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0 Inbreeding and Population Structure. 

[This chapter is just barely started and does not yet have a particular "case study" 

associated with it. But I'm going to post this anyway in case you find this useful for 

reviewing your lecture notes.] 

 

The Hardy Weinberg Equilibrium was defined for the case of random mating. However it 

is rare that individuals in a population truly mate at random
1
.  For populations with 

spatial structure, individuals are more likely to mate with others that are nearby than with 

individuals from more distant sites.  Although it would be nice to define a population as 

the collection of individuals that are mating together randomly, the boundaries of a 

population are often very indistinct.  A plant that is growing on one side of a meadow is 

much more likely to pollinate others growing nearby, so in that sense two sides of a 

meadow may be genetically separated. But when the plants are scattered evenly across 

that meadow, where would you draw the boundary? 

 

In addition, there may be behavioral patterns that cause individuals to mate non-

randomly.  If individuals live in family structured groups they may be likely to mate with 

relatives.  An extreme form of non-random mating occurs in plants that routinely self-

fertilize. 

 

The result is that populations are often genetically structured, at a variety of scales. 

Behavioral traits may result in individuals that are inbred with respect to the local 

subpopulation.  And spatial separation may result in sub-populations that are "inbred" 

with respect to the population as a whole.  In the latter case, inbreeding arises because 

individuals are on average more related to others within their own subpopulation than 

they are to others in more distant sites.  If mating takes place within a subpopulation then 

they are mating with closer relatives than they would with a truly random sample of 

mates from the population as a whole. 

 

Sewall Wright developed one index of population structure which he called the "fixation 

index" or F.   FIS is the inbreeding coefficient of an individual with respect to the local 

subpopulation and FST is the average inbreeding coefficient of subpopulations relative to 

the total population. 

 

0.1 Effect of inbreeding on allele and genotype frequencies. 

 

Self fertilization: Lets start with the extreme case of self fertilization.  How do allele and 

genotype frequencies change after on generation of self fertilization?  As before we'll 

consider a single locus with two alleles, A and a.   We'll use upper case letters for the 

                                                
1
 It is important to remember that we are talking about random mating with respect to a particular locus.  

Birds may choose mates non-randomly with respect to plumage, but since unlinked loci are inherited 

independently, they may very well be mating at random with respect to a certain enzyme locus. 
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genotype frequencies in that population.  Let P be the frequency of AA homozygotes, H 

be the frequency of heterozygotes and Q be the frequency of aa homozygotes. 

 

P+H+Q=1. 

 

After selfing, all of the AA homozygotes produce only AA offspring and all of the aa 

homozygotes produce only aa offspring.  However, selfing within the heterozygotes 

produces all three genotypes of offspring: 1/4 will be AA, 1/2 will be Aa and 1/4 will be 

aa.  The result is that the frequency of the homozygous genotypes increases with each 

generation of selfing, and the frequency of heterozygotes decreases. 

 

 

Genotype Initial Frequency Frequency after 

selfing 

 

AA P P + 1/4 H  

Aa H 1/2 H  

aa Q Q + 1/4 H  

 

In particular, the change in heterozygosity with selfing is: 

! 

H '=
1

2
H  

The frequency of heterozygotes decreases by half each generation.  Eventually, after 

many generations of selfing the frequency of heterozygotes will decline to zero. 

 

 

Effect of selfing on allele frequency:  The initial allele frequency is 

! 

p = P +
1

2
H  

and after selfing the allele frequency will be 

! 

p'= P'+
1

2
H '. Substituting the new values for 

P and H we get 

 

 

which is simply the original allele frequency.   

 

Non random mating, even in the most extreme form of self fertilization, has no effect on 

allele frequency.  Selfing causes genotype frequencies to change as the frequency of  

homozygotes increases and the frequency of heterozygotes decreases, but the allele 

frequency remains constant.    

 

Because non-random mating only reshuffles genotype frequencies with respect to their 

HW expectations, we can use the deviation of genotype frequencies from their expected 

values as a measure of inbreeding.  If Ho is the observed frequency of heterozygotes and 
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He is the expected frequency under random mating, then the inbreeding coefficient or 

fixation index is 

! 

F =1"
H
o

H
e

. 

 

If there are no heterozygotes in the population then the inbreeding coefficient is 1.0.  

When the frequency of heterozygotes equals the HW expectation then the inbreeding 

coefficient is 0.  In cases where there is an excess of observed heterozygotes, then the 

inbreeding coefficient can be negative. 

 

Example: Let's assume the population starts out in HWE.  That means the genotype 

frequencies will be p2, 2pq and q2.   

Genotype Initial Frequency Frequency after 

selfing 

AA p
2
  

Aa 2p(1-p)  

aa (1-p)
2
  

 

• What will be the genotype frequencies after selfing?  

• Show that the allele frequency after selfing is still p. 

 

 

 

 

EXTRA: What happens if there is only partial inbreeding?  For example, many other 

plant species reproduce with a mixture of self-fertilization and random outcrossing.  

Other species may have brother-sister mating or some other intermediate level of 

inbreeding. In that case the inbreeding rate can vary anywhere between 0 and 1.  

 

In that general case, we can assume that there is a fraction F of seeds that are completely 

inbred, while the remainder, (1-F) are produced through random mating.  The random 

mating fraction will produce offspring in HW proportions, whereas the inbred portion 

will produce offspring that have both alleles identical by descent.
2
 

 

What will be the proportion of AA genotypes? 

