
BasicScript 2.25
Language Reference

Summit Software
Confidential

September 25, 1996

Information in this document is subject to change without notice. No part of this
document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission
of Summit Software Company.

Copyright © 1992–1996 Summit Software Company. All rights reserved.

BasicScript is a registered trademark of Summit Software Company. All other
trademarks are the property of their respective holders.

iii

Summit Software Confidential
Filename: lr.toc Template: UGtemp.FM5
Page: iii of iv Printed: 9/25/96

Contents

Introduction ...1

Language Summary ..3

A-Z Reference ..25

Index ...561

iv BasicScript 2.2 Language Reference

Summit Software Confidential
Filename: lr.toc Template: UGtemp.FM5
Page: iv of iv Printed: 9/25/96

Summit Software Confidential
Filename: lrintro.fm5 Template: LRprint.FM5
Page: 1 of 2 Printed: 9/25/96

Introduction

This manual provides a complete reference for the BasicScript 2.25 scripting language.
It contains the following:

• The Language Summary provides you with a list of all functions, statements, and
methods in the BasicScript language. These items are grouped by the task you wish
to accomplish, so you can easily find the BasicScript language item that will help
you do your work.

• The A-Z Reference provides detailed explanations of each item in the BasicScript
language. It also provides concise descriptions of important topics.

• Appendix A, “Language Elements by Platform,” provides a quick, alphabetic list of
the items in the BasicScript language that also shows the platforms supported by
each item.

Typographic Conventions

This manual uses the following typographic conventions.

Convention Description

Do...Loop Words in this typeface indicate elements of the BasicScript
language.

variable Words in italics indicate placeholders for parameters that
you replace using the syntax described in this manual.

text$ In syntax, the presence of a type-declaration character
following a parameter signifies that the parameter must be
a variable of that type or an expression that evaluates to that
type.

If a parameter does not appear with a type-declaration
character, then its type is described in the text.

[expressionlist] Square brackets indicate that the enclosed items are
optional.

2 BasicScript Language Reference

Summit Software Confidential
Filename: lrintro.fm5 Template: LRprint.FM5
Page: 2 of 2 Printed: 9/25/96

Note: In BasicScript, you cannot end a statement with a
comma, even if the parameters are optional:
MsgBox "Hello",,"Message" 'OK
MsgBox "Hello",, 'Not valid

{ Input | Binary } Braces indicate that you must choose one of the enclosed
items, which are separated by a vertical bar.

... Ellipses indicate that the preceding expression can be
repeated any number of times.

' Comment An apostrophe (') indicates the start of a comment.

Convention Description

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 3 of 24 Printed: 9/25/96

Language Summary

The following table summarizes the functions, statements, methods and other items that
belong to the BasicScript language. Items are grouped by the tasks you might wish to
perform.

BasicScript Functions, Statements, and Methods by Category and Task

Category Task Language Element(s)

Arrays Return the number of dimensions of an array

Sort an array

Erase the elements in one or more arrays

Return the lower bound of a given array
dimension

Change the default lower bound for array
declarations

Re-establish the dimensions of an array

Return the upper bound of a dimension of an array

ArrayDims (function)

ArraySort (statement)

Erase (statement)

LBound (function)

Option Base (statement)

Redim (statement)

UBound (function)

4 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 4 of 24 Printed: 9/25/96

BasicScript
information

Return the CPU architecture of the current system

Return the capabilities of the platform

Return the code page for the current locale

Return the end-of-line character for the platform

Return the available memory

Return the directory where BasicScript is located

Return the locale of the current system

Return the name of the current operating system

Return the name of the vendor of the current
operating system

Return the version of the current operating system

Return the platform id

Return the path separator character for the
platform

Return the name of the CPU of the current system

Returns the number of CPUs installed on the
current system

Return the version of BasicScript

Basic.Architecture$ (property)

Basic.Capability (method)

Basic.CodePage (property)

Basic.Eoln$ (property)

Basic.FreeMemory (property)

Basic.HomeDir$ (property)

Basic.Locale$ (property)

Basic.OperatingSystem$
(property)

Basic.OperatingSystemVendor$
(property)

Basic.OperatingSystemVersion$
(property)

Basic.OS (property)

Basic.PathSeparator$ (property)

Basic.Processor$ (property)

Basic.ProcessorCount (property)

Basic.Version$ (property)
Clipboard Return the content of the clipboard as a string

Set the content of the clipboard

Clear the clipboard

Get the type of data stored in the clipboard

Get text from the clipboard

Set the content of the clipboard to text

Clipboard$ (function)

Clipboard$ (statement)

Clipboard.Clear (method)

Clipboard.GetFormat (method)

Clipboard.GetText (method)

Clipboard.SetText (method)
Comments Comment to end-of-line

Add a comment

Rem (statement)

