

Reducing disruptions to your IPM program

Michael Brownbridge

Pesticide control of thrips... or "Nostalgia ain't what it used to be"

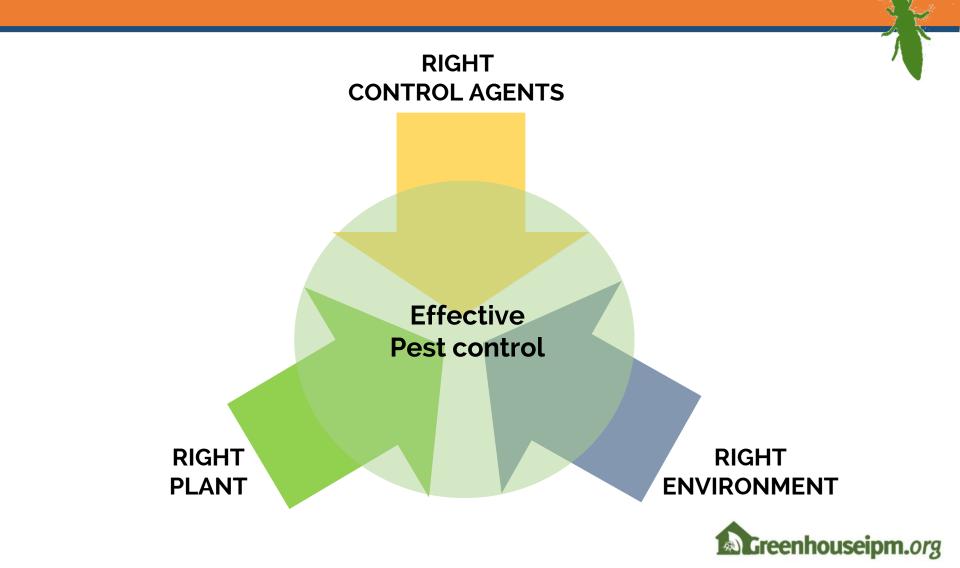
The good old days

- Insecticide applied every weekend because it was Saturday
- Twice a week in summer
- Pesticides worked..... most of the time
 - Against anything that moved

Pesticide resistance: The final straw

- Prior to the 1980s, WFT was not a pest in its native range
- Pest status likely developed because of pesticide use to control other pests, now global
- The failure of Success the ultimate oxymoron
- **Control failure** within 6 months of registration
- Created a massive shift towards biocontrol in the Ontario greenhouse flower industry (2007)
- Today >70% of Ontario flower growers use biocontrol

Systems approach


Biocontrol-based IPM is:

- Preventative, long-term approach
- Where possible, design the production ecosystem to address underlying weaknesses that have allowed organisms to reach pest status

Fixing a situation that is inherently flawed takes a lot of effort (and money)

Systems approach to IPM

Today's session

Systems approach (to thrips IPM)

- Preparation phase
- Propagation phase
- Production phase

"If you can't control western flower thrips, you might as well stop growing flowers in greenhouses in Ontario."

Jamie Aalbers, Flowers Canada

Preparation What do you know about the plants you will be growing?

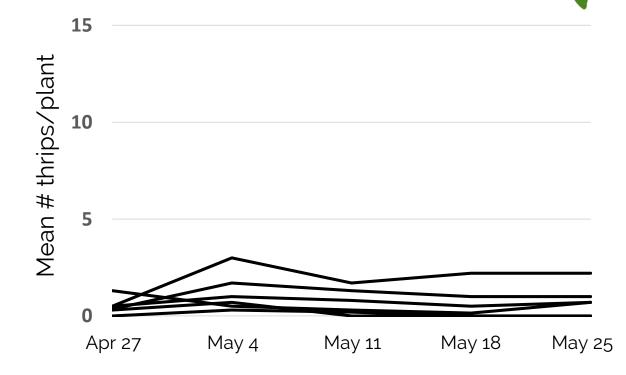
Examples:

- Chrysanthemum cultivars show differences in susceptibility
 - Volatiles, flower colour
 - Feeding damage
 - Oviposition
- Do you have a choice?

