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and nutrient transport
from the landscape,
internal processing and
eutrophic state within
the lake, and what are
the implications for
adaptive management
strategies?




RACC

Three Distinct Approaches to IAMs

e Cascading Models
— E.g. MIT’s IGSM; GB-Quest (Carmichael et al 2005)

e System Dynamic and/or Bayesian Networks (Hybrid

Models)
— E.g. World3 (Meadows et al 2003); IIASA’s GAINS model; IIASA’s EPIC model

e Qualitative/ Synthetic Impact Assessment Models

— E.g. Millennium Ecosystem Assessment (MEA) 2005; Rottmans and Van
Asselt approach to “Integrated Assessment”
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Figure 1. Schematic of the MIT Integrated Global System Model Version 2 (IGSM2).
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Fig. 2. GB-QUEST model structure.
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Multi-Discipline Modeling RACC

e Select the best practices for modeling each
component of a complex system
— Land Use Management and Prediction
— Atmospheric/Weather/Climate Prediction
— Watershed Hydrological Flow Analysis
— Lake Water Quality

* |Integrate by Building Connections between
Dependent Models

— Consistent land region of study

— |solate Parameters that Affect Other Models

— Bridge Between Models with Necessary Data Manipulations

— Create a Framework to House and Direct Data Between Models
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Forest Elaboration Case Study

RACC

Landuse Change Modeling was originally unconcerned with what
species of trees reforest a section of field no longer being cultivated

Watershed Model is Sensitive to Deciduous versus Evergreen

Forestation

A Method to Generate Re-Forestation Details Was Created
Tracks Adjacent Land Cover to Influence Re-Foresting Details
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Steps taken to run RHESSys model RACC
with new land cover/use inputs

* GRASS

— Converts LandUse by Cell to Hillslopes and Patches
— Aggregates Changes into Larger Logical Structures

 WorldFile Merge Function

— Merging trained worldfile (watershed parameters and
variables information) with updated worldfile that has
new watershed land cover/use information.

— Preserves the model training of unmodified patches
whenever possible
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Selectively Merges ABM and Original WorldFiles
* Preserves 200 Simulated Years of Model Training
 Updates Patches or Canopies if ABM Changed LandUse
— Patch’s landuse_default_ID
— Canopy’s default_ID
e Java Object modeling of WorldFile structures

World

Basins

Hillslopes *

Zones *

Patches

Canopy

* Multiples in Mississquoi Data



DHVSM/RHESSYS with Lake Model
(A2EM)



A2EM Architecture

Background:

A2EM (Advanced Aquatic Ecosystem Model)
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A2EM Steps for 2014
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 Complete calibration of water quality model
to 2012 & 2013

— Many parameter estimates for Limnotech version
of the model appear suspect

— Integrate hydrodynamic model insights into
mechanistic papers




Integrating A2EM with RHESSYS

e Anticipated steps to Integrate A2EM into the
IAM framework

— Develop preprocessor to translate RHESSYS/
DHSVM output into input file formats for EFDC
and RCA (text-delimited files)

— Develop script to automate EFDC—-> RCA - EFDC...
batch runs (integrating watershed model)

e Current framework uses an Access database and a
semi-proprietary interface, but that mostly facilitates
the development of input files; that could be done
manually.

— Come up with a method of estimating
meteorological variables not being downscaled
(solar radiation, cloud cover, wind, RH, pressure)
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Fig. 2. Schematic diagram of the DISPLA approach based on the Spatial Modeling Environment (SME) and the PPBalModel.



<M,
¢ 2 RACC
u Research on Adaptation
v to Climate Change

. : : ate 1 { Death rate’;
yMovein ; * Move out :

Nature

) 75> Runoff ﬁ—% ‘ ‘ Population ‘ ‘

Forest Public

Agriculture

P area | (J<?5| Uarea ;7 Unit =,

P planting

U planting
area

Technical

4 . ; ¢
level U plantin i area i

grate %, income

[ Stock ﬁ_’Q Flow O Variable ' External variable

P: paddy fields U: upland fields D: development



Land-Use

Population
PopulationGrowth

@ UrbanFi

O -BaselineUrbanArea  /

UrbanDe(ayaIRa(e
Index \o‘__ —

eathy

_— —le_lggnﬁrﬂ‘

i [ @ rertilityRate - !
’ O‘ Dyzdedﬁ'rea ’
<2 —~— > - / O i

\.‘ A @ AverageUfeTime
l
L lotaIPop fation
o @ initiale D (@ BaselineEmigration
A Jd 9 /
DecayedUrbanArea | Ny ¥ Emigration
UrbanToAgricultureRate UrbanToAgricultureArea | | \ (@ gaselinelmmigratio; @ emig GrowthR
\"‘\1___ ReforestedArda | \ \-»»__‘
/ Lo, ncul(uralDec?yedArea B Immigration i
brestationArea
[ g\ .
| UrbanDefgrestationRate ol . -
/ O O ImmigrationGrowthRaje PolicyRegime
|
| \ Q
\ [ 1
( ConservationArea l. \\{ﬁlerQua rogramAllocation
\ Ly - \ -

f X ; — Wz
\&3 X o Ok—F—— =%
\ "- @ / \ T WalerQualnyProjectOd;ﬂw Programinfiows

\ . — \ ot Poll indow
(@ BsselineForestedArea = cul Jex \ aa
J —
( 4
5 St
7 = De
UrbanAreaRunOff "' O ‘_.--"/ \\-\_

