Backend)
I-D Internet-Draft
IA5 International Alphabet 5
IDNA Internationalized Domain Names in Applications
IDN Internationalized Domain Name
ID Identifier
IDL Index Data Lookups
IP Internet Protocol
IPC Inter-process communication
IPsec Internet Protocol Security
IPv4 Internet Protocol, version 4
IPv6 Internet Protocol, version 6
ITS Issue Tracking System
JPEG Joint Photographic Experts Group
Kerberos Kerberos Authentication Service
LBER Lightweight BER
LDAP Lightweight Directory Access Protocol
LDAP Sync LDAP Content Synchronization
LDAPv3 LDAP, version 3
LDIF LDAP Data Interchange Format
MD5 Message Digest 5
MIB Management Information Base
MODDN Modify DN
MODRDN Modify RDN
NSSR Non-specific Subordinate Reference
OID Object Identifier
OSI Open Systems Interconnect

OpenLDAP Software 2.4 Administrator's Guide

I.1. Terms 226

OTP One Time Password
PDU Protocol Data Unit
PEM Privacy Enhanced eMail
PEN Private Enterprise Number
PKCS Public Key Cryptosystem
PKI Public Key Infrastructure
PKIX Public Key Infrastructure (X.509)
PLAIN SASL Plaintext Password Authentication Mechanism
POSIX Portable Operating System Interface
PS Proposed Standard
RDN Relative Distinguished Name
RFC Request for Comments
RPC Remote Procedure Call
RXER Robust XML Encoding Rules
SASL Simple Authentication and Security Layer
SDF Simple Document Format
SDSE Shadowed DSE
SHA1 Secure Hash Algorithm 1
SLAPD Standalone LDAP Daemon
SLURPD Standalone LDAP Update Replication Daemon
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SQL Structured Query Language
SRP Secure Remote Password
SSF Security Strength Factor
SSL Secure Socket Layer
STD Internet Standard
TCP Transmission Control Protocol
TLS Transport Layer Security
UCS Universal Multiple-Octet Coded Character Set
UDP User Datagram Protocol
UID User Identifier
Unicode The Unicode Standard
UNIX Unix
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
UTF-8 8-bit UCS/Unicode Transformation Format
UTR Unicode Technical Report
UUID Universally Unique Identifier
WWW World Wide Web
X.500 X.500 Directory Services

OpenLDAP Software 2.4 Administrator's Guide

I.1. Terms 227

X.509 X.509 Public Key and Attribute Certificate Frameworks
XED XML Enabled Directory
XER XML Encoding Rules
XML Extensible Markup Language
syncrepl LDAP Sync-based Replication

I.2. Related Organizations

Name Long Jump
ANSI American National Standards Institute http://www.ansi.org/
BSI British Standards Institute http://www.bsi-global.com/

COSINE Co-operation and Open Systems
Interconnection in Europe

CPAN Comprehensive Perl Archive Network http://cpan.org/
Cyrus Project Cyrus http://cyrusimap.web.cmu.edu/
FSF Free Software Foundation http://www.fsf.org/
GNU GNU Not Unix Project http://www.gnu.org/
IAB Internet Architecture Board http://www.iab.org/
IANA Internet Assigned Numbers Authority http://www.iana.org/

IEEE Institute of Electrical and Electronics
Engineers http://www.ieee.org

IESG Internet Engineering Steering Group http://www.ietf.org/iesg/
IETF Internet Engineering Task Force http://www.ietf.org/
IRTF Internet Research Task Force http://www.irtf.org/
ISO International Standards Organisation http://www.iso.org/
ISOC Internet Society http://www.isoc.org/
ITU International Telephone Union http://www.itu.int/
OLF OpenLDAP Foundation http://www.openldap.org/foundation/
OLP OpenLDAP Project http://www.openldap.org/project/
OpenSSL OpenSSL Project http://www.openssl.org/
RFC Editor RFC Editor http://www.rfc-editor.org/
Oracle Oracle Corporation http://www.oracle.com/
UM University of Michigan http://www.umich.edu/
UMLDAP University of Michigan LDAP Team http://www.umich.edu/~dirsvcs/ldap/ldap.html

I.3. Related Products

Name Jump
SDF http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html
Berkeley DB http://www.oracle.com/database/berkeley-db/db/index.html
CVS http://www.cvshome.org/
Cyrus http://cyrusimap.web.cmu.edu/generalinfo.html
Cyrus SASL http://asg.web.cmu.edu/sasl/sasl-library.html
GNU http://www.gnu.org/software/