' (keyword)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

5

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 5 of 24 Printed: 9/25/96

Controlling other
applications

Activate an application

Close an application

Return the filename corresponding to an
application

Return the full name of an application

Return the name of the active application

Get the position and size of an application

Get the window state of an application

Hide an application

Fill an array with a list of running applications

Maximize an application

Minimize an application

Move an application

Restore an application

Set the state of an application's window

Show an application

Change the size of an application

Return the type of an application

Simulate keystrokes in another application

Send keystrokes to another application

Execute another application

AppActivate (statement)

AppClose (statement)

AppFilename$ (function)

AppFind, AppFind$ (functions)

AppGetActive$ (function)

AppGetPosition (statement)

AppGetState (function)

AppHide (statement)

AppList (statement)

AppMaximize (statement)

AppMinimize (statement)

AppMove (statement)

AppRestore (statement)

AppSetState (statement)

AppShow (statement)

AppSize (statement)

AppType (function)

DoKeys (statement)

SendKeys (statement)

Shell (function)
Controlling menus
in other
applications

Execute a menu command in another application

Determine if a menu item is checked in another
application

Determine if a menu item is enabled in another
application

Determine if a menu item exists in another
application

Menu (statement)

MenuItemChecked (function)

MenuItemEnabled (function)

MenuItemExists (function)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

6 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 6 of 24 Printed: 9/25/96

Controlling
windows in other
applications

Activate a window

Close a window

Find a window given its name

Fill an array with window objects, one for each
top-level window

Change the size of a window

Move a window

Scroll the active window left/right by a specified
number of lines

Scroll the active window left/right by a specified
number of pages

Scroll the active window left/right to a specified
absolute position

Scroll the active window up/down by a specified
number of lines

Scroll the active window up/down by a specified
number of pages

Scroll the active window up/down to a specified
absolute position

WinActivate (statement)

WinClose (statement)

WinFind (function)

WinList (statement)

WinMaximize (statement),
WinMinimize (statement),
WinRestore (statement), WinSize
(statement)

WinMove (statement)

HLine (statement)

HPage (statement)

HScroll (statement)

VLine (statement)

VPage (statement)

VScroll (statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

7

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 7 of 24 Printed: 9/25/96

Conversion Return the value of a character

Convert one numeric value to another

Convert a character value to a string

Convert a value to an error

Convert a number to a hexadecimal string

Determine if an expression is convertible to a date

Determine if a variant contains a user-defined
error value

Determine if an expression is convertible to a
number

Convert a number to an octal string

Convert a number to a string

Convert a string to a number

Asc, AscB, AscW(functions)

CBool (function), CCur
(function), CDate, CVDate
(functions), CDbl (function), CInt
(function), CLng (function), CSng
(function), CStr (function), CVar
(function), Fix (function), Int
(function)

Chr, Chr$, ChrB, ChrB$, ChrW,
ChrW$ (functions)

CVErr (function)

Hex, Hex$ (functions)

IsDate (function)

IsError (function)

IsNumeric (function)

Oct, Oct$ (functions)

Str, Str$ (functions)

Val (function)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

8 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 8 of 24 Printed: 9/25/96

Date/time Return the current date

Change the system date

Add a number of date intervals to a date

Subtract a number of date intervals from a date

Return a portion of a date

Assemble a date from date parts

Convert a string to a date

Return a component of a date value

Return the current date and time

Return the current system time

Set the system time

Return the number of elapsed seconds since
midnight

Assemble a date/time value from time
components

Convert a string to a date/time value

Date, Date$ (functions)

Date, Date$ (statements)

DateAdd (function)

DateDiff (function)

DatePart (function)

DateSerial (function)

DateValue (function)

Day (function), Hour (function),
Minute (function), Month
(function), Second (function),
Weekday (function), Year
(function)

Now (function)

Time, Time$ (functions)

Time, Time$ (statements)

Timer (function)

TimeSerial (function)

TimeValue (function)
Desktop Arrange the icons on the desktop

Cascades all non-minimized applications

Set the desktop colors

Set the desktop wallpaper

Capture an image, placing it in the clipboard

Tiles all non-minimized applications

Desktop.ArrangeIcons (method)

Desktop.Cascade (method)

Desktop.SetColors (method)

Desktop.SetWallpaper (method)

Desktop.Snapshot (method)

Desktop.Tile (method)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

9

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 9 of 24 Printed: 9/25/96

Dialog
manipulation

Activate a control

Determine if a control in another application's
dialog is enabled

Determine if a control in another application's
dialog exists

Retrieve a value from a control in another
application's dialog box

Select a control in another application's dialog box

Set the state of a control in another application's
dialog box

ActivateControl (statement)

ButtonEnabled (function),
CheckBoxEnabled (function),
ComboBoxEnabled (function),
EditEnabled (function),
ListBoxEnabled (function),
OptionEnabled (function)

ButtonExists (function),
CheckBoxExists (function),
ComboBoxExists (function),
EditExists (function),
ListBoxExists (function),
OptionExists (function)

