SWD Monitoring Methods and Applications

Hannah Joy Burrack Department of Entomology

entomology.ces.ncsu.edu facebook.com/NCSmallFruitIPM @NCSmallFruitIPM

Stakeholder responses 249 respondents from 28+ states 39% conventional growers, 8.5% organic growers, 9.4% extension, 1.7% crop consultants, 3.4% homeowners, 0.85% fruit marketers, 3.4% other

Marca Co

attan

Stakeholder responses 249 respondents from 28+ states Highbush blueberries: 155 Blackberries: 102 Raspberries: 80 Strawberries: 72 Cherries: 32 Grapes: 62

Impacts in blueberries

Ave. crop loss	Minimum crop loss	Maximum crop loss	No. respondents increased pesticide use	Cost of increased pesticide use	No. respondents with increased labor cost	Ave. percentage labor increase
4.7%	0%	100%	99	84%, \$153/acre	72	25%

Doutine

Impacts in blackberries

Ave. crop loss	Minimum crop loss	Maximum crop loss	No. respondents increased pesticide use	Cost of increased pesticide use	No. respondents with increased labor cost	Ave. percentage labor increase
12%	0%	100%	75	87%, \$192/acre	56	27%

Dentran

Impacts in raspberries

Ave. crop loss	Minimum crop loss	Maximum crop loss	No. respondents increased pesticide use	Cost of increased pesticide use	No. respondents with increased labor cost	Ave. percentage labor increase
16.3%	0%	100%	59	87%, \$202/acre	49	29%

Oration of

Impacts in strawberries

Ave. crop loss	Minimum crop loss	Maximum crop loss	No. respondents increased pesticide use	Cost of increased pesticide use	No. respondents with increased labor cost	Ave. percentage labor increase
3.9%	0%	50%	50	70%, \$185/acre	43	28%

Dentran

Key questions

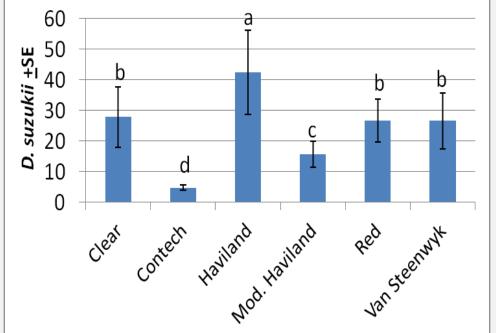
What monitoring tools are available for SWD?

March

How should monitoring information be interpreted?

How should monitoring be implemented in different crops?

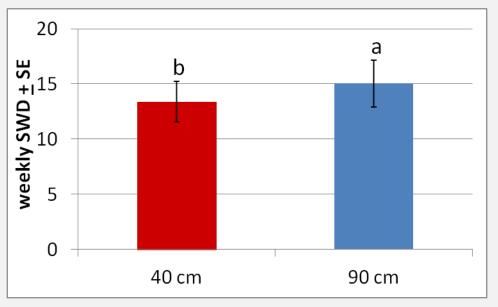
Monitoring tools – Adult traps


Red cups (with or without black band)

"Standard" deli cup

Contech commercial trap BioBest commercial trap

Monitoring tools – Trap design

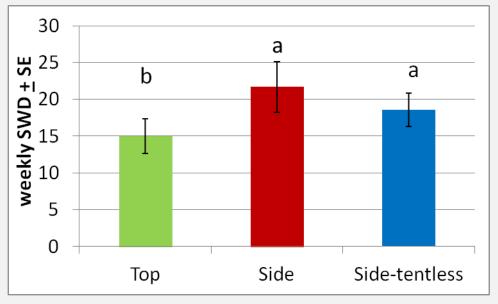


Pooled results from 16 trapping locations trap*crop(state) $F_{45,185} = 6.5$, P < 0.001 trap $F_{5,185} = 77.9$, P < 0.001 (Lee, et al. 2012)