Hydrology O‘: . O e

o PublqummnOnWaluQuahwRegmuon
g uweanunoﬂ-g “O

O‘ I\I
S - v g \ CDPGrowthRate
. AgrrtullureAreaRu S~ . \ \
FomJtheaRunOff _ | S X \ (ON PollcyStream Polnlcssneam
o o Loengss O \ "o oblemS(ream
. T <] AgricultureGBECrowthRate l
™ \ , e ”* .\.\. .

J l}fotalcl)l’
_ / [ O —
— f |
Dol 2 — e

- ualPrecipitation \ /@maltvaalmmor | 4

COPGrowthRate
\
~ __.—»--'O GOPGeowth \
\ O | UrbanGBRCrowthRate S~
Feaporath thi HAsﬁm n MakeSegments T 7 TR
R y ) PrbblemflowRate h i
Racedinaf oD PolicySojutionFlowRate
P | \ fFoodw-hr i e PaliticalideologyDominanceRate
= O | BaselineGDP
~ > | Fconomy E ;
™~ |
Climate ClimateScenario \\ \1 terTemperatiireChan l L L
= " &3 &3 &
/ |
= Ht;uiéﬂnnm / NutrientOutfiow Polcy
XL L
e ST SN
PhosphorusConcentraion
Lake

LCB Hybrid Model: A Coupled Natural and Human
System



Population

=

L\

N,
> FertilityRate .

PopulationGrowth
-~

s O
" B “h

- Q} ' \_/O AveragelifeTime

-
-
r?

D TotalPopulation
(@ initialPgpulation (@ BaselineEmigration

jelineDegradedArea
Emigration
G Baselinelmmigratioy 4—0 EmigrationGrowthRate
7 \/
ﬁ Immigration ™

I\ . J



..

UrbanTpAgricultureRate

UrbanDefgrestationRate

trﬂestalionmea
<]

A
DecayedUrbanArea
UrbanToAgricultureArea

ReforestedArsda

ConservationArea  For
\wd
5 —
o

AgriculturalDeforestationRate

dEroslonlry
N



UrbanAreaRunON

Q

Hydrology

- Fom weakunov\ \

/ It
0'\ Agﬁ(ﬁitutem

-”(
-

-
P

‘q Wo‘aterlnLakeSegmat

> —

nualtv rauo

oy
U
StormF nque%

Climate ClimateScenario

\



’

v
-
-
=

""""""""" otalGDP

/ Urb

m

PI
ionRatd /
o padition @
BaselineGDP
> Economy
terTemperatureChan
NutrientOutflow
hw d
——% = X—=> 3

PhosphorusConcentrtion




Integrating Climate Change, Hydrology and RACC
Lake Dynamics

* Anthropogenic climate change could induce abrupt alternate stable
states in the Lake Champlain segments from more frequent and
more intense flooding events in Lake Champlain Basin as well as
reduced ice cover internally in the lake system.

 The severity of algal blooms are subject to a variety of influences,
ranging from N and P fluxes in the lake segments, water depth,

formation and evolution of zooplankton species, and vertical and
horizontal profiles of temperature gradients.



Assessment and Management of RACC
Uncertainty

* Understanding the impacts of anthropogenic climate
change on water quality, such as formation and
persistence of harmful algal blooms (HABs), requires
quantification of uncertainty that is introduced in
assuming future trajectories of N and P fluxes as well as
water and atmospheric temperature gradients.

* Forecasting the location and timing of critical transitions in
fresh water lake systems
— Empirical Focus on Missisquoi Bay

— LCBP and USGS monitoring data from 1992-2010 is aggregated at
bi-weekly timescale to train the models
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Phenomenon

Method/Indicator Rising memory Rising variability Flickering
metrics Autocorrelation at-lag-1 X

Autoregressive coefficient of AR(1) model X

Return rate (inverse of AR(1) coefficient) X

Detrended fluctuation analysis indicator X

Spectral density X

Spectral ratio (of low to high frequencies) X

Spectral exponent X

Standard deviation X X

Coefficient of variation X X

Skewness X X

Kurtosis X X

Conditional heteroskedasticity X X

BDS test X X
models Time-varying AR(p) models X X

Nonparametric drift-diffusion-jump models X X X

Threshold AR(p) models X

Potential analysis (potential wells estimator) X




RACC

Modeling Approach

* Focus on developing a “hybrid” integrated assessment
model that integrates P and N fluxes from watersheds
as well as climate change scenarios in predicting
Harmful Algal Blooms (HABs) in the lake Segments.