OpenLDAP Software 2.4 Administrator's Guide

I.2. Related Organizations 228

http://www.ansi.org/
http://www.ansi.org/
http://www.bsi-global.com/
http://www.bsi-global.com/
http://cpan.org/
http://cpan.org/
http://cyrusimap.web.cmu.edu/
http://cyrusimap.web.cmu.edu/
http://www.fsf.org/
http://www.fsf.org/
http://www.gnu.org/
http://www.gnu.org/
http://www.iab.org/
http://www.iab.org/
http://www.iana.org/
http://www.iana.org/
http://www.ieee.org
http://www.ieee.org
http://www.ietf.org/iesg/
http://www.ietf.org/iesg/
http://www.ietf.org/
http://www.ietf.org/
http://www.irtf.org/
http://www.irtf.org/
http://www.iso.org/
http://www.iso.org/
http://www.isoc.org/
http://www.isoc.org/
http://www.itu.int/
http://www.itu.int/
http://www.openldap.org/foundation/
http://www.openldap.org/foundation/
http://www.openldap.org/project/
http://www.openldap.org/project/
http://www.openssl.org/
http://www.openssl.org/
http://www.rfc-editor.org/
http://www.rfc-editor.org/
http://www.oracle.com/
http://www.oracle.com/
http://www.umich.edu/
http://www.umich.edu/
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html
http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html
http://www.oracle.com/database/berkeley-db/db/index.html
http://www.oracle.com/database/berkeley-db/db/index.html
http://www.cvshome.org/
http://www.cvshome.org/
http://cyrusimap.web.cmu.edu/generalinfo.html
http://cyrusimap.web.cmu.edu/generalinfo.html
http://asg.web.cmu.edu/sasl/sasl-library.html
http://asg.web.cmu.edu/sasl/sasl-library.html
http://www.gnu.org/software/
http://www.gnu.org/software/

GnuTLS http://www.gnu.org/software/gnutls/
Heimdal http://www.pdc.kth.se/heimdal/
JLDAP http://www.openldap.org/jldap/
MIT Kerberos http://web.mit.edu/kerberos/www/
MozNSS http://developer.mozilla.org/en/NSS
OpenLDAP http://www.openldap.org/
OpenLDAP FAQ http://www.openldap.org/faq/
OpenLDAP ITS http://www.openldap.org/its/
OpenLDAP Software http://www.openldap.org/software/
OpenSSL http://www.openssl.org/
Perl http://www.perl.org/
UMLDAP http://www.umich.edu/~dirsvcs/ldap/ldap.html

I.4. References

Reference Document Status Jump

UM-GUIDE

The SLAPD and
SLURPD
Administrators
Guide

O http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf

RFC2079

Definition of an
X.500 Attribute
Type and an
Object Class to
Hold Uniform
Resource
Identifers

PS http://www.rfc-editor.org/rfc/rfc2079.txt

RFC2296 Use of Language
Codes in LDAP PS http://www.rfc-editor.org/rfc/rfc2296.txt

RFC2307

An Approach for
Using LDAP as a
Network
Information
Service

X http://www.rfc-editor.org/rfc/rfc2307.txt

RFC2589

Lightweight
Directory Access
Protocol (v3):
Extensions for
Dynamic
Directory
Services

PS http://www.rfc-editor.org/rfc/rfc2589.txt

RFC2798

Definition of the
inetOrgPerson
LDAP Object
Class

I http://www.rfc-editor.org/rfc/rfc2798.txt

RFC2831 Using Digest
Authentication as

PS http://www.rfc-editor.org/rfc/rfc2831.txt

OpenLDAP Software 2.4 Administrator's Guide

I.3. Related Products 229

http://www.gnu.org/software/gnutls/
http://www.gnu.org/software/gnutls/
http://www.pdc.kth.se/heimdal/
http://www.pdc.kth.se/heimdal/
http://www.openldap.org/jldap/
http://www.openldap.org/jldap/
http://web.mit.edu/kerberos/www/
http://web.mit.edu/kerberos/www/
http://developer.mozilla.org/en/NSS
http://developer.mozilla.org/en/NSS
http://www.openldap.org/
http://www.openldap.org/
http://www.openldap.org/faq/
http://www.openldap.org/faq/
http://www.openldap.org/its/
http://www.openldap.org/its/
http://www.openldap.org/software/
http://www.openldap.org/software/
http://www.openssl.org/
http://www.openssl.org/
http://www.perl.org/
http://www.perl.org/
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf
http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf
http://www.rfc-editor.org/rfc/rfc2079.txt
http://www.rfc-editor.org/rfc/rfc2079.txt
http://www.rfc-editor.org/rfc/rfc2296.txt
http://www.rfc-editor.org/rfc/rfc2296.txt
http://www.rfc-editor.org/rfc/rfc2307.txt
http://www.rfc-editor.org/rfc/rfc2307.txt
http://www.rfc-editor.org/rfc/rfc2589.txt
http://www.rfc-editor.org/rfc/rfc2589.txt
http://www.rfc-editor.org/rfc/rfc2798.txt
http://www.rfc-editor.org/rfc/rfc2798.txt
http://www.rfc-editor.org/rfc/rfc2831.txt
http://www.rfc-editor.org/rfc/rfc2831.txt

a SASL
Mechanism

RFC2849
The LDAP Data
Interchange
Format

PS http://www.rfc-editor.org/rfc/rfc2849.txt

RFC3088 OpenLDAP Root
Service X http://www.rfc-editor.org/rfc/rfc3088.txt

RFC3296

Named
Subordinate
References in
LDAP

PS http://www.rfc-editor.org/rfc/rfc3296.txt

RFC3384

Lightweight
Directory Access
Protocol (version
3) Replication
Requirements

I http://www.rfc-editor.org/rfc/rfc3384.txt

RFC3494

Lightweight
Directory Access
Protocol version
2 (LDAPv2) to
Historic Status

I http://www.rfc-editor.org/rfc/rfc3494.txt

RFC4013

SASLprep:
Stringprep
Profile for User
Names and
Passwords

PS http://www.rfc-editor.org/rfc/rfc4013.txt

RFC4346

The Transport
Layer Security
(TLS) Protocol,
Version 1.1

PS http://www.rfc-editor.org/rfc/rfc4346.txt

RFC4422

Simple
Authentication
and Security
Layer (SASL)