Attraction of thrips to other spring crops Sampled weekly

2-3 varieties each of

- Petunia
- Callibrachoa
- Verbena
- Bidens
- Lobularia
- Impatiens
- Dahlia
- Diascia
- Lantana
- Geraniums



Monitoring thrips in spring crops

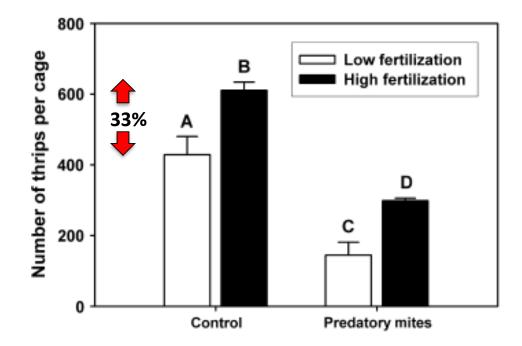
The good news...

- Most plants (>72%) had low thrips numbers
- < 5/plant on average</p>

BUT... Plants to keep an eye on

Greenhouseipm.org

Preparation


Use this knowledge to your advantage

- Select 'resistant' cultivars
- Use to guide your scouting program
- Indicator plants
- Set up 'trap plants'
- Focus for biocontrol

Preparation Understand potential side-effects of production practices

• Reducing fertilizer can reduce pest abundance (esp. N)

Food for thought...

- Most greenhouse crops are on high-fertilizer regimes
- Research suggests nutrient concentrations can be reduced
 50-75% without affecting the quality of the finished crop
- Other considerations:
 - Increasing cost of fertilizers
 - Potential legislation regulating N and P run-off

Preparation Exclusion/sanitation

Sanitation

- Clean up crop residues
- No pet plants
- Disinfect benches, flood tables, drip lines, etc.
- Minimize weeds outside the greenhouse

Exclusion

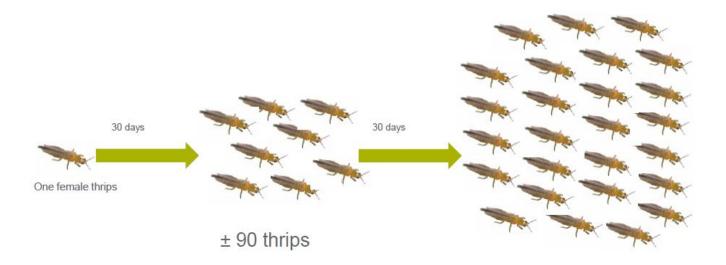
- Keep out intruders
- Screen vents

Propagation

Propagation Where do thrips* come from?

Frequently arrive on imported cuttings

- Low numbers
- Hard to detect life stages
- Rapid life cycle
- Resistant
- Residues


*Insert: whitefly, spider mite, aphid, leaf-miner

What happens if not controlled?

Development of thrips in 60 days (at 68°F)

- Populations grow rapidly
- Biologicals cannot catch up
- Disruption of bio programs

Graphic courtesy of Ronald Valentin

± 5800 thrips

Options and actions

Scout incoming material

Assume propagative material will be infested

Mitigate early

Preventative options

- Dipping
- 'Front-loading' a bio program

Follow up

- Monitor (traps with lures?)
- Esp. on susceptible cultivars

Clean start – poinsettia cuttings BotaniGard WP/soap dip + *Eretmocerus eremicus*

Clean start: In-house propagation

Break the cycle

Focus on controls during propagation

- Better coverage on young plants
- Lower numbers

Sanitation

Preparation and propagation

Clean start

- Awareness, actions, prevention
- Early detection
- Know which are thrips- (or other pest) susceptible varieties
- Early action
- Follow up, monitor

Production

Production: A case study in chrysanthemum

Integrated use of biocontrol agents from propagation thru' finishing to shipping

Think PREVENTATIVE Start to finish

Cuttings

- They will arrive with thrips
- Biologicals used immediately

Finishing

- Other pests will arrive
- Early intervention

Propagation Dipping before sticking

Cuttings immersed in

- Low risk (bio)pesticides
 - Insecticidal soap
 - Horticultural oil, e.g Suffoil®
 - BotaniGard
- Often combined with other products

Misting and blackout stages

BotaniGard® or Met52 EC

- Weekly sprays (3x)
- Nematodes (*S. feltiae*)
 - Drench, weekly
- **Predatory mites**
 - N. cucumeris
 - Broadcast weekly (3x)

