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Source: The Nature Conservancy, weather.com, NASA Earth Observatory
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Heat-Trapping Gas Passes Milestone, Raising Fears

Chns Stewart/Associated Press

The average carbon dioxide reading surpassed 400 parts per million at the research facility atop the Mauna Loa volcano on
the island of Hawaii for the 24 hours that ended at 8 p.m. on Thursday.

Source: NY Times, May 10, 2013



Climate Change, Water Resources,
Ecosystems, and Society

« How well can we simulate climate using numerical models?

» What is the local response of precipitation and temperature to
climate change?

« How will evolving temperature and precipitation impact runoff,
soil moisture, forests, agriculture, nutrient loading, infrastructure,
society?

« What are the key uncertainties in predicting climate change
Impacts?

Source: Lake Champlain Basin Program



Global Climate Models (GCMs)

GCMs solve the primitive equations (conservation of momentum,
mass, and energy) to predict fluid flow on a spherical surface
Can be atmospheric (AGCM), oceanic (OGCM) or coupled
atmospheric-oceanic general circulation models (AOGCM)
AOGCMs are the core of full climate models

Global spatial coverage

Contain significant inaccuracies

» Coarse resolution
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Downscaling GCMs
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Regional Climate Models (RCMs)

« RCMs are weather forecast models adapted to run at longer
temporal scales or GCMs adapted to run at finer spatial scales

 High resolution

 Limited spatial coverage, bounded by a large-scale atmospheric
forcing generally provided by a GCM or reanalysis

 Contain significant inaccuracies produced both by the large-scale
forcing and the RCM itself




Boundary Conditions - NCEP-DOE Reanalysis 2, ECHAM5, CCSM3

Atmospheric Radiation-

Kiehl (1996) _
Convective
Clouds and
Precipitation -
Grell (1993),

Resolvable Scale Clouds and AS74, FC80

Precipitation — SUBEX (Pal, 2000)

VLl

Planetary Boundary
Layer- Holtslag (1990)

Sea Surface Temperatures - NOAA, EH50M GCM



Statistically Downscaled GCMs

Bias correct and downscale GCM data based on interpolated
station observations

Multiple methods and target observational datasets

High resolution

Removes some inaccuracies of GCMs

Limited spatial coverage

Climate projections constrained by observational record or
extrapolations of observational record




Bias Correction using
Constructed Analogs (BCCA)

Given daily GCM
anomaly

Library of previously
observed anomaly
patterns:

Coarse resolution
analogue:
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Source: http://visibleearth.nasa.gov



Projected Climate Change in our
Study Region using the Delta
Method
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Goals

e Using the BCCA 1/8t" degree product and 1/8th
degree PRISM(observation based) data:

— Project of future temperature and precipitation
— Ranges of uncertainty in projections

— Develop metrics for snowfall, length of growing
season, and moisture balance using climate
projections
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Precipitation (mm per day)

4.0

3.5

3.0

2.5

20

Historical Data

Average Annual Precipitation

Burlington Precipitation

Number of Reporting Weather Stations

|

50

1940

|
1950 1960

1970

|
1980

Year

|
1990

|
2000

|
2010

60

30 40
Number of Stations

20



250 km =2 12 km

New England Grid Cell Size Comparison
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Sources of Uncertainty

1. Different Storylines
e A2, A1B, and B1 storylines

2. Different GCMs

e cccma_cgem3 1 ~ Canadian Centre for Climate
Modelling and Analysis

* ipsl_cm4 ~ Institut Pierre Simon Laplace, France.

* mri_cgcm2_ 3 2a ~“Meteorological Research
Institute, Japan Meteorological Agency, Japan



Delta Method Calculations

* Temperature:

Delta = BCCA Future Projection — BCCA Baseline Simulation
Future Projection = PRISM Baseline + Delta
* Precipitation:
Delta Factor = BCCA Future Projection / BCCA Baseline Simulation

Future Projection = PRISM Baseline x Delta Factor



Why use the Delta Method

* Pros

— Eliminate the biases associated with using GCM
data

— Straight forward
— Computationally inexpensive
* Cons
— Limited by quality of PRISM data
— Daily and inter-annual variability are held constant



BCCA Cells

Study Region:

 130cells

e 12 km by 12 km cells

* Encompasses Winooski
and Mississquoi
watersheds
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Temperature Delta (deg C)

Temperature Change
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Precipitation Delta Factor

1.0

1.6

1.4

1.2

0.8

Precipitation Delta Factors

| O 2046-2065

O 2081-2100

|
Ja

A A2

O A1B

X B1

41: . A %%
X
O
187 1|72/ a% 41 3]
L]
% )
I
A
I | I I | I | | | | | | I
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg

Mon

th




Freezing Days
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Snowfall by Month
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Cummulative Snowfall (cm)
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Moisture Balance

(ratio of precipitation to potential evapotranspiration)
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Downscaling climate
simulations to
1 km spatial resolution

Gabriela Bucini
RACC Postdoctoral associate

EPSCoR annual meeting
May 16, 2013



Overview

Goal: produce high-resolution climate
projections for our study region

Application: inputs to regional hydrological,
ecological and social models

Challenge: impacts models run at finer resolution
than global climate models,

necessitates producing high-resolution climate
projections



Our approach

Approach: add information by taking advantage
of fine-resolution topography

This requires identifying a relationship between
climate variables and elevation
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grid cell size comparison
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12 km to 1 km

grid cell size comparison
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LAPSE RATES

Precipitation = f,(elevation)

Temperature = f;(elevation)

e climate station




Lapse rates can...

/ N\

be constant change
within and across within and

years across years



Are lapse rates (f, and f7)
stationary through time?

We can apply the observed
relationships to future climate

We need to determine how
lapse rates change through time




Precipitation lapse rate [mm/day/m]

Lapse rate change across months
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Lapse rates change across decades

PRECIPITATION LAPSE RATE
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Observed lapse rates change with time

How will they change in the future?

We do not have future station measurements so we
need to rely on modeled climate data for our
predictions.

Do modeled lapse rates behave in the same way as
the station lapse rates?



Are lapse rates calculated from
BCCA and station data the same?

We can apply BCCA lapse
rates to future projections

We need to determine how
station and BCCA lapse rates are
related.



Observed and BCCA lapse rates are dissimilar
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Summary

1. Lapse rates are NON-STATIONARY
e within a year
* aCross years

2. Lapse rates are DISSIMILAR between STATION
observations and BCCA

Precipitation = fy(elevation, time, data set)
Temperature = f(elevation, time, data set)



Future work

. Construct competing statistical models for
lapse rate correction for temperature and
precipitation

2. Select best model using station data

3. Apply best model for downscaling BCCA data

to 1 km grid



Thank you




Future direction

1.Submit manuscript on climate
projections (Delta method): Su

2.Complete statistical downscalin
change projections: Fall 2013.
-Submit manuscript: Winter 2

3. Dynamical downscaling using r
models: Begin using NCAR WRF
2013.




Questions?




