A Hedonic Analysis of the Hedonic Affect of Eutrophication on Property Values in the Lake Champlain Basin

Ciara Low, Brown University ‘14 | Mentor: Asim Zia, University of Vermont

Introduction

- Eutrophication is an increasing problem in freshwater systems throughout the U.S.
- Cyanobacteria are an increasingly common consequence of excess nutrient inputs in Lake Champlain (VT, NY, Quebec) and have been identified as a serious health hazard and ecological threat
- Human health effects and ecological impacts are well documented, but research on the economic impacts of algal blooms is lacking

Objective

- To investigate the economic impact of eutrophication through a hedonic regression analysis of property transactions in lakeside towns between 1992 and 2013

Variables

- Sample: 33,422 property transaction records from lakeside towns, spanning 1992-2013. Prices were adjusted to 2010 real dollars and logarithmically transformed in half the models.
- Chlorophyll-a was used as the proxy variable for water quality (figure 1), with 15 u/L used as an indicator of eutrophication in the discrete models
- Hedonic Variables used: Distance from the lake, distance from the nearest high school, elementary/middle school, landfill. Dummy Variables: category (e.g. residential, commercial, farm), & town

Methodology

- Property transactions were geocoded using ArcGIS. Distances from the lake and dis/amenities were calculated using raster files and spatial analysis tools. Multiple linear regression models created in JMP.
- These results provide an economic argument for lake remediation and pollution prevention efforts, as well as a way to quantify the welfare benefits of policies that support clean water
- As the first economic valuation of water quality using hedonic regression modeling in Lake Champlain, this study can potentially provide a unique and important contribution to policy and decision-making in water quality management
- Next steps: the results listed here are preliminary and part of a more comprehensive hedonic regression evaluation being overseen by Dr. Asim Zia at the University of Vermont

Discussion/Future Work

- These results provide an economic argument for lake remediation and pollution prevention efforts, as well as a way to quantify the welfare benefits of policies that support clean water
- As the first economic valuation of water quality using hedonic regression modeling in Lake Champlain, this study can potentially provide a unique and important contribution to policy and decision-making in water quality management

Acknowledgements

Special thanks to Jason Stockwell (program director), Ahmed Hamed (graduate mentor), Michael MacDonald, Brian Voigt, and Beth White
Support for this project was provided by the National Science Foundation (Award DBI-1358838)

Marginal Implicit Prices

<table>
<thead>
<tr>
<th>Water Quality Attribute</th>
<th>Avg House Price</th>
<th>Chlorophyll-a (continuous)</th>
<th>Chlorophyll-a (discrete)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample mean</td>
<td>5.331</td>
<td>-0.006827</td>
<td>0.062068</td>
</tr>
<tr>
<td>Coefficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal Implicit</td>
<td></td>
<td>$1580</td>
<td>$16,326</td>
</tr>
<tr>
<td>Price</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Marginal implicit prices calculated from estimated water quality variable coefficients, using the sample average house price

Background

- Hedonic Regression is a form of revealed price elicitation used to extract a willingness to pay for a particular amenity or service
- Basic Hedonic Regression equation: $P_i = f(S_i, N_i, Q_i)$, where P_i is the property price, S_i is the property characteristics, N_i is the neighbourhood characteristics, and Q_i is the environmental characteristics
- In this study hedonic models are used to find the marginal implicit value of clean water

Figure 1: Average chlorophyll-a by LCBP monitoring station 1992-2013 (LCBP, 2013).

Figure 2: Model results for logarithmically transformed price and continuous chlorophyll-a variables

Figure 3: Marginal implicit prices calculated from estimated water quality variable coefficients, using the sample average house price

Regression Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Continuous Chl-a Model</th>
<th>S.E. (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR</td>
<td>0.0159896</td>
<td>0.000538***</td>
</tr>
<tr>
<td>Distance from Lake</td>
<td>-0.001364</td>
<td>0.000186***</td>
</tr>
<tr>
<td>Chlorophyll-a (continuous)</td>
<td>-0.006827</td>
<td>0.00132***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.161602</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-24.54078</td>
<td></td>
</tr>
<tr>
<td>F-statistics</td>
<td>201.1176</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>33422</td>
<td></td>
</tr>
</tbody>
</table>

Ciara Low is an undergraduate at Brown University, interested in international development and environmental law and policy.
Expected graduation: Dec 20114
Contact information: Ciara_low@brown.edu
How much do residents of Vermont lakeside towns value their proximity to the lake and the services it provides?

Are they willing to pay for clean, clear water?

Surveys suggest yes, but is this reflected in their actual marketplace decisions?
A Hedonic Analysis of the Hedonic Affect of Eutrophication on Property Values in the Lake Champlain Basin

Ciara Low, Brown University '14 | Mentor: Asim Zia, University of Vermont
• How much do residents of Vermont lakeside towns value their proximity to the lake and the services it provides?

• Are they willing to pay for clean, clear water?

• Surveys suggest yes, but is this reflected in their marketplace decisions?