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Electronic cigarettes, or e-cigs for short, have become a popular alternative to traditional tobacco products. The vaporization ECIg Categorlcal Tweet HapplneSS DlStrlbUthnS Categorlcal Tlme Serles Correlatlons: Sentlments and Counts

technology present in e-cigarettes allows consumers to simulate tobacco smoking without igniting the carcinogens found in
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social media is relevant to public health agendas.

tobacco. The health risks, marketing regulations, and the potential of these devices as a form of nicotine replacement therapy are Using the happiness scores from LabMT, the average emotional rating of a corpus is calculated by tallying the appearance of words found in the intersection of the wordlist _ _ _ Spearman Month'y Freq uency Correlations
hotly debated both politically and clinically. Twitter, a mainstream social media outlet, provides a means to survey the popularity and a given corpus, in this case subsets of tweets. A weighted arithmetic mean of each word’s frequency, fuora, and corresponding happiness score, hyorg for each of the N 0.50 Organic vs Commercial: Frequency Correlations g .
and sentiment of consumer opinions regarding e-cigarettes. Approximately 700,000 tweets containing mentions of e-cigarettes words in a text yields the average happiness score for the corpus, hyex:: ' Commercial Infomercial
were collected from a 10% sample of Twitter spanning from January 2012 to July 2014. N :
All tweets mentioning e-cigarettes were categorized as Commercial, Infomercial, or Organic. Tweets in the commercial category B W; E 0.45 — : Orgar:“C 0587 0879
(=~ 70%) contained atleast 3 marketing key words (e.g. ‘free trial’, ‘buy’, ‘coupon’, ‘starter kit’,... ) , a key word along with a URL, or fext = N ‘= Infomercial 0.468 (p < 005)
are from SPAM accounts. The Infomercial category (~ 15%) contains all tweets with URLs that omit these key-words. The Organic WE fu L 0.40|
category (=~ 15%) contains the remaining tweets. g '
The emotionally charged words that contribute to the positivity of various subsets of tweets from each category are o _ o
quantitatively measured, a hedonometrics. Outliers in both the positivity and frequency time-series distributions correspond to Monthlv E-cig Ti t Counts and Senti ; +2012-2014: User Tweet Distributions U 0.35}
political debates regarding the regulation of e-cigarettes. Time-series analysis techniques are implemented to determine the effect 5.0 O y E-Clg Iweet Lounts a entiments e o Organic % 0.50
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promotional tweets have on organic sentiments. Due to the high youth presence on twitter as well as the clinical uncertainty as|. . (C);gnf:,,:rcial / . . li‘]j;“m";f:;?'
regarding the risks associated with e- cigarettes, understanding the effect of promotionally marketing vaporization products across - Infomercial J ‘Nl 10° b ]
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A Here, the relationship between each of these categorical tweets is explored. Some possible evidence that the Commercial or Infomercial categories are having an effect on
Organic sentiments and frequencies is quanitfied. A nontrivial number of Commercial and Infomercial tweets are directed at Organic users. On the left, all Commercial and
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Organic tweets spanning January 2012 to July 2014 are binned into their hourly distributions and correlated as a function of an hourly lag. Each of these correlations are
significant for the first 10 hours (p < 0.01). The correlation is maximized with a lag of one hour. The subgraph presents the correlations for a lag of up to 400 hours. The
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LabMT is a happiness distribution of the most frequently occurring 10,000 English words that were compiled through

10 . . . ' cyclic nature is due to the daily cycle of twitter activity, and although the correlation cyclically returns to above 0.40 it is maximized within the first hour.
On the right, tweets from each distribution are binned by month and correlated against each other. Both the frequency and happiness distributions exhibit a strong positive
Spearman correlation.
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frequency distributions from literature,(Google Books), websites (Google Web Crawl), and Twitter. Surveys were created All E-cigarette mentions spanning January 2012 to July 2014 from the Twitter firehose, a 10% sample of all tweets, were collected and plotted as a function of time (upper

mimicking the self affective mannequin method, a sample of which is given above. Fifty participants were recruited using the left). The tweets were categorized into three classes: Organic, Commercialized, and Infomercial. Tweets with an abundance of marketing keywords were classified as

online survey tool, Amazon Mechanical Turk, to identify the face that best matched the emotional response elicited by each word, Commercial. Tweets without these commercial keywords but containing a URL were classified as Infomercial. The remaining tweets make up the Organic Category.

which were then converted to a 9 point scale. On the numeric scale, 1 corresponded to the face with the largest frown and 9 to the Categorizing and analyzing these categories separately is important to isolate true user sentiments pertaining to E-cigarettes. Marketing tweets use many overly positive ] ) . _ i

face with the largest smile. The average happiness score, hay,, for each word was then calculated via the arithmetic mean of 50 words to advertise the product. There are also orders of magnitude more commercialized tweets than Organic and Infomercial Tweets. Since the use of Social Media as a 2013 Dai |y Resolution: Political ReSpOnseS to EClg RQgUIatlan

user reported ratings per word. Using the average happiness scores of each word, the average positivity of a subset of tweets can marketing outlet for E-cigarettes is currently a hot political issue, it’s important to isolate each of these categories and analyze each seperately.

be quantified and used t(? compare ditferent tweet distributions. To increase the emotignal sigpal, qeutral words (4 < _ha‘/g < 6)are The numbgr (.)f E—cigaretf[e tvyeets from each user in .this. §tudy 's displayed on Iogarithmic_axes to the right. The _Commercial distribytion 'S quite different.fr.om the Organic Each categorical time-series exhibits a severe negative trend occurring in January of 2013. Observing tweets at the daily resolution for Organic users, a spike in the
rgmoveq from thg analysis. The starlldard approach to perform.a hedonomgtrlc analysis on twitter is to crc_aate a happiness anq Infomer.C|aI in terms of IT[S 51z€ and max number of individual user tweets. These marketing (SPAMers) tweet high volumes of E-cigarette related advertising, some of frequency distribution occurred in December of 2013. There is an inverse relationship with the average happiness daily scores during this time period. This was during the
time-series. Outliers on the time series correspond to time-periods containing an overabundance of emotionally charged words. which are directed to Organic twitter patrons.

time that the EU was debating a possible e-cigarette ban. Many tweets in this time frame were tagged with #EUcigban. The sentiments of Organic users as well as those

These outliers can then be investigated with word-shift graphs to help illuminate what is driving the emotional shift. from Commercialized accounts are visualized from this time period with word shift graphs

Categorical Word-Shifts: Sentiments over Time

US Geo-tagged E-cig Tweets: March-August 2014

2013: Daily Organic Ecig Tweets
Word-shift graphs illustrate two separate word frequency distributions. A reference period (T,), creates a basis of the emotional words being used to compare with another 1200 | | T - -
period, (Tcomp). The top 50 words responsible for a happiness shift between the two periods are displayed, along with their contribution to shifting the average happiness of !
Approximately 1% of all tweets report the geo-location to within ten meters of accuracy of the user. This Geo-tagged data-set the tweet-set. The arrows (1, ]) next to a word indicate an increase or decrease, respectively, of the word’s frequency during the comparison period with respect to the 1000;
allows for regional comparisons of Electronic Cigarette mentions across the United States. All tweets that mention E-cigarette reference period. The addition and subtraction signs indicate if the word contributes positively or negatively, respectively, to the average happiness score. Here we can
keywords between March and August 2014 were collected and binned by their U.S. state. Below we present a heat map of the identify the words contributing to the change in happiness between each category and over time. > 800} ‘
counts of these tweets per each state. A substantial number of tweets is required to perform a meaningful hedonometric analysis - i - T . b e -
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