Effects of Habitat Fragmentation on Walleye in Lake Champlain
Erin Keough1, Victoria Pinheiro2, Bernie Pientka3, and J. Ellen Marsden2
1Saint Michael’s College, Colchester, VT; 2University of Vermont, Burlington, VT; 3VT Dept. Fish & Wildlife, Essex Junction, VT

Introduction

Habitat fragmentation can affect population genetics, movement and behavior.

- Dams, and possibly causeways, can fragment aquatic populations.
- Causeways constructed in Lake Champlain beginning in the 1800s may hinder fish movement.
- Walleye, a mobile and popular sport fish, may be negatively affected by these barriers.

Methods

- 15 walleye were captured in fall 2014 and early spring 2015 and implanted with VEMCO acoustic transmitters (tags) (Figure 1).
- 27 receivers were placed in the lake to detect tag transmissions.
- Detection data were analyzed in R
 - Data were summarized by residence time, frequency of approach, and passage through causeways.
- Mark-recapture data from state tagging program were also used to assess walleye movement among basins (Figure 2)

Results

- 6 of 15 acoustically tagged fish (40%) travelled between basins; only 1 fish (6.7%) travelled to all 5 basins (Figure 3).
- The most heavily trafficked passageway between basins was through Carry Bay and Alburg Passage.
- 20.1% of angler-caught walleye were recaptured in a different basin than where they were originally tagged.

Conclusions & Discussion

- Walleye move between the Lake Champlain basins.
- Causeways may cause delays.
 - Some fish made short but frequent unsuccessful attempts to pass through a causeway (Table 1).
- Behavior illustrated in Figure 3 suggests that fish may be temporarily "trapped" in basins by causeways.
- Generalizations are limited by small sample size (N=15)

Acknowledgements

This project was funded by the National Science Foundation under award DBI-1358838. Special thanks to the Rubenstein Ecosystem Science Laboratory at the University of Vermont, Jason Stockwell (program director), Michael McDonald (faculty mentor), and the members of the REU group.

Contact Information

Erin Keough is an Environmental Engineering student at Saint Michael’s College.
- Email: ekough2@smcvt.edu
- Campus address: Box 2857, One Winooski Park, Colchester, VT 05439