GetCheckBox (function),
GetComboBoxItem$ (function),
GetComboBoxItemCount
(function), GetEditText$
(function), GetListBoxItem$
(function), GetListBoxItemCount
(function), GetOption (function)

SelectButton (statement),
SelectComboBoxItem
(statement), SelectListBoxItem
(statement)

SetCheckBox (statement),
SetEditText (statement),
SetOption (statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

10 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 10 of 24 Printed: 9/25/96

Dynamic Data
Exchange (DDE)

Execute a command in another application

Initiate a DDE conversation with another
application

Set a value in another application

Return a value from another application

Establish a DDE conversation, then set a value in
another application

Terminate one or more conversations

Set the timeout used for non-responding
applications

DDEExecute (statement)

DDEInitiate (function)

DDEPoke (statement)

DDERequest, DDERequest$
(functions)

DDESend (statement)

DDETerminate (statement),
DDETerminateAll (statement)

DDETimeout (statement)

Event queue Empty a queue

Play back all events stored in a queue

Add key down event to the queue

Add key down/up events to the queue

Add key up event to the queue

Add mouse click to the queue

Add mouse double-click to the queue

Add mouse down/up/down events to the queue

Add mouse down event to the queue

Add mouse move event to the queue

Add many mouse move events to the queue

Add mouse up event to the queue

Make all mouse positions in a queue relative to a
window

QueEmpty (statement)

QueFlush (statement)

QueKeyDn (statement)

QueKeys (statement)

QueKeyUp (statement)

QueMouseClick (statement)

QueMouseDblClk (statement)

QueMouseDblDn (statement)

QueMouseDn (statement)

QueMouseMove (statement)

QueMouseMoveBatch (statement)

QueMouseUp (statement)

QueSetRelativeWindow
(statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

11

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 11 of 24 Printed: 9/25/96

Error handling Clear the properties of the Err object

Set or retrieve the description of the Err object

Set or retrieve the help context ID of the Err object

Set or retrieve the help file assocated with the Err
object

Return the last error generated by a call to a DLL

Return or set the number of the Err object

Generate a runtime error

Set or retrieve the source of a runtime error

Return the line with the error

Simulate a trappable runtime error

Return the text of a given error

Trap an error

Continue execution after an error trap

Err.Clear (method)

Err.Description (property)

Err.HelpContext (property)

Err.HelpFile (property)

Err.LastDLLError (property)

Err.Number (property)

Err.Raise (method)

Err.Source (property)

Erl (function)

Error (statement)

Error, Error$ (functions)

On Error (statement)

Resume (statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

12 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 12 of 24 Printed: 9/25/96

File I/O Close one or more files

Determine if the end-of-file has been reached

Return the next available file number

Read data from a random or binary file

Read data from a sequential file into variables

Read a specified number of bytes from a file

Read a line of text from a sequential file

Return the record position of the file pointer
within a file

Lock or unlock a section of a file

Return the number of bytes in an open file

Open a file for reading or writing

Print data to a file

Write data to a binary or random file

Close all open files

Return the byte position of the file pointer within a
file

Set the byte position of the file pointer which a file

Specify the line width for sequential files

Write data to a sequential file

Close (statement)

EOF (function)

FreeFile (function)

Get (statement)

Input# (statement)

Input, Input$, InputB, InputB$
(functions)

Line Input# (statement)

Loc (function)

Lock, Unlock (statements)

Lof (function)

Open (statement)

Print# (statement)

Put (statement)

Reset

Seek (function)

Seek (statement)

Width# (statement)

Write# (statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

13

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 13 of 24 Printed: 9/25/96

File system Change the current directory

Change the current drive

Return the current directory

Return files in a directory

Fill an array with valid disk drive letters

Return the free space on a given disk drive

Return the mode in which a file is open

Copy a file

Return the date and time when a file was last
modified

Fill an array with a subdirectory list

Determine if a file exists

Return the length of a file in bytes

Fill an array with a list of files

Return a portion of a filename

Return the type of a file

Return the attributes of a file

Delete files from disk

Return a value representing a collection of
same-type files on the Macintosh

Create a subdirectory

Rename a file

Remove a subdirectory

Change the attributes of a file

ChDir (statement)

ChDrive (statement)

CurDir, CurDir$ (functions)

Dir, Dir$ (functions)

DiskDrives (statement)

DiskFree (function)

FileAttr (function)

FileCopy (statement)

FileDateTime (function)

FileDirs (statement)

FileExists (function)

FileLen (function)

FileList (statement)

FileParse$ (function)$

FileType (function)

GetAttr (function)

Kill (statement)

MacID (function)

MkDir (statement)

Name (statement)

RmDir (statement)

SetAttr (statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

14 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 14 of 24 Printed: 9/25/96