PS http://www.rfc-editor.org/rfc/rfc4422.txt

RFC4510

Lightweight
Directory Access
Protocol
(LDAP):
Technical
Specification
Roadmap

PS http://www.rfc-editor.org/rfc/rfc4510.txt

RFC4511

Lightweight
Directory Access
Protocol
(LDAP): The
Protocol

PS http://www.rfc-editor.org/rfc/rfc4511.txt

RFC4512 Lightweight
Directory Access

PS http://www.rfc-editor.org/rfc/rfc4512.txt

OpenLDAP Software 2.4 Administrator's Guide

I.4. References 230

http://www.rfc-editor.org/rfc/rfc2849.txt
http://www.rfc-editor.org/rfc/rfc2849.txt
http://www.rfc-editor.org/rfc/rfc3088.txt
http://www.rfc-editor.org/rfc/rfc3088.txt
http://www.rfc-editor.org/rfc/rfc3296.txt
http://www.rfc-editor.org/rfc/rfc3296.txt
http://www.rfc-editor.org/rfc/rfc3384.txt
http://www.rfc-editor.org/rfc/rfc3384.txt
http://www.rfc-editor.org/rfc/rfc3494.txt
http://www.rfc-editor.org/rfc/rfc3494.txt
http://www.rfc-editor.org/rfc/rfc4013.txt
http://www.rfc-editor.org/rfc/rfc4013.txt
http://www.rfc-editor.org/rfc/rfc4346.txt
http://www.rfc-editor.org/rfc/rfc4346.txt
http://www.rfc-editor.org/rfc/rfc4422.txt
http://www.rfc-editor.org/rfc/rfc4422.txt
http://www.rfc-editor.org/rfc/rfc4510.txt
http://www.rfc-editor.org/rfc/rfc4510.txt
http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4512.txt

Protocol
(LDAP):
Directory
Information
Models

RFC4513

Lightweight
Directory Access
Protocol
(LDAP):
Authentication
Methods and
Security
Mechanisms

PS http://www.rfc-editor.org/rfc/rfc4513.txt

RFC4514

Lightweight
Directory Access
Protocol
(LDAP): String
Representation of
Distinguished
Names

PS http://www.rfc-editor.org/rfc/rfc4514.txt

RFC4515

Lightweight
Directory Access
Protocol
(LDAP): String
Representation of
Search Filters

PS http://www.rfc-editor.org/rfc/rfc4515.txt

RFC4516

Lightweight
Directory Access
Protocol
(LDAP):
Uniform
Resource Locator

PS http://www.rfc-editor.org/rfc/rfc4516.txt

RFC4517

Lightweight
Directory Access
Protocol
(LDAP):
Syntaxes and
Matching Rules

PS http://www.rfc-editor.org/rfc/rfc4517.txt

RFC4518

Lightweight
Directory Access
Protocol
(LDAP):
Internationalized
String
Preparation

PS http://www.rfc-editor.org/rfc/rfc4518.txt

RFC4519 Lightweight
Directory Access
Protocol
(LDAP): Schema

PS http://www.rfc-editor.org/rfc/rfc4519.txt

OpenLDAP Software 2.4 Administrator's Guide

I.4. References 231

http://www.rfc-editor.org/rfc/rfc4513.txt
http://www.rfc-editor.org/rfc/rfc4513.txt
http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.rfc-editor.org/rfc/rfc4515.txt
http://www.rfc-editor.org/rfc/rfc4515.txt
http://www.rfc-editor.org/rfc/rfc4516.txt
http://www.rfc-editor.org/rfc/rfc4516.txt
http://www.rfc-editor.org/rfc/rfc4517.txt
http://www.rfc-editor.org/rfc/rfc4517.txt
http://www.rfc-editor.org/rfc/rfc4518.txt
http://www.rfc-editor.org/rfc/rfc4518.txt
http://www.rfc-editor.org/rfc/rfc4519.txt
http://www.rfc-editor.org/rfc/rfc4519.txt

for User
Applications

RFC4520
IANA
Considerations
for LDAP

BCP http://www.rfc-editor.org/rfc/rfc4520.txt

RFC4533

The Lightweight
Directory Access
Protocol (LDAP)
Content
Synchronization
Operation

X http://www.rfc-editor.org/rfc/rfc4533.txt

OpenLDAP Software 2.4 Administrator's Guide

I.4. References 232

http://www.rfc-editor.org/rfc/rfc4520.txt
http://www.rfc-editor.org/rfc/rfc4520.txt
http://www.rfc-editor.org/rfc/rfc4533.txt
http://www.rfc-editor.org/rfc/rfc4533.txt

J. Generic configure Instructions
Basic Installation
==================

 These are generic installation instructions.

 The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a `Makefile' in each directory of the package.
It may also create one or more `.h' files containing system-dependent
definitions. Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, a file
`config.cache' that saves the results of its tests to speed up
reconfiguring, and a file `config.log' containing compiler output
(useful mainly for debugging `configure').

