TESTING pH AND NUTRIENT LEVELS

Water is the biggest input into your crop and it controls the availability of plant nutrients. It also affects the performance of some pesticides and growth regulators. Your growing medium is critical for proper growth of your crop and batches vary. As you add water and fertilizer to it, it changes. A rise in soluble salts is an indicator of overfertilization and this can result in plants with greater susceptibility to diseases and many other serious problems. You must be concerned with soluble salts and remember that their increase is reflected in pH and nutrient levels.

What should be done?

✓ Submit water and growing medium samples to an analytical laboratory in your state OR buy the appropriate meters and do them yourself.
✓ Test your water at the beginning of the growing season and when you have problems. Test for pH and soluble salts.
✓ Test your growing medium at pre-plant and during the growing season.
✓ Test for pH, nutrient levels and soluble salts.
✓ Test your fertilizer injector for total soluble salts on a regular basis (weekly).

The pH levels of common materials/solutions

- pH 0: Battery Acid, Strong Hydrofluoric Acid
- pH 1: Hydrochloric Acid Secreted from Stomach
- pH 2: Lemon Juice, Gastric Juice, Vinegar
- pH 3: Grapefruit, Orange Juice, Sodas
- pH 4: Tomato Juice, Acid Rain
- pH 5: Soft drinking water, Black Coffee
- pH 6: Urine, Saliva
- pH 7: "Pure" Water
- pH 8: Sea Water
- pH 9: Baking Soda
- pH 10: Great Salt Lake, Milk of Magnesia
- pH 11: Ammonia Solution
- pH 12: Soapy Water
- pH 13: Bleaches, Oven Cleaner
- pH 14: Liquid Drain Cleaner
Normal levels of micro- and macro-nutrients in growing media

<table>
<thead>
<tr>
<th>Macronutrient</th>
<th>Normal (ppm in growing media)</th>
<th>Micronutrient</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (NO-N)</td>
<td>35-200</td>
<td>Iron (Fe)</td>
<td>0.3-3.0</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>3-50</td>
<td>Manganese (Mn)</td>
<td>0.02-3.0</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>35-300</td>
<td>Copper (Cu)</td>
<td>0.005-0.5</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>60-400</td>
<td>Zinc (Zn)</td>
<td>0.3-3.0</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>30-200</td>
<td>Boron (B)</td>
<td>0.05-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum (Mo)</td>
<td>0.01-0.1</td>
</tr>
</tbody>
</table>

What do the results mean?

Water pH: The range of pH for watering and substrate solutions for production depends on the crop being grown. Generally for irrigation water = 5.2 to 6.8; for substrate solutions = 5.4 to 6.3.

Growing medium: Optimum pH values for crop production are generally 5.5 to 6.0 for soilless growing mix and 6.2 to 6.5 for growing mixes with 20% or more field soil.

Nutrient levels: The levels listed above (in ppm) are for most growing media used in northern New England. Values below these levels signify a potential nutrient deficiency; while values above may mean that too much fertilizer was used.

Soluble salts: Prolonged periods of high soluble salts lead to root damage, leaf chlorosis, marginal leaf burn and wilting. This is commonly caused by overfertilization, inadequate watering, leaching or poor drainage, or low root activity as a result of disease or physical damage. Normal soluble salt levels for seedlings and young transplants = 0.7-1.0; established plants in soilless growing medium = 1.5-3.0; established plants in a growing mix with 20% or more field soil = 0.8-1.5. Your observations of each species should be recorded.