Mini Airbug

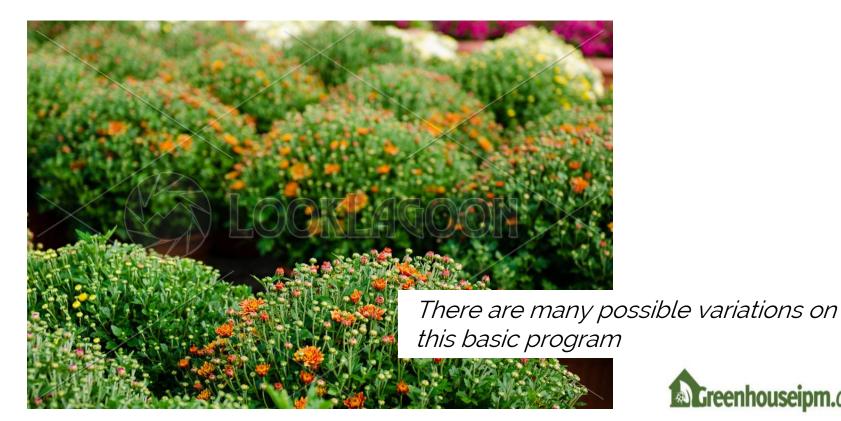
Finishing Pots at final spacing, canopy not touching

Predatory mites

- *N. cucumeris* mini-sachets
- 1 per pot

Nematodes

- Weekly until canopy closes
- **Biopesticide sprays**
 - BotaniGard
 - Met52 EC



Finishing Canopy touching

- May want to **switch to swirskii** mini-sachets
- May be able to reduce sachets to 1 per 2-3 pots

Use in other crop: Petunia

Spring bedding / 4 inch crops:

- Not economical to do 1 sachet per pot
- Consider 3-4 mini-sachets per shuttle tray

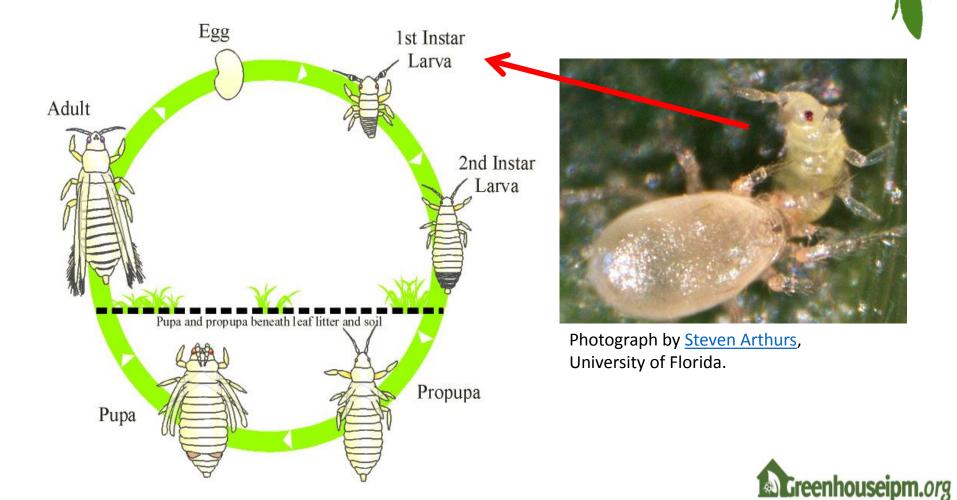
Using mites effectively Foliar predators

So many choices!

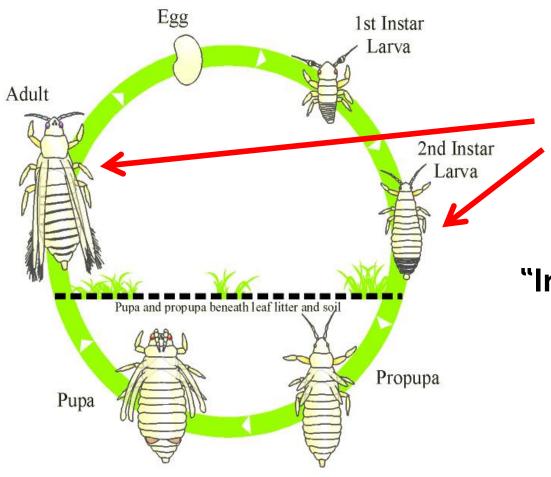
Which Predator?

- cucumeris?
- swirskii?
- limonicus????

Which Formulation?


- Bulk Product
- Slow release sachets
- Mini sachets
- Continuous sachets
- etc.