 If you need to do unusual things to compile the package, please try
to figure out how `configure' could check whether to do them, and mail
diffs or instructions to the address given in the `README' so they can
be considered for the next release. If at some point `config.cache'
contains results you don't want to keep, you may remove or edit it.

 The file `configure.in' is used to create `configure' by a program
called `autoconf'. You only need `configure.in' if you want to change
it or regenerate `configure' using a newer version of `autoconf'.

The simplest way to compile this package is:

 1. `cd' to the directory containing the package's source code and type
 `./configure' to configure the package for your system. If you're
 using `csh' on an old version of System V, you might need to type
 `sh ./configure' instead to prevent `csh' from trying to execute
 `configure' itself.

 Running `configure' takes awhile. While running, it prints some
 messages telling which features it is checking for.

 2. Type `make' to compile the package.

 3. Optionally, type `make check' to run any self-tests that come with
 the package.

 4. Type `make install' to install the programs and any data files and
 documentation.

 5. You can remove the program binaries and object files from the
 source code directory by typing `make clean'. To also remove the
 files that `configure' created (so you can compile the package for
 a different kind of computer), type `make distclean'. There is
 also a `make maintainer-clean' target, but that is intended mainly
 for the package's developers. If you use it, you may have to get
 all sorts of other programs in order to regenerate files that came
 with the distribution.

Compilers and Options
=====================

 Some systems require unusual options for compilation or linking that
the `configure' script does not know about. You can give `configure'
initial values for variables by setting them in the environment. Using

J. Generic configure Instructions 233

a Bourne-compatible shell, you can do that on the command line like
this:
 CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure

Or on systems that have the `env' program, you can do it like this:
 env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

Compiling For Multiple Architectures
====================================

 You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you must use a version of `make' that
supports the `VPATH' variable, such as GNU `make'. `cd' to the
directory where you want the object files and executables to go and run
the `configure' script. `configure' automatically checks for the
source code in the directory that `configure' is in and in `..'.

 If you have to use a `make' that does not supports the `VPATH'
variable, you have to compile the package for one architecture at a time
in the source code directory. After you have installed the package for
one architecture, use `make distclean' before reconfiguring for another
architecture.

Installation Names
==================

 By default, `make install' will install the package's files in
`/usr/local/bin', `/usr/local/man', etc. You can specify an
installation prefix other than `/usr/local' by giving `configure' the
option `--prefix=PATH'.

 You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
give `configure' the option `--exec-prefix=PATH', the package will use
PATH as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.

 In addition, if you use an unusual directory layout you can give
options like `--bindir=PATH' to specify different values for particular
kinds of files. Run `configure --help' for a list of the directories
you can set and what kinds of files go in them.

 If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving `configure' the
option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.

Optional Features
=================

 Some packages pay attention to `--enable-FEATURE' options to
`configure', where FEATURE indicates an optional part of the package.
They may also pay attention to `--with-PACKAGE' options, where PACKAGE
is something like `gnu-as' or `x' (for the X Window System). The
`README' should mention any `--enable-' and `--with-' options that the
package recognizes.

 For packages that use the X Window System, `configure' can usually
find the X include and library files automatically, but if it doesn't,
you can use the `configure' options `--x-includes=DIR' and
`--x-libraries=DIR' to specify their locations.

OpenLDAP Software 2.4 Administrator's Guide

J. Generic configure Instructions 234

Specifying the System Type
==========================

 There may be some features `configure' can not figure out
automatically, but needs to determine by the type of host the package
will run on. Usually `configure' can figure that out, but if it prints
a message saying it can not guess the host type, give it the
`--host=TYPE' option. TYPE can either be a short name for the system
type, such as `sun4', or a canonical name with three fields:
 CPU-COMPANY-SYSTEM

See the file `config.sub' for the possible values of each field. If
`config.sub' isn't included in this package, then this package doesn't
need to know the host type.

 If you are building compiler tools for cross-compiling, you can also
use the `--target=TYPE' option to select the type of system they will
produce code for and the `--build=TYPE' option to select the type of
system on which you are compiling the package.

Sharing Defaults
================

 If you want to set default values for `configure' scripts to share,
you can create a site shell script called `config.site' that gives
default values for variables like `CC', `cache_file', and `prefix'.
`configure' looks for `PREFIX/share/config.site' if it exists, then
`PREFIX/etc/config.site' if it exists. Or, you can set the
`CONFIG_SITE' environment variable to the location of the site script.
A warning: not all `configure' scripts look for a site script.

Operation Controls
==================

 `configure' recognizes the following options to control how it
operates.

`--cache-file=FILE'
 Use and save the results of the tests in FILE instead of
 `./config.cache'. Set FILE to `/dev/null' to disable caching, for
 debugging `configure'.

`--help'
 Print a summary of the options to `configure', and exit.

`--quiet'
`--silent'
`-q'
 Do not print messages saying which checks are being made. To
 suppress all normal output, redirect it to `/dev/null' (any error
 messages will still be shown).

`--srcdir=DIR'
 Look for the package's source code in directory DIR. Usually
 `configure' can determine that directory automatically.

`--version'
 Print the version of Autoconf used to generate the `configure'
 script, and exit.

`configure' also accepts some other, not widely useful, options.

OpenLDAP Software 2.4 Administrator's Guide

J. Generic configure Instructions 235

K. OpenLDAP Software Copyright Notices

K.1. OpenLDAP Copyright Notice

Copyright 1998-2008 The OpenLDAP Foundation.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted only as
authorized by the OpenLDAP Public License.