Dattan

Monitoring tools – Trap design

Trap comparisons conducted at 16 sites in 7 states/provinces during 2012

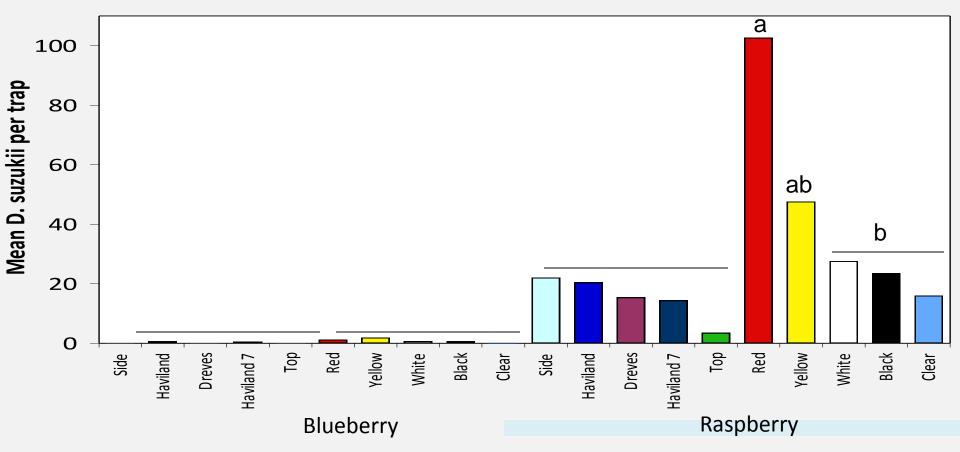

Coordinated by Jana Lee, USDA ARS

Traps with greater bait surface area caught 12% more flies

Monitoring tools – Trap design

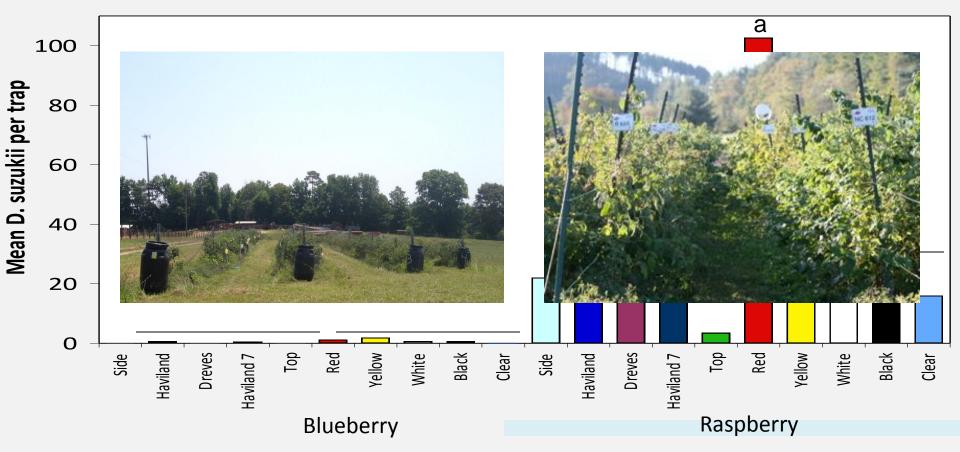
Trap comparisons conducted at 16 sites in 7 states/provinces during 2012