Financial Return depreciation of an asset using
double-declining balance method

Return the future value of an annuity

Return the interest payment for a given period of
an annuity

Return the internal rate of return for a series of
payments and receipts

Return the modified internal rate of return

Return the number of periods of an annuity

Return the net present value of an annuity

Return the payment for an annuity

Return the principal payment for a given period of
an annuity

Return the present value of an annuity

Return the interest rate for each period of an
annuity

Return the straight-line depreciation of an asset

Return the Sum of Years' Digits depreciation of an
asset

DDB (function)

Fv (function)

IPmt (function)

IRR (function)

MIRR (function)

NPer (function)

Npv (function)

Pmt (function)

PPmt (function)

Pv (function)

Rate (function)

Sln (function)

SYD (function)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

15

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 15 of 24 Printed: 9/25/96

Flow Control Call a subroutine

Return a value at a given index

Execute a group of statements repeatedly

Yield control to other applications

Stop execution of a script

Exit a Do loop

Exit a For loop

Execute a block of statements repeatedly

For Each...Next

Execute at a specific label, allowing control to
return later

Execute at a specific label

Conditionally execute one or more statements

Return one of two values depending on a
condition

Define a subroutine where execution begins

Continue execution after the most recent GoSub

Execute one of a series of statements

Pause for a specified number of milliseconds

Suspend execution, returning to a debugger (if
present)

Return one of a series of expressions depending
on a condition

Repeat a group of statements while a condition is
True

Call (statement)

Choose (function)

Do...Loop (statement)

DoEvents (function),DoEvents
(statement)

End (statement)

Exit Do (statement)

Exit For (statement)

For...Next (statement)

For Each...Next (statement)

GoSub (statement)

Goto (statement)

If...Then...Else (statement)

IIf (function)

Main (statement)

Return (statement)

Select...Case (statement)

Sleep (statement)

Stop (statement)

Switch (function)

While...Wend (statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

16 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 16 of 24 Printed: 9/25/96

INI Files and
Registry

Delete a setting from the system registry or an INI
file

Return the values of all keys or settings within the
system registry

Return the value of a key or setting within the
system registry

Read a string from an INI file

Read all the item names from a given section of an
INI file

Update the value of a key or setting within the
system registry

Write a new value to an INI file

DeleteSetting (statement)

GetAllSettings (function)

GetSetting (function)

ReadIni$ (function)

ReadIniSection (statement)

SaveSetting (statement)

WriteIni (statement)
Logical/binary
operators

Perform logical or binary operations on two
expressions

And (operator), Eqv (operator),
Imp (operator), Not (operator), Or
(operator), Xor (operator)

Math Return the absolute value of a number

Return the arc tangent of a number

Return the cosine of an angle

Return e raised to a given power

Return the integer part of a number

Return the integer portion of a number

Return the natural logarithm of a number

Return a random number between two values

Initialize the random number generator

Generate a random number between 0 and 1

Return the sign of a number

Return the sine of an angle

Return the square root of a number

Return the tangent of an angle

Abs (function)

Atn (function)

Cos (function)

Exp (function)

Fix (function)

Int (function)

Log (function)

Random (function)

Randomize (statement)

Rnd (function)

Sgn (function)

Sin (function)

Sqr (function)

Tan (function)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

17

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 17 of 24 Printed: 9/25/96

Miscellaneous Define a preprocessor constant for the BasicScript
compiler

Direct the BasicScript compiler to include or
exclude sections of code based on conditions

Force parts of an expression to be evaluated
before others

Add a line continuation character

Make a sound

Return the status of the Input Method Editor

Allow execution or interpretation of a block of
text

Execute an AppleScript script

Execute an MCI command

Set the default data type of variables and return
values

Prevent implicit delcarations of variables and
return values

Print a file using the application to which the file
belongs

#Const (directive)

#If...Then...#Else (directive)

() (keyword)

_ (keyword)

Beep (statement)

IMEStatus (function)

Inline (statement)

MacScript (statement)

Mci (function)

Option Default (statement)

Option Explicit (statement)

PrintFile (function)

Network Redirect a local device to a shared device on a
network

Display a dialog requesting a network directory or
printer resource

Cancel a network connection

Display a dialog allowing configuration of the
network

Return information about the capabilities of the
network

Return the name of the network resource
associated with a local device

Return the name of the user on the network

Net.AddCon (method)

Net.Browse$ (method)

Net.CancelCon (method)

Net.Dialog (method)

Net.GetCaps (method)

Net.GetCon$ (method)

Net.User$ (method)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

18 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 18 of 24 Printed: 9/25/96

Numeric operators Multiply

Add

Subtract

Divide

Integer divide

Raise to a power

Determine the remainder

* (operator)

+ (operator)

- (operator)

/ (operator)

\ (operator)

^ (operator)

Mod (operator)
Objects Instantiate an OLE automation object

Return an OLE automation object from a file, or
returns a previously instantiated OLE automation
object

Compare two object variables

Value indicating no valid object

CreateObject (function)