For the random mating fraction, which occurs with probability (1-F), then the AA 

homozygotes will be produced with probability p
2
.    For the completely inbred fraction, 

which occurs with probability F, if one allele is A, then the other one must also be A 

(because we assume they are completely inbred).  Therefore the inbred offspring will 

                                                
2
 The real seeds do not have to fall into two different classes.  They may all have the 

same intermediate level of inbreeding.  But mathematically we can treat the case where 

every seed is 50% inbreed as exactly the same as when 50% percent of the seeds are the 

product of random mating and 50% are completely inbred. 
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either be AA (with probability p) or aa (with probability q).  There is no way to produce a 

heterozygote if there is complete inbreeding. 

 

Genotype Probability of 

random 

mating 

Genotype 

probability 

Probability of 

inbreeding 

Genotype 

Probability 

AA (1-F) p
2
 F p 

Aa (1-F) 2p(1-p) F 0 

aa (1-F) (1-p)
2
 F q 

 

P' = (1-F)p
2
 + Fp 

H' = (1-F) 2pq 

Q' = (1-F) q
2
 + Fq 

 

 

What is the new allele frequency after partial inbreeding? 

! 

p'= P'+
1

2
H ' 

! 

p'= (1"F)p
2

+Fp+
1

2
(1"F)2pq

p'= p
2
"Fp

2
+Fp+ pq "Fpq

 

 

Now substitute q=(1-p) 

 

! 

p'= p
2
"Fp

2
+Fp+ p" p

2
"Fp+Fp

2  

Notice that almost all of the terms are both added and subtracted.  All that is left is 

! 

p'= p 

Again, inbreeding does not alter allele frequencies, it just alters the genotype proportions. 

 

 

 

 

0.2 Estimating population level inbreeding 

When there is inbreeding, then the fraction of heterozygotes will be less than the fraction 

expected under random mating.  In particular, the fraction of heterozygotes will be 

reduced by (1-F).   

That suggests that we can use the deviation of observed and expected proportion of 

heterozygotes as a way of estimating the degree of inbreeding. 

! 

Hobs = (1"F)Hexp

F =1"
Hobs

Hexp

 

This is Wright's measure FIS, if the expected heterozygosity is based on the allele 

frequency in the local subpopulation. 
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0.3 Spatial structure 

 

As we stated at the beginning, spatial structuring of the population creates a kind of 

inbreeding.  If individuals mate with others in their own subpopulation they will be 

mating with others with whom they are more related than if they mated randomly over 

the entire subpopulation.   

 

We can estimate the inbreeding imposed by population structure with an equation that is 

analogous to the individual inbreeding coefficient.  Sewall Wright labeled that inbreeding 

associated with spatial structure as FST: the fixation index (or inbreeding) of a 

subpopulation relative to the total population.  Again we can measure that level of 

inbreeding by the decrease in heterozygosity within subpopulations relative to what we 

would expect if there were random mating over the entire population. 

! 

F
ST

= 1"
Average Expected Heterozygosity within Subpopulations

Expected Heterozygosity of the Total Population
 

! 

F
ST

=1"
H 

s

H
T

 

If individuals mate at random over the entire population, then the expected total 

heterozygosity 

! 

HT = 2p(1" p) . 

On the other hand, if there is spatial structure and individuals mate within subpopulations 

then the frequency of heterozygotes will depend on the local allele frequency in that 

subpopulation: 

! 

Hi = 2pi (1" pi ) for subpopulation i.   If there are a total of k 

subpopulations, then the average expected heterozygosity within subpopulations is: 

! 

H S =
1

k
2pi (1" pi )

i=1

k

# . 

Example:  Imagine that a population is 

divided into two spatially separated 

subpopulations. Subpopulation 1 has p=0.8 

and subpopulation 2 has p=0.5.   Both of 

those subpopulations have genotype 

frequencies that precisely match the HW 

expectations.  On the other hand, if we look 

at the entire population as a whole the 

genotypes deviate from HW proportions. 

There are fewer observed heterozygotes 

than we would expect, reflecting the 

"inbreeding" imposed by population 

structure. 

The allele frequency in the combined 

population is 0.65, so the expected 

heterozygosity is Ht=0.455. The average expected heterozygosity in the two 

subpopulations is Hs=0.41.   

 

Genotype 

Allele 

Frequency 

 AA Aa aa pA  

Subpopulation 1 128 64 8 0.8 

Expected 128 64 8  

 

Subpopulation 2 50 100 50 0.5 

Expected 50 100 50  

 

Total Population 178 164 58 0.65 

Expected 169 182 49   
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! 

F
ST

=1"
H 

s

H
T

=1"
0.410

0.455
= 0.099  

 

To understand the properties of FST, we can look at some extreme conditions.  If 

individuals are mating completely at random over the entire population, then there will be 

no local variation in allele frequency and each of  the subpopulations will have the same 

expected heterozygosity as the total population.  In that case Fst will be 0: there is no 

differentiation among subpopulations.  At the other extreme, each subpopulation may be 

completely isolated from all of the other subpopulations and each subpopulation may 

have become fixed for a different allele. That is the maximum level of differentiation.  If 

each subpopulation is fixed for one allele or the other, then there is no heterozygosity 

within subpopulations (HS =0).  In that case Fst will be 1.0.   

For most species of animals, FST ranges from 0 to 0.2. Plant populations usually show 

somewhat higher degrees of spatial structure, since plants are rooted in place.  Yet even 

for plants FST  is usually less than 0.4. 

 


