RACC-Question 1

Andrew Schroth, Courtney Giles, Peter Isles

What are the nutrient & sediment loads to the lake?

Where do they come from?

What conditions lead to the occurrence of Harmful Algal Blooms (HABs)?

EXTERNAL

What are the nutrient & sediment loads to the lake?

Where do they come from?

INTERNAL

What conditions lead to the occurrence of Harmful Algal Blooms (HABs)?

External Processes

Nutrient & Sediment Transport to Lake Champlain

External Processes

Nutrient & Sediment transport to Lake Champlain

What are the impacts of...? Climate:

Storm intensity and frequency Land-use:

Type and management **Biogeochemistry:**

Nutrient transformations

EXTERNAL Nutrient & Sediment Load **Monitoring**

Forested/Agricultural

Urban/ Mixed Land-use

EXTERNAL Nutrient & Sediment Load monitoring

EXTERNAL Nutrient & Sediment Load monitoring

Winooski

Saint Michael's water quality interns

EXTERNAL Nutrient & Sediment Load monitoring

Summer and Drought! T-storm dominated storm events low flow relative to historical hydrograph

3 storms have triggered sampling events in some or all streams.

Base flow grab sampling by interns

This is annual variability!

External Processes

Where do these nutrients and sediments come from?

SOURCES of INTEREST

Soils-Ross

Forested Landscape and Rural Roads-Wemple

Stream Bank-Rizzo/Dewoolkar

Farm Fields-Bomblies et al.

Missisquoi Ag Soils Sampling-Don Ross' Group

N/P Distribution through soil landscape

- With the cooperation of crop consultants and dairy farmers-locate transects along stream banks of the Missisquoi and its tributaries
 - 3 points for each transect:
 - 1 m from stream bank edge
 - Halfway through riparian buffer
 - 5 m into corn
- 4 depths: 0-15 (plow layer), 15-30, 30-60 and 60-90 cm
- Where possible, also obtain bank samples
- at 1 m intervals.

External Processes

Where do these nutrients and sediments come from?

SOURCES of INTEREST Agricultural runoff Forested areas and rural roads

INTERNAL (In-Lake) Processes

What conditions lead to the occurrence of **Harmful Algal Blooms** (HABs)?

Missisquoi Bay Monitoring Station (UVM, Midd)

Linking climate, hydrodynamics, geochemistry and ecology to explain bloom dynamics

Hydrodynamics

Hydrodynamics can drive biogeochemistry and ultimately biology!

Hydrodynamics Monitoring Array -describe local physical state -current -sediment transport -water levels -temperature profile lateral and vertical -waves

Data? WLR are what we have so far

Hydro → Interior Sites Met Buoy – Great Lakes Observing System (GLOS) Design

Installed on 8/6/12

Data logger CSI software tools Cellular communication Four WebCams (360° view) Extra memory RM Young wind speed and direction Air temperature/relative humidity Incoming solar radiation sensor (PAR) RM Young barometric pressure **Titus IWS** Surface water temperature RPR temperature string (5 m) Downward looking ADCP

INTERNAL (In-Lake) Processes

Physical Processes-Lake Bed Structure

Bathymetry and channel morphology control sediment transport between the bay and the main lake

Awaiting Arrival of Midd RV Folger

INTERNAL (In-Lake) Processes

Biogeochemical Controls on HABS

Main Site Monitoring

Grab Sampling at Main Site Buoy

SRP (ug/L)

QUESTIONS

What are the primary forms of P transported to Lake Champlain via *external sediment loading*?

How algal-available are these sediment-bound-P forms?

How do redox processes influence P cycling and *internal loading* from lake sediments?

Additional Missisquoi Bay Spatial Sampling

Sediment profile sampling for nutrient species analysis

INTERNAL (In-Lake) Processes

Physical Processes

Biogeochemical controls on HABs

Food web controls on HABs

How does food web structure influence grazing pressure on cyanobacteria, competition for nutrients, and the spatial and temporal dynamics of nutrient recycling?

Future Efforts: Winter Sampling

How does ice cover affect lake biology and chemistry?

Winter grab sampling of water profile chemistry and biology and sediment cores sampling