A copy of this license is available in file LICENSE in the top-level directory of the distribution or,
alternatively, at <http://www.OpenLDAP.org/license.html>.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Individual files and/or contributed packages may be copyright by other parties and their use subject to
additional restrictions.

This work is derived from the University of Michigan LDAP v3.3 distribution. Information
concerning this software is available at <http://www.umich.edu/~dirsvcs/ldap/ldap.html>.

This work also contains materials derived from public sources.

Additional information about OpenLDAP software can be obtained at
<http://www.OpenLDAP.org/>.

K.2. Additional Copyright Notices

Portions Copyright 1998-2008 Kurt D. Zeilenga.
Portions Copyright 1998-2006 Net Boolean Incorporated.
Portions Copyright 2001-2006 IBM Corporation.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted only as
authorized by the OpenLDAP Public License.

Portions Copyright 1999-2007 Howard Y.H. Chu.
Portions Copyright 1999-2007 Symas Corporation.
Portions Copyright 1998-2003 Hallvard B. Furuseth.
Portions Copyright 2007-2011 Gavin Henry.
Portions Copyright 2007-2011 Suretec Systems Limited.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that this notice is preserved. The names of the copyright holders may not be used to endorse
or promote products derived from this software without their specific prior written permission. This
software is provided ``as is'' without express or implied warranty.

K. OpenLDAP Software Copyright Notices 236

http://www.OpenLDAP.org/license.html
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.OpenLDAP.org/

K.3. University of Michigan Copyright Notice

Portions Copyright 1992-1996 Regents of the University of Michigan.
All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is preserved
and that due credit is given to the University of Michigan at Ann Arbor. The name of the University
may not be used to endorse or promote products derived from this software without specific prior
written permission. This software is provided ``as is'' without express or implied warranty.

OpenLDAP Software 2.4 Administrator's Guide

K.3. University of Michigan Copyright Notice 237

L. OpenLDAP Public License
The OpenLDAP Public License
 Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation
("Software"), with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions in source form must retain copyright statements
 and notices,

2. Redistributions in binary form must reproduce applicable copyright
 statements and notices, this list of conditions, and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution, and

3. Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time.
Each revision is distinguished by a version number. You may use
this Software under terms of this license revision or under the
terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS
CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE OPENLDAP FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S)
OR OWNER(S) OF THE SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in
advertising or otherwise to promote the sale, use or other dealing
in this Software without specific, written prior permission. Title
to copyright in this Software shall at all times remain with copyright
holders.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City,
California, USA. All Rights Reserved. Permission to copy and
distribute verbatim copies of this document is granted.

L. OpenLDAP Public License 238

	Table of Contents
	Preface
	Copyright
	Scope of this Document
	Acknowledgments
	Amendments
	About this document

	1. Introduction to OpenLDAP Directory Services
	1.1. What is a directory service?
	1.2. What is LDAP?
	1.3. When should I use LDAP?
	1.4. When should I not use LDAP?
	1.5. How does LDAP work?
	1.6. What about X.500?
	1.7. What is the difference between LDAPv2 and LDAPv3?
	1.8. LDAP vs RDBMS
	1.9. What is slapd and what can it do?

	2. A Quick-Start Guide
	3. The Big Picture - Configuration Choices
	3.1. Local Directory Service
	3.2. Local Directory Service with Referrals
	3.3. Replicated Directory Service
	3.4. Distributed Local Directory Service

	4. Building and Installing OpenLDAP Software
	4.1. Obtaining and Extracting the Software
	4.2. Prerequisite software
	4.2.1. Transport Layer Security
	4.2.2. Simple Authentication and Security Layer
	4.2.3. Kerberos Authentication Service
	4.2.4. Database Software
	4.2.5. Threads
	4.2.6. TCP Wrappers

	4.3. Running configure
	4.4. Building the Software
	4.5. Testing the Software
	4.6. Installing the Software

	5. Configuring slapd
	5.1. Configuration Layout
	5.2. Configuration Directives
	5.2.1. cn=config
	5.2.2. cn=module
	5.2.3. cn=schema
	5.2.4. Backend-specific Directives
	5.2.5. Database-specific Directives
	5.2.6. BDB and HDB Database Directives

	5.3. Configuration Example
	5.4. Converting old style slapd.conf(5) file to cn=config format

	6. The slapd Configuration File
	6.1. Configuration File Format
	6.2. Configuration File Directives
	6.2.1. Global Directives
	6.2.2. General Backend Directives
	6.2.3. General Database Directives
	6.2.4. BDB and HDB Database Directives

	6.3. Configuration File Example

	7. Running slapd
	7.1. Command-Line Options
	7.2. Starting slapd
	7.3. Stopping slapd

	8. Access Control
	8.1. Introduction
	8.2. Access Control via Static Configuration
	8.2.1. What to control access to
	8.2.2. Who to grant access to
	8.2.3. The access to grant
	8.2.4. Access Control Evaluation
	8.2.5. Access Control Examples

	8.3. Access Control via Dynamic Configuration
	8.3.1. What to control access to
	8.3.2. Who to grant access to
	8.3.3. The access to grant
	8.3.4. Access Control Evaluation
	8.3.5. Access Control Examples
	8.3.6. Access Control Ordering

