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Question 1 i

* Ql: What is the relative importance of@&ndogenou®
(in-lake) processes versu(to-lake)
processes to eutrophication and harmful algal

blooms?
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Approach to Question 1

Hill Slope

What are the important sources of
nutrients & sediment to the lake?

How do land use and climate affect the
nature and strength of these sources?

How are nutrients and sediments
transformed in transport to the lake and
within the lake?

How do the loadings of these materials
affect lake processes?
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Focus Watersheds  ‘&rscor

Missisquoi

Agriculture: runoff,
groundwater, soils, stream
bank erosion

| Forested: soils, groundwater,
Winooski . - e roads, channel migration,
' ' = erosion

Urban: stormwater
runoff, wastewater,




What we have accomplished?
Source area characteristics

Stream Channel Migration on the Mad River
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What we have accomplished? “:&

Instrumented key sub-watersheds
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Modify ISCO Programs for 2013 Effort
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What we have accomplished? ‘E8scor

Integrated water sampling & analysis network

Johnson  St. Michael’s
State College  College

_Undergraduate and
@ _graduate students have
- ==~:been directly involvediin
"% ~ - installation, maintenance,
% sampling; afria‘lysis,‘and
fdata'n’ra‘naggfh‘eht.




What we have accomplished? 222

EPSCoR
Characterization of P transformations in watershed and lake

* What are the primary forms of P
transported to Lake Champlain via external
sediment loading?

* How algal-available are these sediment-
bound-P forms?

* How do redox processes influence P
cycling and internal loading from lake
sediments?

Sediment-Bound-P
Species Analysis

cyanobacteria

ENZYME HYDROLYSIS
Solution 31 P NMR Spectroscopy




Future Work: Partitioning P Sources 2=

VERMONT

Small Watershed and Time-Series Analyses =R

s ‘ =3

Employ Novel Tracers of Erosion of

Process and Source | particulate P

« Short-Lived Isotopes \

 POas Isotopes

« P-Speciation

« Metal Partitioning
and Speciation

Release of soil and plant
P to surface runoff

P Total runoff P
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What we have accomplished? 2=

Missisquoi Bay Advanced Environmental Monitoring Systems

Linking climate, hydrodynamics,
1m geochemistry and ecology to
explain bloom dynamics




What are we working on? N
EPSCoOR

Bioindicators to explore the effects of nutrient
dynamics on aquatic food web structure

= e | T W " Sampling & identification

Phytoplankton
Zooplankton
Benthic invertebrates
Aquatic plants

FlowCAM coming to UVM.



What have we accomplished?

Winter Through Ice Sampling
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Duration and extent of
ice cover is decreasing!

Climate change in the Lake Champlain Basin, as reflected in

ice-over month by decade, 1816-2005
100% -
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BO%
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Percentage of years in each
decade by freeze category

0% -

Decade

B Mo Freeze
O Mar
B Feb
W Jan

How does ice cover affect lake biology, physics and

chemistry?

2013 Winter grab sampling of water profile
chemistry/biology and sediment cores

Hydrodynamic array under ice




New Lake Efforts for 2013 Field Season 2,

EPSCOR

Bay-Wide Spatial Analyses (Midd, SMC, UVM)

» Increased spatial sampling at different bloom stages

= Bay wide sediment transport analyses, sediment
collection and benthic community studies

= Bathymetric mapping of Missisquoi Bay

GPS antenna

Real-Time Data Driven Studies (UVM)

» Time series sediment cores

= Diel nutrient/metal cycling studies during
peak bloom

" micro-observatory sensor deployment at
SWI to study redox chemistry

= New Sensors-High freq DOC, SRP, NO4




Phytoplankton Resource
Limitation During the 2012

Bloom
Peter Isles
Q1 PhD Student
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S RACC 25N
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Background: Harmful Algae Blooms

* Increasing problem worldwide (Paerl 2009)
 Both coastal waters and freshwaters

* In freshwater, HAB's are usually composed of
cyanobacteria (blue green algae)
— May produce liver and neuro-toxins
— Noxious odors, irritants
— Negative ecosystem consequences

« Caused by increases in external nutrient
Inputs and temperature



Background: Nutrient Limitation in Lakes

* Von Leibig’'s “Law of the minimum” (1840)
Redfield Ratio, 1934

— C:N:P = 106:16:1

1970’s: consensus that P is limiting in Lakes
* Recent results: Co-Limitation

1.4 4 422

N P NP N P N,P N N,P
Stream benthos Lake benthos Lake pelagic

Sterner 2008




Goal: Identify drivers of cyanobacteria blooms

* |dentify periods of N, P, and light limitation
+ |dentify sources of N and P to phytoplankton

— Importance of internal v. external nutrient inputs

— Recycling of nutrients in the water column and at the
sediment surface

— Mechanisms driving release of benthic nutrients



Sampling Strategy: Sample Site

« Water depth ~3m

« SE portion of bay insulated from
S, E, W winds

« Site of the most intense BGA
blooms



Sampling Strategy:

« Hourly:

— Sonde measurements (DO, pH, turbidity, temp, phycocyanin,
chlorophyll a) (5 depths)

— Weather, river variables (temp, wind, discharge, water level)
« Every 8 hours (5am, 1pm, 9pm)
— Total nitrogen, total phosphorus, total metals (3 depths)

* Weekly

— SRP, TDP, NO;, NH,*, dissolved metals, colloidal metals,
phytoplankton, zooplankton, TSS
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Phytoplankton Dynami

Data

2012 Phytoplankton Bloom Phases

Post Bloom

Late bloom Chl a dominance

Peak bloom
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Data: Environmental Conditions

Ramp up Peak bloom  Late bloom Chl a dominance
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Available Nutrients

SRP ugllL

NH4+ ugL

NO3- ugiL
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Light Limitation

Influence of Light and Wind on Algae Bloom
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Light Limitation
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Light, Wind, and Buoyancy Regulation

Mean Residence Depth, Ramp Up
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Light Limitation
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Conclusions

« 2012 cyanobacteria bloom driven by internal
processes (on a seasonal scale)

— Very low runoff from rivers

« Missisquoi bay was P limited before and after
bloom, but N-limited during bloom

* Increase in total P during bloom driven by
sediment loading; increase in total N by N
fixation

« Cyanobacteria may monopolize light
resources when wind speeds are low
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