Coordinated by Jana Lee, USDA ARS

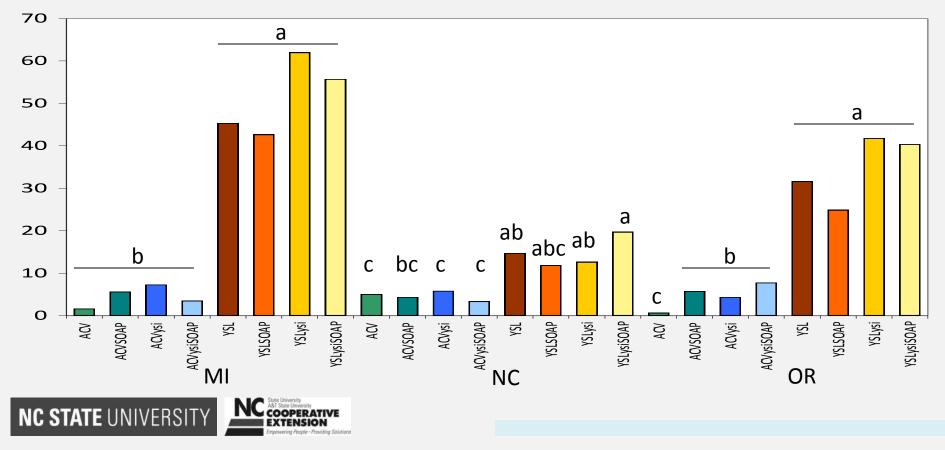

Traps with side entries caught more flies

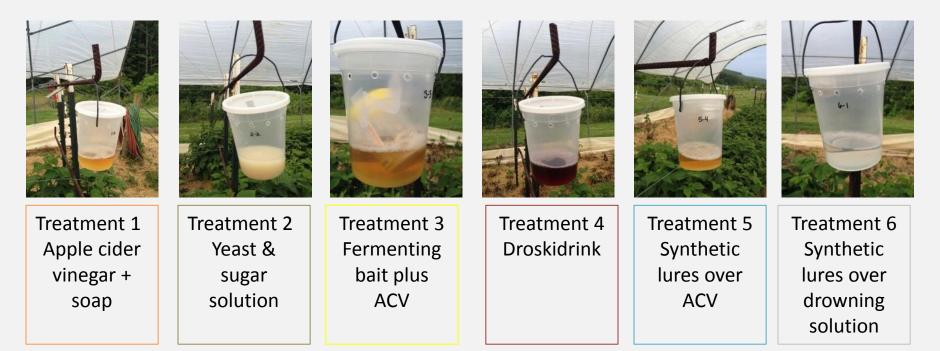
Monitoring methods - Traps

Trap color and entry location compared in 2012 in a similar multi state experiment


Dentra ...

Monitoring methods - Traps


Trap color and entry location compared in 2012 in a similar multi state experiment


D'allow a

Monitoring tools – Baits 2012 comparisons

Multistate bait comparisons; MI, NC, and OR

Oregon State

Methods

10 states

Sites in blueberries, caneberries, or

grapes

No SWD were captured in strawberry plots

6 treatments

Traps check, lures changed weekly Male and female SWD and non SWD Drosophilids counted

Statistical analyses

UNIVERSITY OF MINNESOTA Driven to Discover"

Mixed model ANOVA via SAS Proc Mixed For pooled data: state, week, and crop = random effects

Trap capture data were log transformed and proportion data were arcsine square root transformed to improve normality.

Satterwaite estimation was used to calculate degrees of freedom due to heteroscedasticity. Pairwise comparisons of the adjusted means were conducted using the Games-Howell adjustment.

Treatment 1 Apple cider vinegar + soap

150 ml of ACV, 4 ml soap/gal Treatment 2 Yeast & sugar solution

2 Tbsp yeast, 8 Tbsp sugar, 24 fl oz water, 0.76 ml unscented soap

NC STATE UNIVERSITY MICHIGAN STATE MAINE RUTGERS

53

Treatment 3 Fermenting bait in ACV

69 g whole wheat flour, 8 g sugar, 1.3 g yeast, 4 ml ACV, 100 ml water (4 fl oz per trap) *floating in* 150 ml of a solution of 600 ml, 67 ml 95% ethanol, 3.3 ml soap