	8.4. Access Control Common Examples
	8.4.1. Basic ACLs
	8.4.2. Matching Anonymous and Authenticated users
	8.4.3. Controlling rootdn access
	8.4.4. Managing access with Groups
	8.4.5. Granting access to a subset of attributes
	8.4.6. Allowing a user write to all entries below theirs
	8.4.7. Allowing entry creation
	8.4.8. Tips for using regular expressions in Access Control
	8.4.9. Granting and Denying access based on security strength factors (ssf)
	8.4.10. When things aren't working as expected

	8.5. Sets - Granting rights based on relationships
	8.5.1. Groups of Groups
	8.5.2. Group ACLs without DN syntax
	8.5.3. Following references

	9. Limits
	9.1. Introduction
	9.2. Soft and Hard limits
	9.3. Global Limits
	9.4. Per-Database Limits
	9.4.1. Specify who the limits apply to
	9.4.2. Specify time limits
	9.4.3. Specifying size limits
	9.4.4. Size limits and Paged Results

	9.5. Example Limit Configurations
	9.5.1. Simple Global Limits
	9.5.2. Global Hard and Soft Limits
	9.5.3. Giving specific users larger limits
	9.5.4. Limiting who can do paged searches

	9.6. Further Information

	10. Database Creation and Maintenance Tools
	10.1. Creating a database over LDAP
	10.2. Creating a database off-line
	10.2.1. The slapadd program
	10.2.2. The slapindex program
	10.2.3. The slapcat program

	10.3. The LDIF text entry format

	11. Backends
	11.1. Berkeley DB Backends
	11.1.1. Overview
	11.1.2. back-bdb/back-hdb Configuration
	11.1.3. Further Information

	11.2. LDAP
	11.2.1. Overview
	11.2.2. back-ldap Configuration
	11.2.3. Further Information

	11.3. LDIF
	11.3.1. Overview
	11.3.2. back-ldif Configuration
	11.3.3. Further Information

	11.4. Metadirectory
	11.4.1. Overview
	11.4.2. back-meta Configuration
	11.4.3. Further Information

	11.5. Monitor
	11.5.1. Overview
	11.5.2. back-monitor Configuration
	11.5.3. Further Information

	11.6. Null
	11.6.1. Overview
	11.6.2. back-null Configuration
	11.6.3. Further Information

	11.7. Passwd
	11.7.1. Overview
	11.7.2. back-passwd Configuration
	11.7.3. Further Information

	11.8. Perl/Shell
	11.8.1. Overview
	11.8.2. back-perl/back-shell Configuration
	11.8.3. Further Information

	11.9. Relay
	11.9.1. Overview
	11.9.2. back-relay Configuration
	11.9.3. Further Information

	11.10. SQL
	11.10.1. Overview
	11.10.2. back-sql Configuration
	11.10.3. Further Information

	12. Overlays
	12.1. Access Logging
	12.1.1. Overview
	12.1.2. Access Logging Configuration
	12.1.3. Further Information

	12.2. Audit Logging
	12.2.1. Overview
	12.2.2. Audit Logging Configuration
	12.2.3. Further Information

	12.3. Chaining
	12.3.1. Overview
	12.3.2. Chaining Configuration
	12.3.3. Handling Chaining Errors
	12.3.4. Read-Back of Chained Modifications
	12.3.5. Further Information

	12.4. Constraints
	12.4.1. Overview
	12.4.2. Constraint Configuration
	12.4.3. Further Information

	12.5. Dynamic Directory Services
	12.5.1. Overview
	12.5.2. Dynamic Directory Service Configuration
	12.5.3. Further Information

	12.6. Dynamic Groups
	12.6.1. Overview
	12.6.2. Dynamic Group Configuration

	12.7. Dynamic Lists
	12.7.1. Overview
	12.7.2. Dynamic List Configuration
	12.7.3. Further Information

	12.8. Reverse Group Membership Maintenance
	12.8.1. Overview
	12.8.2. Member Of Configuration
	12.8.3. Further Information

	12.9. The Proxy Cache Engine
	12.9.1. Overview
	12.9.2. Proxy Cache Configuration
	12.9.3. Further Information

	12.10. Password Policies
	12.10.1. Overview
	12.10.2. Password Policy Configuration
	12.10.3. Further Information

	12.11. Referential Integrity
	12.11.1. Overview
	12.11.2. Referential Integrity Configuration
	12.11.3. Further Information

	12.12. Return Code
	12.12.1. Overview
	12.12.2. Return Code Configuration
	12.12.3. Further Information

	12.13. Rewrite/Remap
	12.13.1. Overview
	12.13.2. Rewrite/Remap Configuration
	12.13.3. Further Information

	12.14. Sync Provider
	12.14.1. Overview
	12.14.2. Sync Provider Configuration
	12.14.3. Further Information

	12.15. Translucent Proxy
	12.15.1. Overview
	12.15.2. Translucent Proxy Configuration
	12.15.3. Further Information

	12.16. Attribute Uniqueness
	12.16.1. Overview
	12.16.2. Attribute Uniqueness Configuration
	12.16.3. Further Information