GetObject (function)

Is (operator)

Nothing
Open Database
Connectivity
(ODBC)

Specify where to place results with SQLRetrieve

Close a connection to a database

Return error information when an SQL function
fails

Execute a query against a database and return the
number of rows or columns affected by the query

Return information about the structure of a
database

Establishes a connection with a database

Run a query against a database, returning the
results as an array

Retrieve all or part of a query

Place the results of a query in a file

SQLBind (function)

SQLClose (function)

SQLError (function)

SQLExecQuery (function)

SQLGetSchema (function)

SQLOpen (function)

SQLRequest (function)

SQLRetrieve (function)

SQLRetrieveToFile (function)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

19

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 19 of 24 Printed: 9/25/96

Operating
environment

Return the command line

Return the operating system value of a window

Return the value of an environment variable

Return the free memory in the operating
environment

Return the free resources in the operating
environment

Return the total available memory in the operating
environment

Return the directory containing Windows

Return the Windows version

Exit the operating environment

Toggle mouse trails on or off

Restart the operating environment

Command, Command$
(functions)

HWND.Value (property)

Environ, Environ$ (functions)

System.FreeMemory (property)

System.FreeResources (property)

System.TotalMemory (property)

System.WindowsDirectory$
(property)

System.WindowsVersion$
(property)

System.Exit (method)

System.MouseTrails (method)

System.Restart (method)
Parsing Return a range of items from a string

Return the number of items in a string

Retrieve a line from a string

Return the number of lines in a string

Return a sequence of words from a string

Return the number of words in a string

Item$ (function)

ItemCount (function)

Line$ (function)

LineCount (function)

Word$ (function)

WordCount (function)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

20 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 20 of 24 Printed: 9/25/96

Predefined dialogs Display a dialog asking a question

Display a dialog allowing the user to type a
response

Display a dialog allowing the user to type a
password

Display a dialog allowing the user to type a
response

Display a dialog containing a message and some
buttons

Display a dialog containing a message and some
buttons

Close a modeless message box

Open a modeless message box

Set the message contained within a modeless
message box

Set the percentage of the thermometer in a
modeless message box

Display a dialog requesting a file to open

Display a popup menu containing items from an
array

Display a dialog requesting the name of a new file

Display a dialog allowing selection of an item
from an array

AnswerBox (function)

AskBox, AskBox$ (functions)

AskPassword, AskPassword$
(functions)

InputBox, InputBox$ (functions)

MsgBox (function)

MsgBox (statement)

Msg.Close (method)

Msg.Open (method)

Msg.Text (property)

Msg.Thermometer (property)

OpenFileName$ (function)

PopupMenu (function)

SaveFileName$ (function)

SelectBox (function)

Printer Retrieve the current printer orientation

Set the printer orientation

PrinterGetOrientation (function)

PrinterSetOrientation (statement)
Printing Print data to the screen

Print a number of spaces within a Print statement

Used with Print to print spaces up to a column
position

Print (statement)

Spc (function)

Tab (function)

Procedures Define an external routine or a forward reference

Exit a function

Exit a subroutine

Create a user-defined function

Create a user-defined subroutine

Declare (statement)

Exit Function (statement)

Exit Sub (statement)

Function...End Function
(statement)

Sub...End Sub (statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

21

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 21 of 24 Printed: 9/25/96

Screen resolution Return the x dialog base units

Return the y dialog base units

Return the height of the display, in pixels

Return the number of twips per pixel in the x
direction

Return the number of twips per pixel in the y
direction

Return the width of the display, in pixels

Screen.DlgBaseUnitsX (property)

Screen.DlgBaseUnitsY (property)

Screen.Height (property)

Screen.TwipsPerPixelX (property)

Screen.TwipsPerPixelY (property)

Screen.Width (property)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

22 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 22 of 24 Printed: 9/25/96

Strings Concetenate two strings

Return a string formatted to a given specification

Return the position of one string within another

Convert a string to lower case

Return the left portion of a string

Return the length of a string or the size of a data
item

Compare a string against a pattern

Left align a string or user-defined type within
another

Remove leading spaces from a string

Return a substring from a string

Replace one part of a string with another

Change the default comparison between text and
binary

Allow interpretation of C-style escape sequences
in strings

Return the right portion of a string

Right align a string within another

Remove trailing spaces from a string

Return a string os spaces

Compare two strings

Convert a string based on a conversion parameter

Return a string consisting of a repeated character

Trim leading and trailing spaces from a string

Return the upper case of a string

& (operator)

Format, Format$ (functions)

InStr, InstrB (functions)

LCase, LCase$ (functions)

Left, Left$, LeftB, LeftB$
(functions)

Len, LenB (functions)

Like (operator)

LSet (statement)

LTrim, LTrim$ (functions)

Mid, Mid$, MidB, MidB$
(functions)

Mid, Mid$, MidB, MidB$
(statements)