Oregon State

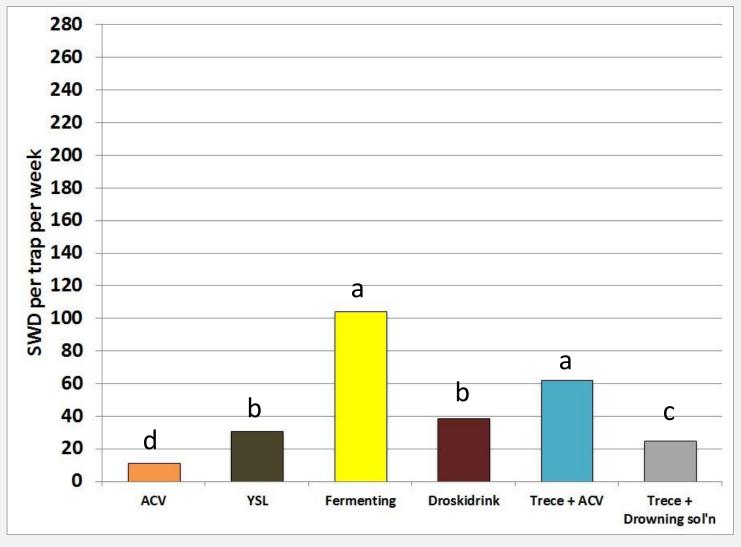
Treatment 4 Droskidrink

> 150 ml of a solution of 450 ml ACV, 150 ml red wine, 12 g muscavado sugar

UNIVERSITY OF MINNESOTA Driven to Discover^{est}

Treatment 5 Synthetic Iures over ACV

> 150 ml of ACV, 4 ml soap/gal


ARKANSAS

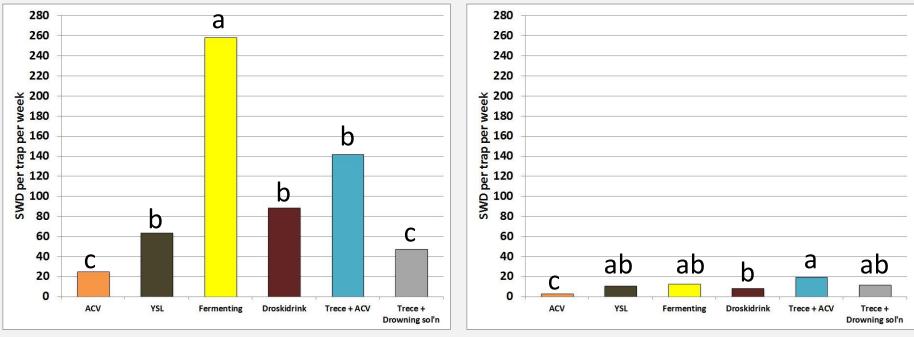
Treatment 6 Synthetic lures over drowning solution

150 ml of a solution of 600 ml water, 6 g borax, and 0.24 ml soap

1. Fermenting bait and synthetic lures over ACV captured more flies when all states and crops were pooled

Oregon State

ARKANSAS.


UNIVERSITY OF MINNESOTA

F = 89.57; df = 5, 1937; p < 0.0001

MICHIGAN STATE MAINE MAINE MAINE New Association of the UNIVERSITY OF MAINE Association of the UNIVERSITY of MAINE

NC STATE UNIVERS

2. More flies were captured in caneberry sites, and fermenting bait was more attractive than synthetic lure over ACV in caneberries.

Caneberry sites

NC STATE UNIVERSIT

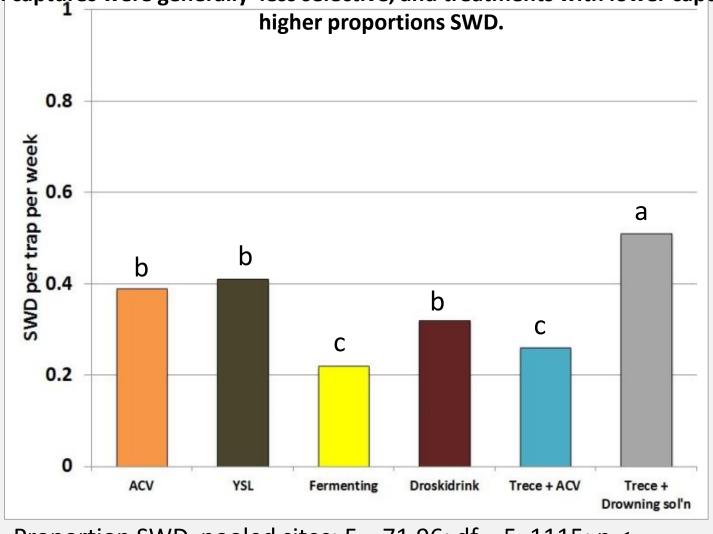
Blueberry sites

UNIVERSITY OF MINNESOTA

ARKANSAS.