	12.17. Value Sorting
	12.17.1. Overview
	12.17.2. Value Sorting Configuration
	12.17.3. Further Information

	12.18. Overlay Stacking
	12.18.1. Overview
	12.18.2. Example Scenarios

	13. Schema Specification
	13.1. Distributed Schema Files
	13.2. Extending Schema
	13.2.1. Object Identifiers
	13.2.2. Naming Elements
	13.2.3. Local schema file
	13.2.4. Attribute Type Specification
	13.2.5. Object Class Specification
	13.2.6. OID Macros

	14. Security Considerations
	14.1. Network Security
	14.1.1. Selective Listening
	14.1.2. IP Firewall
	14.1.3. TCP Wrappers

	14.2. Data Integrity and Confidentiality Protection
	14.2.1. Security Strength Factors

	14.3. Authentication Methods
	14.3.1. "simple" method
	14.3.2. SASL method

	14.4. Password Storage
	14.4.1. SSHA password storage scheme
	14.4.2. CRYPT password storage scheme
	14.4.3. MD5 password storage scheme
	14.4.4. SMD5 password storage scheme
	14.4.5. SHA password storage scheme
	14.4.6. SASL password storage scheme

	14.5. Pass-Through authentication
	14.5.1. Configuring slapd to use an authentication provider
	14.5.2. Configuring saslauthd
	14.5.3. Testing pass-through authentication

	15. Using SASL
	15.1. SASL Security Considerations
	15.2. SASL Authentication
	15.2.1. GSSAPI
	15.2.2. KERBEROS_V4
	15.2.3. DIGEST-MD5
	15.2.4. Mapping Authentication Identities
	15.2.5. Direct Mapping
	15.2.6. Search-based mappings

	15.3. SASL Proxy Authorization
	15.3.1. Uses of Proxy Authorization
	15.3.2. SASL Authorization Identities
	15.3.3. Proxy Authorization Rules

	16. Using TLS
	16.1. TLS Certificates
	16.1.1. Server Certificates
	16.1.2. Client Certificates

	16.2. TLS Configuration
	16.2.1. Server Configuration
	16.2.2. Client Configuration

	17. Constructing a Distributed Directory Service
	17.1. Subordinate Knowledge Information
	17.2. Superior Knowledge Information
	17.3. The ManageDsaIT Control

	18. Replication
	18.1. Replication Technology
	18.1.1. LDAP Sync Replication

	18.2. Deployment Alternatives
	18.2.1. Delta-syncrepl replication
	18.2.2. N-Way Multi-Master replication
	18.2.3. MirrorMode replication
	18.2.4. Syncrepl Proxy Mode

	18.3. Configuring the different replication types
	18.3.1. Syncrepl
	18.3.2. Delta-syncrepl
	18.3.3. N-Way Multi-Master
	18.3.4. MirrorMode
	18.3.5. Syncrepl Proxy

	19. Maintenance
	19.1. Directory Backups
	19.2. Berkeley DB Logs
	19.3. Checkpointing
	19.4. Migration

	20. Monitoring
	20.1. Monitor configuration via cn=config(5)
	20.2. Monitor configuration via slapd.conf(5)
	20.3. Accessing Monitoring Information
	20.4. Monitor Information
	20.4.1. Backends
	20.4.2. Connections
	20.4.3. Databases
	20.4.4. Listener
	20.4.5. Log
	20.4.6. Operations
	20.4.7. Overlays
	20.4.8. SASL
	20.4.9. Statistics
	20.4.10. Threads
	20.4.11. Time
	20.4.12. TLS
	20.4.13. Waiters

	21. Tuning
	21.1. Performance Factors
	21.1.1. Memory
	21.1.2. Disks
	21.1.3. Network Topology
	21.1.4. Directory Layout Design
	21.1.5. Expected Usage

	21.2. Indexes
	21.2.1. Understanding how a search works
	21.2.2. What to index
	21.2.3. Presence indexing

	21.3. Logging
	21.3.1. What log level to use
	21.3.2. What to watch out for
	21.3.3. Improving throughput

	21.4. Caching
	21.4.1. Berkeley DB Cache
	21.4.2. slapd(8) Entry Cache (cachesize)
	21.4.3. IDL Cache (idlcachesize)
	21.4.4. slapd(8) Threads

	22. Troubleshooting
	22.1. User or Software errors?
	22.2. Checklist
	22.3. OpenLDAP Bugs
	22.4. 3rd party software error
	22.5. How to contact the OpenLDAP Project
	22.6. How to present your problem
	22.7. Debugging slapd(8)
	22.8. Commercial Support

	A. Changes Since Previous Release
	A.1. New Guide Sections
	A.2. New Features and Enhancements in 2.4
	A.2.1. Better cn=config functionality
	A.2.2. Better cn=schema functionality
	A.2.3. More sophisticated Syncrepl configurations
	A.2.4. N-Way Multimaster Replication
	A.2.5. Replicating slapd Configuration (syncrepl and cn=config)
	A.2.6. Push-Mode Replication
	A.2.7. More extensive TLS configuration control
	A.2.8. Performance enhancements
	A.2.9. New overlays
	A.2.10. New features in existing Overlays
	A.2.11. New features in slapd
	A.2.12. New features in libldap
	A.2.13. New clients, tools and tool enhancements
	A.2.14. New build options

