Farms in our study

- Small carpenter bees (Ceratina spp.) pollinate raspberries and excavate nests in piths of raspberry canes (Figures 1-3).
- Few studies have measured the nesting density of bee populations (Figures 1-3).
- Knowledge of nesting ecology can inform management to support this native pollinator and the services it provides.

Study Sites

- Farms in our study (Figure 4) varied in terms of management type and surrounding landscape.
- Important management differences include:
 1. organic vs. conventional farming
 2. pruning practices
 3. presence of early-flowering crop (eg. blueberry)
- Natural areas around farms varied in habitat type (Figure 5).

Results

- No significant difference in nest density was found between farm types (P = 0.664; Figure 9).
- A significant relationship was found between nest abundance and proportion of dead canes (y = 227.06x - 65.75, P = 0.00527; Figure 10).
- A significant difference was found between means before the dead cane data was normalized.

Discussion

- Presence of blueberries, an early-flowering crop, does not have a significant effect on Ceratina nest density.
- Management (pruning practice) appears to be a factor that strongly influences nest density.
- Future steps would include sampling each farm to determine number of nest holes per site that are false nests (not Ceratina).

Acknowledgements

Funding provided by NSF award DBI-1358938. Thanks to Jen Hayes, Kristen Switzer, Melissa Maldovan, Sadie Mralbe, Rose Watts, Mita Staub, Carol Bennett and the REU cohort for their help with data collection. Thanks to Michael McDonald, Ali Filipovic, and Jason Stockwell for help with figures and analysis. Special thanks to all of the berry farmers for their assistance and support throughout the study.

References

Hypothesis

We expected to find higher nest density of Ceratina on farms with both raspberry and blueberry crops.

Methods

- Randomly selected 30 sites at each farm (N = 14).
- Set a 1m x 1m quadrat at each site (Figure 6).
- Measured diameter of each cane in the quadrat at 0.5 m above the ground.
- Measured height and diameter at the nest for any cane with nest hole (Figure 7).
- Estimated average nest density at each farm.

Introduction

- Pollination services provided by native bees play an important role in agricultural systems.

Study Sites

- Farms in our study (Figure 4) varied in terms of management type and surrounding landscape.
- Important management differences include:
 1. organic vs. conventional farming
 2. pruning practices
 3. presence of early-flowering crop (eg. blueberry)
- Natural areas around farms varied in habitat type (Figure 5).

Results

- No significant difference in nest density was found between farm types (P = 0.664; Figure 9).
- A significant relationship was found between nest abundance and proportion of dead canes (y = 227.06x - 65.75, P = 0.00527; Figure 10).
- A significant difference was found between means before the dead cane data was normalized.

Discussion

- Presence of blueberries, an early-flowering crop, does not have a significant effect on Ceratina nest density.
- Management (pruning practice) appears to be a factor that strongly influences nest density.
- Future steps would include sampling each farm to determine number of nest holes per site that are false nests (not Ceratina).

Acknowledgements

Funding provided by NSF award DBI-1358938. Thanks to Jen Hayes, Kristen Switzer, Melissa Maldovan, Sadie Mralbe, Rose Watts, Mita Staub, Carol Bennett and the REU cohort for their help with data collection. Thanks to Michael McDonald, Ali Filipovic, and Jason Stockwell for help with figures and analysis. Special thanks to all of the berry farmers for their assistance and support throughout the study.

References