When/how?


- spring
- summer

How they work: Consumption

How they work: Non-consumptive effects

"Intimidation" reduces:

- Feeding (-25%)
- Survival (-50%)
- Life span (-40%)
- Oviposition (-70%)

Which predatory mite to use?

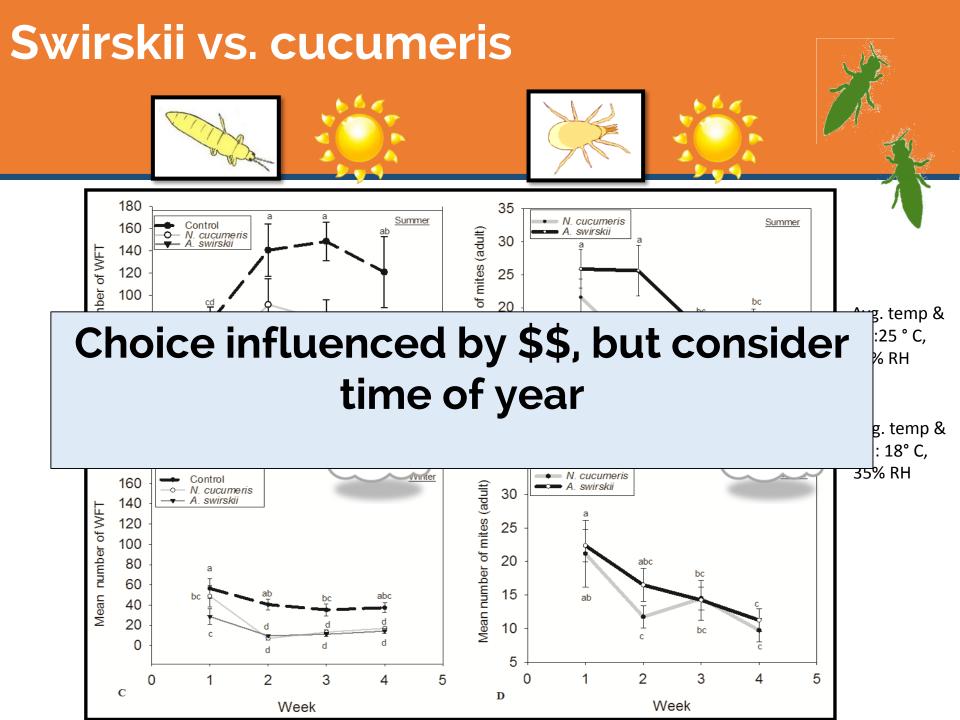
The "old standby"

Neoseiulus **cucumeris**

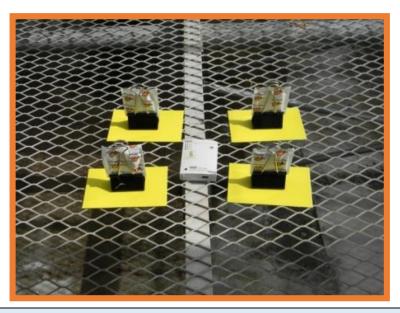
The "rock star"

Amblyseius **swirskii**

The "enigma"


Amblydromalus **limonicus**

Cost:



Using mites effectively: Sachet placement

Greenhouseipm.org

- High temps. speed up mite development
- Low RH decreases oviposition

!! Place sachets in shade, protected from the sun **!!**

Using foliar predatory mites effectively

Propagation

Spacing

Finishing

cucumeris

- Cheaper for broadcasting
- Better at beginning of crop (when temps. are cooler)

cucumeris or swirskii mini-sachets

- 80% of product wasted if applied by broadcasting
- Ca. 10¢/pot

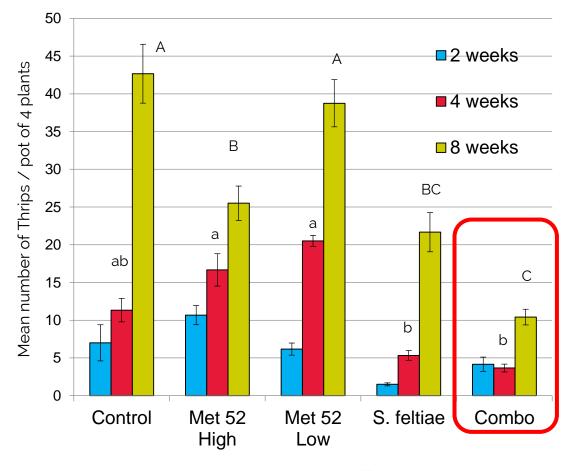
swirskii mini sachet

- Better at end of crop (temps. warmer)
- Generally a **better thrips predator** important now that pollen is available