	A.3. Obsolete Features Removed From 2.4
	A.3.1. Slurpd
	A.3.2. back-ldbm

	B. Upgrading from 2.3.x
	B.1. cn=config olc* attributes
	B.2. ACLs: searches require privileges on the search base

	C. Common errors encountered when using OpenLDAP Software
	C.1. Common causes of LDAP errors
	C.1.1. ldap_*: Can't contact LDAP server
	C.1.2. ldap_*: No such object
	C.1.3. ldap_*: Can't chase referral
	C.1.4. ldap_*: server is unwilling to perform
	C.1.5. ldap_*: Insufficient access
	C.1.6. ldap_*: Invalid DN syntax
	C.1.7. ldap_*: Referral hop limit exceeded
	C.1.8. ldap_*: operations error
	C.1.9. ldap_*: other error
	C.1.10. ldap_add/modify: Invalid syntax
	C.1.11. ldap_add/modify: Object class violation
	C.1.12. ldap_add: No such object
	C.1.13. ldap add: invalid structural object class chain
	C.1.14. ldap_add: no structuralObjectClass operational attribute
	C.1.15. ldap_add/modify/rename: Naming violation
	C.1.16. ldap_add/delete/modify/rename: no global superior knowledge
	C.1.17. ldap_bind: Insufficient access
	C.1.18. ldap_bind: Invalid credentials
	C.1.19. ldap_bind: Protocol error
	C.1.20. ldap_modify: cannot modify object class
	C.1.21. ldap_sasl_interactive_bind_s: ...
	C.1.22. ldap_sasl_interactive_bind_s: No such Object
	C.1.23. ldap_sasl_interactive_bind_s: No such attribute
	C.1.24. ldap_sasl_interactive_bind_s: Unknown authentication method
	C.1.25. ldap_sasl_interactive_bind_s: Local error (82)
	C.1.26. ldap_search: Partial results and referral received
	C.1.27. ldap_start_tls: Operations error

	C.2. Other Errors
	C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of range)
	C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily unavailable)
	C.2.3. daemon: socket() failed errno=97 (Address family not supported)
	C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure; Permission denied;
	C.2.5. access from unknown denied
	C.2.6. ldap_read: want=# error=Resource temporarily unavailable
	C.2.7. `make test' fails
	C.2.8. ldap_*: Internal (implementation specific) error (80) - additional info: entry index delete failed
	C.2.9. ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)

	D. Recommended OpenLDAP Software Dependency Versions
	D.1. Dependency Versions

	E. Real World OpenLDAP Deployments and Examples
	F. OpenLDAP Software Contributions
	F.1. Client APIs
	F.1.1. ldapc++
	F.1.2. ldaptcl

	F.2. Overlays
	F.2.1. acl
	F.2.2. addpartial
	F.2.3. allop
	F.2.4. autogroup
	F.2.5. comp_match
	F.2.6. denyop
	F.2.7. dsaschema
	F.2.8. lastmod
	F.2.9. nops
	F.2.10. nssov
	F.2.11. passwd
	F.2.12. proxyOld
	F.2.13. smbk5pwd
	F.2.14. trace
	F.2.15. usn

	F.3. Tools
	F.3.1. Statistic Logging

	F.4. SLAPI Plugins
	F.4.1. addrdnvalues

	G. Configuration File Examples
	G.1. slapd.conf
	G.2. ldap.conf
	G.3. a-n-other.conf

	H. LDAP Result Codes
	H.1. Non-Error Result Codes
	H.2. Result Codes
	H.3. success (0)
	H.4. operationsError (1)
	H.5. protocolError (2)
	H.6. timeLimitExceeded (3)
	H.7. sizeLimitExceeded (4)
	H.8. compareFalse (5)
	H.9. compareTrue (6)
	H.10. authMethodNotSupported (7)
	H.11. strongerAuthRequired (8)
	H.12. referral (10)
	H.13. adminLimitExceeded (11)
	H.14. unavailableCriticalExtension (12)
	H.15. confidentialityRequired (13)
	H.16. saslBindInProgress (14)
	H.17. noSuchAttribute (16)
	H.18. undefinedAttributeType (17)
	H.19. inappropriateMatching (18)
	H.20. constraintViolation (19)
	H.21. attributeOrValueExists (20)
	H.22. invalidAttributeSyntax (21)
	H.23. noSuchObject (32)
	H.24. aliasProblem (33)
	H.25. invalidDNSyntax (34)
	H.26. aliasDereferencingProblem (36)
	H.27. inappropriateAuthentication (48)
	H.28. invalidCredentials (49)
	H.29. insufficientAccessRights (50)
	H.30. busy (51)
	H.31. unavailable (52)
	H.32. unwillingToPerform (53)
	H.33. loopDetect (54)
	H.34. namingViolation (64)
	H.35. objectClassViolation (65)
	H.36. notAllowedOnNonLeaf (66)
	H.37. notAllowedOnRDN (67)
	H.38. entryAlreadyExists (68)
	H.39. objectClassModsProhibited (69)
	H.40. affectsMultipleDSAs (71)
	H.41. other (80)

	I. Glossary
	I.1. Terms
	I.2. Related Organizations
	I.3. Related Products
	I.4. References

	J. Generic configure Instructions
	K. OpenLDAP Software Copyright Notices
	K.1. OpenLDAP Copyright Notice
	K.2. Additional Copyright Notices
	K.3. University of Michigan Copyright Notice

	L. OpenLDAP Public License