Option Compare (statement)

Option CStrings (statement)

Right, Right$, RightB, RightB$
(functions)

RSet (statement)

RTrim, RTrim$ (functions)

Space, Space$ (functions)

StrComp (function)

StrConv (function)

String, String$ (functions)

Trim, Trim$, LTrim, LTrim$,
RTrim, RTrim$ (functions)

UCase, UCase$ (functions)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

23

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 23 of 24 Printed: 9/25/96

User dialogs Begin definition of a dialog template

Add a control to a dialog box template

Invoke a user-dialog, returning which button was
selected

Invoke a user-dialog

Return the caption of the dynamic dialog

Change the caption of the current dialog

Return the id of a control in a dynamic dialog

Determine if a control is enabled in a dynamic
dialog

Enable or disables a control in a dynamic dialog

Return the control with the focus in a dynamic
dialog

Set focus to a control in a dynamic dialog

Set the content of a list box or combo box in a
dynamic dialog

Set the picture of a control in a dynamic dialog

Set the content of a control in a dynamic dialog

Return the content of a control in a dynamic
dialog

Return the value of a control in a dynamic dialog

Set the value of a control in a dynamic dialog

Determine if a control is visible in a dynamic
dialog

Set the visibility of a control in a dynamic dialog

Begin Dialog (statement)

CancelButton (statement),
CheckBox (statement),
ComboBox (statement),
DropListBox (statement),
GroupBox (statement), ListBox
(statement), OKButton
(statement), OptionButton
(statement), OptionGroup
(statement), Picture (statement),
PictureButton (statement),
PushButton (statement), Text
(statement), TextBox (statement)

Dialog (function)

Dialog (statement)

DlgCaption (function)

DlgCaption (statement)

DlgControlId (function)

DlgEnable (function)

DlgEnable (statement)

DlgFocus (function)

DlgFocus (statement)

DlgListBoxArray (statement)

DlgSetPicture (statement)

DlgText (statement)

DlgText$ (function)

DlgValue (function)

DlgValue (statement)

DlgVisible (function)

DlgVisible (statement)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

24 BasicScript Language Reference

Summit Software Confidential
Filename: lrsumm.fm5 Template: LRprint.FM5
Page: 24 of 24 Printed: 9/25/96

Variables and
constants

Assignment

Define a constant

Set the default data type

Declare a local variable

Declare variables for sharing between scripts

Assign a value to a variable

Declare variables accessible to all routines in a
script

Declare variables accessible to all routines in all
scripts

Assign an object variable

Declare a user-defined data type

= (statement)

Const (statement)

DefType (statement)

Dim (statement)

Global (statement)

Let (statement)

Private (statement)

Public (statement)

Set (statement)

Type (statement)
Variants Determine if a variant has been initialized

Determine if a variant contains a user-defined
error

Determine if an optional parameter was specified

Determine if a variant contains valid data

Determine if an expression contains an object

Return the type of data stored in a variant

IsEmpty (function)

IsError (function)

IsMissing (function)

IsNull (function)

IsObject (function)

VarType (function)
Viewport Clear the contents of the viewport

Close the viewport

Open a viewport

Viewport.Clear (method)

Viewport.Close (method)

Viewport.Open (method)

BasicScript Functions, Statements, and Methods by Category and Task (Continued)

Category Task Language Element(s)

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 25 of 39 Printed: 9/25/96

A-Z Reference

' (keyword)

Syntax ' text

Description Causes the compiler to skip all characters between this character and the end of the
current line.

Comments This is very useful for commenting your code to make it more readable.

Example Sub Main()
' This whole line is treated as a comment.
i$="Strings" ' This is a valid assignment with a comment.
This line will cause an error (the apostrophe is missing).

End Sub

See Also Rem (statement); Comments (topic).

Platform(s) All.

- (operator)

Syntax 1 expression1 - expression2

Syntax 2 - expression

Description Returns the difference between expression1 and expression2 or, in the second syntax,
returns the negation of expression.

Comments Syntax 1

The type of the result is the same as that of the most precise expression, with the
following exceptions:

If one expression is and the other expression is then the type of the result is

Long Single Double

Boolean Boolean Integer

Date Date Date

Date any other data type Double

26 BasicScript Language Reference

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 26 of 39 Printed: 9/25/96

A runtime error is generated if the result overflows its legal range.

When either or both expressions are Variant , then the following additional rules apply:

• If either expression is Null , then the result is Null .

• Empty is treated as an Integer of value 0.

• If the type of the result is an Integer variant that overflows, then the result is a
Long variant.

• If the type of the result is a Long, Single, or Date variant that overflows, then the
result is a Double variant.

Syntax 2

If expression is numeric, then the type of the result is the same type as expression, with
the following exception:

• If expression is Boolean, then the result is Integer.