F_{crop*treatment} = 16.41; df = 10, 1962; p < 0.0001

MAINE


RUTGERS

Oregon State

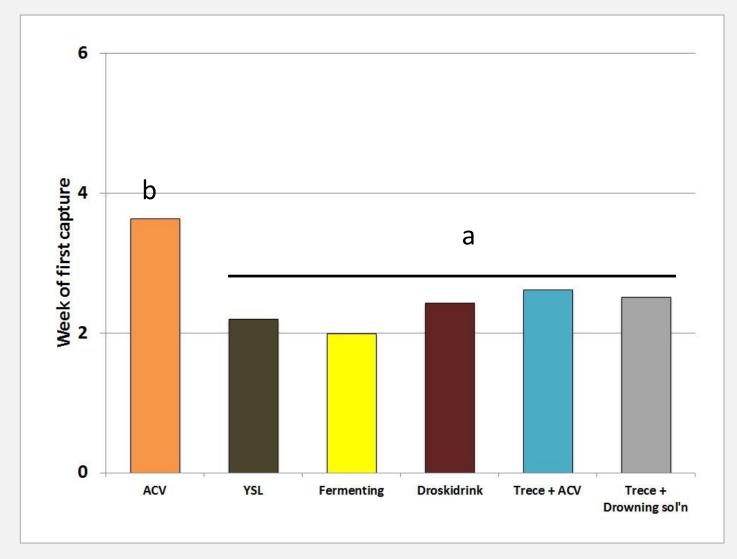
MICHIGAN STATE

UNIVERSITY

3. None of the baits were highly selective for SWD, but ACV, YSL and synthetic lure over drowning solution generally caught a larger proportion of SWD. Treatments with high captures were generally less selective, and treatments with lower captures had

Proportion SWD, pooled sites: F = 71.96; df = 5, 1115; p < 0.0001 MICHIGAN STATE MAINTERSITY OF RUTGERS

Oregon State


NC STATE UN

ARKANSAS.

UNIVERSITY OF MINNESOTA

Driven to Discover[®]

4. All baits/lures captured flies earlier than ACV.

Oregon State

ARKANSAS.

UNIVERSITY OF MINNESOTA Driven to Discover

F = 12.47; df = 5, 138; p < 0.0001

MICHIGAN STATE MAINTERSITY OF RUTGERS

NC STATE UNIVERSITY

Adult monitoring - Conclusions

For the time being, bait/lure is likely more important than trap design

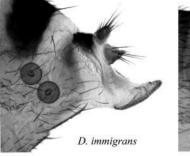
No currently available trap, lure, or bait has been demonstrated specific for SWD or to predict infestation across crops

How should growers monitor SWD?

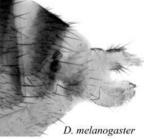
Adult monitoring Identification tools

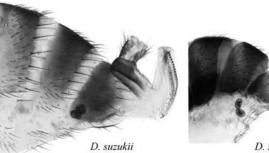
Because no trap/bait/lure combination is selective for SWD: Be prepared to ID flies if you plan to trap!

March


© Matt Bertone 2013

Adult monitoring Identification tools





antitude ...

D. subobscura

(Hauser 2011, Pest Management Science)

Adult monitoring - Conclusions

For the time being, bait/lure is likely more important than trap design

No currently available trap, lure, or bait has been demonstrated specific for SWD or to predict infestation across crops

How should growers monitor SWD?

Monitoring tools – Fruit sampling

Fruit samples should be collected from each field/variety block at each harvest

A "salt test" is a quick way to assess larval presence ¼ cup salt dissolved 1 gal water Poured over a thin layer of fruit Larvae should be visible within 15 minutes

Salt tests may miss small larvae Drosophila larvae cannot be distinguished by species – do not sample rotting fruit!

Key questions

What monitoring tools are available for SWD?

Marco

How should monitoring information be interpreted?

How should monitoring be implemented in different crops?

Big question: Does proximity to non-crop habitat affect fruit infestation levels?