 There are two concurrent modeling approaches that are
being developed to integrate dynamic P and N fluxes at
biweekly time-scale from Missisquoi river in predicting
the likelihood of algal blooms in the bay:

— Dynamic Forecasting approach, e.g. ARIMA, GARCH and
state space models;

— Bayesian Network Modeling approach



where

p is the first-order autocorrelation parameter
0 is the first-order moving-average parameter
€ ~ i.i.d N(0,02), meaning that ; is a white-noise disturbance

You can combine the two equations and write a general ARMA(p, ¢) in the disturbances process as

Yr = x84+ p1(ye—1 — xe—108) + p2(Yr—2 — xe—208) + - - + pp(Yt—p — Xe—p3)
+ 0161+ 0262+ -+ 0het—g + €

It is also common to write the general form of the ARMA model more succinctly using lag operator
notation as

p(LP)(y: — x:B8) = O(L?)e; ARMA (p, q)

where )
p(LP) =1—pi L — poL* — - — p,LP

O(LY) =1+ 0L+ 0,0+ -+ 0,14

and L7y, = Yi—j-
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ARIMA regression

163
2534.89
a.6600

Sample: 2 - 279, but with gaps

Number of obs
Wald chi2(?)

Log likelihood = -649.,1978 Prob = chi2

0PG

Std. Err.

[95% Conf.

TPmgm3, I
TP_F lux_KgPerDay |
p1. | 00668243 .0012443 4.84 ©.888 .B6a35385 .Ba54
= 645
|
_cons | 1.715991 6359589 2.78 8.887 .4695499 2.962
= 432
ARMA |
ar |
L1. | -.5265149 2.374632 -A.22 B.825 -5.188783 4.127
= 6738
Lz. | 5497295 1.187792 .47 B.636 -1.7198682 2.818
= 961
L3. | 16852668  1.136878 a.89 B8.926 -2.1214685 2.331
= 937
|
ma |
L1. | 13.4482 386.4365 B.83 8.972 -743.9614 778.8
= 413
Lz. | .1448429 25.82187 .81 8.99 -5@.46352 5.7
= K32
L3. | -11.28013 325.8176 -A.83 8.973 -654.1823 631.6

> 226
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ARIMA regression

Sample: 2 - 279, but with gaps Number of obs
Wald chi2{3)

Log likelihood = -985.844 Prob = chi2

[95% Conf .

TN_F lux_KgPerDay |

D1, | .01468862 .B039098 3.68 B.888 0064231 0217
= 494
I
_cons | -17.77988 §.647686 -2.86 B8.848 -34.72984 -.8387
= 297
ARMA I
ar |
L1. | 5487568 1681667 .48 B6.868 .3494921 . 7480
= 195
I
ma |
L1. | -.9999943 19112 -3.48 ©.8688 -1.233446  -.7665

= 3561
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ARIMA regression

Sample: 1 - 281, but with gaps Number of obs

Wald chiz(5)
Log likelihood = -622.4949 Prob > chi2

[95% Conf. Interval

TNTPRatio | -.1895863 .258728 -8.44 B8.662 -.6889246 .381918

=9
WaterLevelFeet | -1.639719 1.364225 -1.268 86.229 -4.31385k2 1.63411
=3
WToC | -.8B42319 .3038048 -A.81 6.939 -.5996786 591214
=7
_cons | 173.697  131.83826 1.33 6.185 -83.22004 436.614
=1
ARMA |
ar |
L1. | 6259218 .B436882 14.36 6.668 .5484905 711363
=1
Lz2. | -.1248174 .A58A1543 -1.56 6.119 -.2819169 .B3228
=2

Jsigma | 18.24293  .3662327 27.97  0.888 9.,626122 16.9687
=3




i i

precipitation and solar radiation

ARIMA Models (1, 2 and 3) presented above are being used to
connect P and N fluxes with climatic scenarios, predict TN/TP
ratios, and in turn predict HABs [Focus on critical transitions
and alternate stable states]

Calibrated model will be used to predict TN/TP ratios and ChlA
(2011-2050) under different climate change, land-use change
and policy scenarios

Bi-weekly time scale

Focus on Missisquoi, then expanding to South Lake, and rest of
the VT’'s Lake Segments



Summary: Comparing Cascading and Hybrid IAMs

Cascading IAM

High spatial resolution (30m x
30m)

High temporal resolution
(nested from hourly to daily
and annual)

Limited scope (only Missisquoi
and Winooski watershed)
Highly process-based

Difficult to adjust and re-
calibrate
May take many days and

perhaps weeks to run a
scenario!

Hybrid IAM

Low spatial Resolution
(watershed scale)

Low temporal resolution
(nested from weekly to annual
and decadal)

Broader scope (all VT-LCB
watersheds)

Dynamic but less emphasis on
process

Flexible adjustments and
easier re-calibration

May take minutes to run a
scenario!