Example 'This example assigns values to two numeric variables and
'their difference to a third variable, then displays the
'result.
Sub Main()

i% = 100
j# = 22.55
k# = i% - j#
MsgBox "The difference is: " & k#

End Sub

See Also Operator Precedence (topic).

Platform(s) All.

Note: In 2's complement arithmetic, unary minus may result in an overflow with
Integer and Long variables when the value of expression is the largest negative
number representable for that data type. For example, the following generates an
overflow error:

Sub Main()

Dim a As Integer

a = - 32768

a = - a 'Generates overflow here.

End Sub

When negating variants, overflow will never occur because the result will be
automatically promoted: integers to longs and longs to doubles.

#Const (directive) 27

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 27 of 39 Printed: 9/25/96

#Const (directive)

Syntax #Const constname = expression

Description Defines a preprocessor constant for use in the #If...Then...#Else statement.

Comments Internally, all preprocessor constants are of type Variant . Thus, the expression
parameter can be any type.

Variables defined using #Const can only be used within the #If...Then...#Else statement
and other #Const statements. Use the Const statement to define constants that can be
used within your code.

Example #Const SUBPLATFORM = "NT"
#Const MANUFACTURER = "Windows"
#Const TYPE = "Workstation"
#Const PLATFORM = MANUFACTURER & " " & SUBPLATFORM & " " & TYPE
Sub Main()

#If PLATFORM = "Windows NT Workstation" Then
MsgBox "Running under Windows NT Workstation"

#End If
End Sub

See Also #If...Then...#Else (directive); Const (statement).

Platform(s) All.

#If...Then...#Else (directive)

Syntax #If expression Then
[statements]

[#ElseIf expression Then
[statements]]

[#Else
[statements]]

#End If

Description Causes the compiler to include or exclude sections of code based on conditions.

Comments The expression represents any valid BasicScript Boolean expression evaluating to True
of False. The expression may consist of literals, operators, constants defined with
#Const, and any of the following predefined constants:

Constant Value

AIX True if development environment is AIX.

HPUX True if development environment is HPUX.

28 BasicScript Language Reference

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 28 of 39 Printed: 9/25/96

The expression can use any of the following operators: +, -, * , /, \, ̂ , + (unary), -
(unary), Mod, & , =, <>, >=, >, <=, <, And, Or , Xor , Imp , Eqv.

If the expression evaluates to a numeric value, then it is considered True if non-zero,
False if zero. If the expression evaluates to String not convertible to a number or
evaluates to Null , then a "Type mismatch" error is generated.

Text comparisons within expression are always case-insensitive, regardless of the
Option Compare setting

You can define your own constants using the #Const directive, and test for these
constants within the expression parameter as shown below:

#Const VERSION = 2

Sub Main

#If VERSION = 1 Then

directory$ = "\apps\widget"

Irix True if development environment is Irix.

LINUX True if development environment is LINUX.

Macintosh True if development environment is Macintosh (68K or
PowerPC).

MacPPC True if development environment is PowerMac.

Mac68K True if development environment is 68K Macintosh.

Netware True if development environment is NetWare.

OS2 True if development environment is OS/2.

OSF1 True if development environment is OSF/1.

SCO True if development environment is SCO.

Solaris True if development environment is Solaris.

SunOS True if development environment is SunOS.

UNIX True if development environment is any UNIX platform.

UnixWare True if development environment is UnixWare.

VMS True if development environment is VMS.

Win16 True if development environment is 16-bit Windows.

Win32 True if development environment is 32-bit Windows.

Empty Empty

False False

Null Null

True True

Constant Value

#If...Then...#Else (directive) 29

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 29 of 39 Printed: 9/25/96

#ElseIf VERSION = 2 Then

directory$ = "\apps\widget32"

#Else

MsgBox "Unknown version."

#End If

End Sub

Any constant not already defined evaluates to Empty.

A common use of the #If...Then...#Else directive is to optionally include debugging
statements in your code. The following example shows how debugging code can be
conditionally included to check parameters to a function:

#Const DEBUG = 1

Sub ChangeFormat(NewFormat As Integer,StatusText As String)

#If DEBUG = 1 Then

If NewFormat <> 1 And NewFormat <> 2 Then

MsgBox "Parameter ""NewFormat"" is invalid."

Exit Sub

End If

If Len(StatusText) > 78 Then

MsgBox "Parameter ""StatusText"" is too long."

Exit Sub

End If

#End If

Rem Change the format here...

End Sub

Excluded section are not compiled by BasicScript, allowing you to exclude sections of
code that has errors or doesn’t even represent valid BasicScript syntax. For example, the
following code uses the #If...Then...#Else statement to include a multi-line comment:

Sub Main

#If 0

The following section of code displays

a dialog box containing a message and an

OK button.

#End If

MsgBox "Hello, world."

End Sub

In the above example, since the expression #If 0 never evaluates to True, the text
between that and the matching #End If will never be compiled.