Transects ≥ 20 m apart Traps Yeast sugar water bait in 32 fl oz cups; ~20 m apart Fruit collection ~40 ripe fruit around each trap Sites 2 commercial blackberry fields

Fruit Infestation

- Date
 - 2 July- no infestation

Fruit Infestation

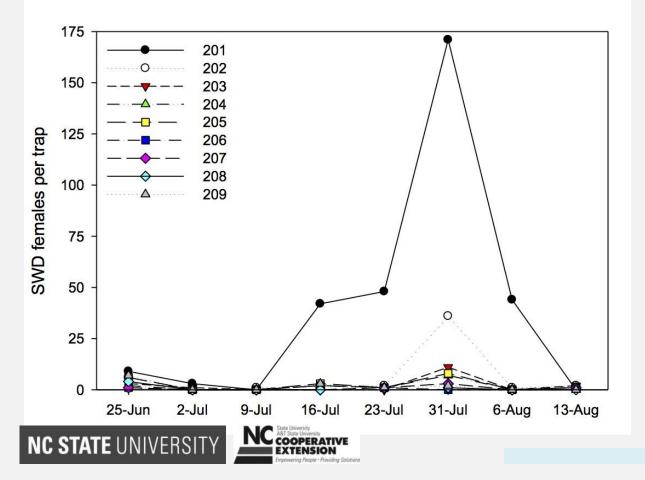
- Date
 - 2 July- no infestation
 - 9 July- 1-2
 pupae/40 fruit

Fruit Infestation

- Date
 - 2 July- no infestation
 - 9 July- 1-2
 pupae/40 fruit
 - 16 July- ≤ 44 pupae/40 fruit

Fruit Infestation

NC STATE UNIVERSITY


- Date
 - 2 July- no infestation
 - 9 July- 1-2
 pupae/40 fruit
 - 16 July- ≤ 44 pupae/40 fruit
 - 23 July- fewer
 pupae than 16 July

D. suzukii females in traps for one transect

- No obvious pattern to initial infestation presence (July 9th)
- Infestation rates (larvae/berry) were higher at field edges near woods
- In general, very few females were caught in traps within the crop fields
- Similar patterns were observed at the other sites
- Results are preliminary

D. suzukii females in traps for one transect

 Trap captures highest outside fields and within fields were not necessarily indicative of infestation presence/absence

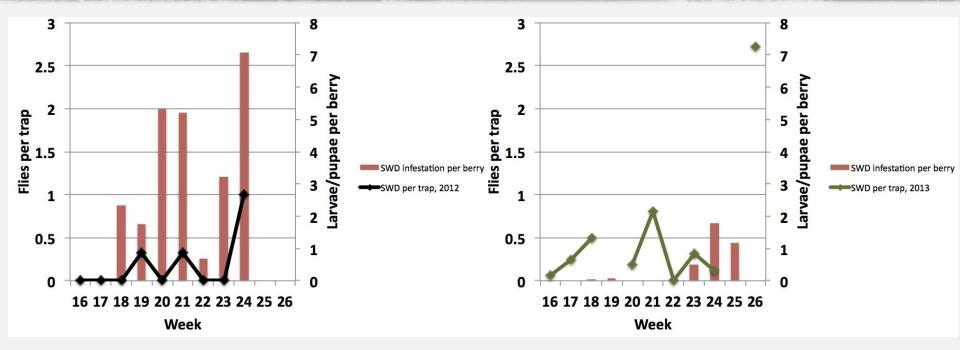
Monitoring tools – Fruit sampling

alle C

Videos and demonstration

Key questions

What monitoring tools are available for SWD?


Call Cale of

How should monitoring information be interpreted?

How should monitoring be implemented in different crops?

Implementing monitoring Strawberries

2012 – ACV Spring fruiting only

2013 – YSL

Implementing monitoring Blueberries

Consider fruiting period and if SWD has been detected in other crops

Management recommendations Blackberries and raspberries

Highly preferred, typically later fruiting than other hosts

Read us @ entomology.ces.ncsu.edu Like us @ facebook.com/NCSmallFruitIPM Follow us @NCSmallFruitIPM