Soil-dwelling predators: Supporting role

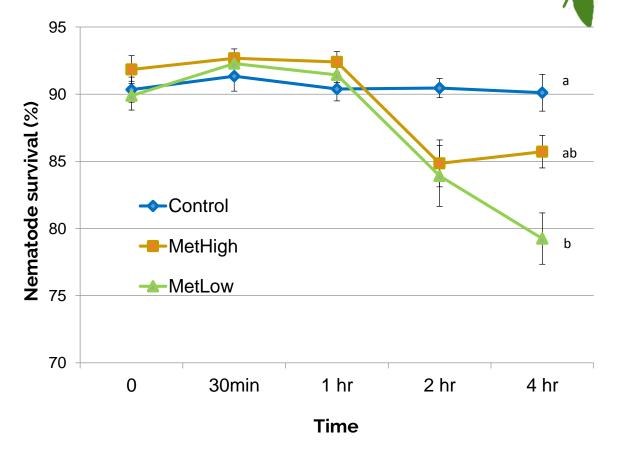
- Soil-dwelling mites, Dalotia (Atheta) persist well
- Apply once for a short-term crop.
- Can be distributed manually soon after planting, or on the planting line

Integration with biopesticides

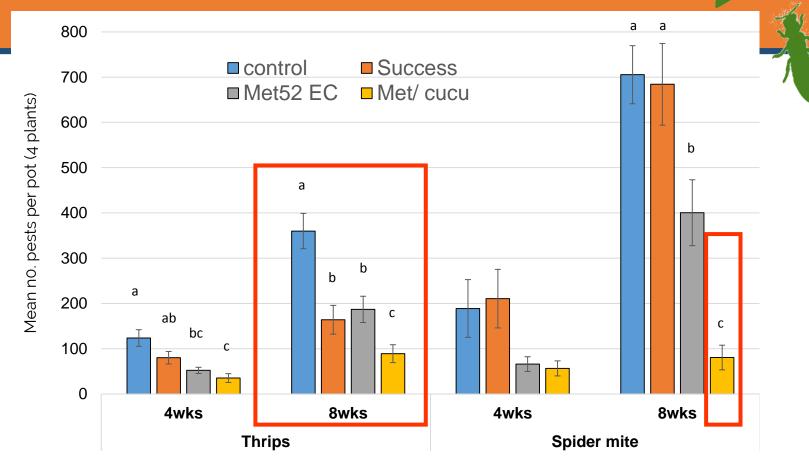

BotaniGard 22WP (spray)

Met 52 EC (sprench/spray) or Met52 granular

Met52 granules plus nematodes


- Met 52/nematode combination suppressed thrips population
- Better than Met 52 high rate (3x the low rate)
- Also suppressed thrips after the nematode application ceased at 6wks

Greenhouseipm.org


Met 52 EC and nematodes: Tank mix compatibility

- Nemasys suspended in Met52 EC
- Nematode survival started to fall after 1hr.
- If tank mixing, prepare right before application

Met52 EC foliar spray plus A. cucumeris

- Met52 EC compatible with *cucumeris,* excellent control of WFT
- Combination also supressed TSSM
- Out-performed 'Success' treatment (at label rate)

Compatibility: Met52EC foliar spray and mites

- No difference in cucumeris /swirskii populations
- Compatible!
- In general, use of fungi enhances thrips control when used with predatory mites

Pesticides

May be needed when:

- Pest pressures are too great
- Other pests arrive
- Where biocontrol is not working
 - Need to understand why it is not working
 - Will pesticides work any better?
 - What will be the wider implications?

Need to ensure:

- Compatibility
- Impact on biocontrols understood
- See side-effects guides (incl. PGRs)

Acknowledgements

- Rose Buitenhuis, Sarah Jandricic, Graeme Murphy, Taro Saito
- Technical crew and growers too numerous to mention
- All our industry partners and funders

Thank You

Contact Information:

michael.brownbridge@vinelandresearch.com

RESEARCH & INNOVATION CENTRE