

Four types of RNA mRNA Messenger RNA, encodes the amino acid sequence of a polypeptide rRNA Ribosomal RNA, forms complexes with protein called ribosomes, which translate mRNA to protein tRNA

- Transfer RNA, transports amino acids to ribosomes during protein synthesis
- snRNA
 - Small nuclear RNA, forms complexes with proteins used in eukaryotic RNA processing

RNA will fold to specific shapes Because RNA is single-stranded, parts of the molecule can base pair with other parts of the same molecule, causing it to fold into defined shapes. Some RNA molecules can even act as enzymes (ribozymes)

		Т	ħ	e g	en	eti	C (coc	le	
		U		Jecon	u mi		30	G		
	U		Phe Leu		Ser		Tyr Stop		Cys Stop	U C A
base (5' end)	c	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAA	His Gln	UGG CGU CGC CGA CGG	Trp Arg	G U C A G
First mRNA	A	AUU AUC AUA AUG	lle Aet or tart	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	U C A G
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	U C A G

The code is a triplet code

- . . . or by two more deletions to get it back into the correct "reading frame"
 - the $\operatorname{ne}_{\underline{W}}$ boy saw the big cat eat the hot dog
 - the neb oys awt \underline{h} eb igc ate att heh otd og
 - the neb osa wte big cat eat the hot dog

- Your book tells how people used synthetic mRNAs and *in vitro* translation to determine decipher the codons.
- E.g. UUUUUUUU -> phenylalanine only
 - UCUCUCUCUCU -> mix of leucine and serine
 Why is it a mixture?

The code is redundant

 Several different codons encode the same amino acid
 Several different codons encode acid

The code is comma free No punctuation between words. Therefore deletions cause frameshifts It does have start and stop signals, however. Start: AUG Stop: UAG, UAA, UGA

Toxin	Mode of action	Target
Puromycin	forms peptidyl-puromycin, prevents translocation	Procaryotes
Tetracycline	blocks the A-site, prevents binding of aminoacyl tRNAs	Procaryotes
Chloramphenicol	blocks peptidyl transfer	Procaryotes
Cycloheximide	blocks peptidyl transferase	Eucaryotes
Streptomycin	inhibits initiation at high concentrations	Procaryotes
Diphtheria toxin	catalyzes ADP-ribosylation of residue in eEF2	Eucaryotes
Erythromycin	binds to 50S subunit, inhibits translocation	Procaryotes
Ricin	inactivates 60S subunit, depurinates an adenosine in 23S rRNA	Eucaryotes

NOTE: Prokaryotes (this generally includes protein synthesis in mitochondria and chloroplasts)

<text>