Example 'The following example calls an external routine. Calling
'External routines is very specific to the platform--thus,
'we have different code for each platform.

30 BasicScript Language Reference

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 30 of 39 Printed: 9/25/96

#If Win16 Then
Declare Sub GetWindowsDirectory Lib "KERNEL" (ByVal _

DirName As String,ByVal MaxLen As Integer)
#ElseIf Win32 Then

Declare Sub GetWindowsDirectory Lib "KERNEL32" Alias _
"GetWindowsDirectoryA" (ByVal DirName As String,ByVal _
MaxLen As Long)

#End If
Sub Main()

Dim DirName As String * 256
GetWindowsDirectory DirName,len(DirName)
MsgBox "Windows directory = " & DirName

End Sub

See Also #Const (directive).

Platform(s) All.

& (operator)

Syntax expression1 & expression2

Description Returns the concatenation of expression1 and expression2.

Comments If both expressions are strings, then the type of the result is String. Otherwise, the type
of the result is a String variant.

When nonstring expressions are encountered, each expression is converted to a String
variant. If both expressions are Null , then a Null variant is returned. If only one
expression is Null , then it is treated as a zero-length string. Empty variants are also
treated as zero-length strings.

In many instances, the plus (+) operator can be used in place of & . The difference is that
+ attempts addition when used with at least one numeric expression, whereas & always
concatenates.

Example 'This example assigns a concatenated string to variable s$ and
'a string to s2$, then concatenates the two variables and
'displays the result in a dialog box.
Sub Main()

s$ = "This string" & " is concatenated"
s2$ = " with the & operator."
MsgBox s$ & s2$

End Sub

See Also + (operator); Operator Precedence (topic).

Platform(s) All.

() (keyword) 31

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 31 of 39 Printed: 9/25/96

() (keyword)

Syntax 1 ...(expression)...

Syntax 2 ...,(parameter),... Description

Comments Parentheses within Expressions

Parentheses override the normal precedence order of BasicScript operators, forcing a
subexpression to be evaluated before other parts of the expression. For example, the use
of parentheses in the following expressions causes different results:

i = 1 + 2 * 3 'Assigns 7.

i = (1 + 2) * 3 'Assigns 9.

Use of parentheses can make your code easier to read, removing any ambiguity in
complicated expressions.

Parentheses Used in Parameter Passing

Parentheses can also be used when passing parameters to functions or subroutines to
force a given parameter to be passed by value, as shown below:

ShowForm i 'Pass i by reference.

ShowForm (i) 'Pass i by value.

Enclosing parameters within parentheses can be misleading. For example, the following
statement appears to be calling a function called ShowForm without assigning the
result:

ShowForm(i)

The above statement actually calls a subroutine called ShowForm, passing it the
variable i by value. It may be clearer to use the ByVal keyword in this case, which
accomplishes the same thing:

ShowForm ByVal i

Example 'This example uses parentheses to clarify an expression.
Sub Main()

bill = False
dave = True
jim = True
If (dave And bill) Or (jim And bill) Then

MsgBox "The required parties for the meeting are here."
Else

MsgBox "Someone is late again!"
End If

End Sub

Note: The result of an expression is always passed by value.

32 BasicScript Language Reference

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 32 of 39 Printed: 9/25/96

See Also ByVal (keyword); Operator Precedence (topic).

Platform(s) All.

* (operator)

Syntax expression1 * expression2

Description Returns the product of expression1 and expression2.

Comments The result is the same type as the most precise expression, with the following
exceptions:

When the * operator is used with variants, the following additional rules apply:

• Empty is treated as 0.

• If the type of the result is an Integer variant that overflows, then the result is
automatically promoted to a Long variant.

• If the type of the result is a Single, Long, or Date variant that overflows, then the
result is automatically promoted to a Double variant.

• If either expression is Null , then the result is Null .

Example 'This example assigns values to two variables and their product
'to a third variable, then displays the product of s# * t#.
Sub Main()

s# = 123.55
t# = 2.55
u# = s# * t#
MsgBox s# & " * " & t# & " = " & s# * t#

End Sub

See Also Operator Precedence (topic).

Platform(s) All.

. (keyword)

Syntax 1 object. property

Syntax 2 structure. member

If one expression is and the other expression is then the type of the result is

Single Long Double

Boolean Boolean Integer

Date Date Double

/ (operator) 33

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 33 of 39 Printed: 9/25/96

Description Separates an object from a property or a structure from a structure member.

Examples 'This example uses the period to separate an object from a
'property.
Sub Main()

MsgBox Clipboard . GetText()
End Sub
'This example uses the period to separate a structure from a
'member.
Type Rect

left As Integer
top As Integer
right As Integer
bottom As Integer

End Type
Sub Main()

Dim r As Rect
r . left = 10
r . right = 12

End Sub

See Also Objects (topic).

Platform(s) All.

/ (operator)

Syntax expression1 / expression2

Description Returns the quotient of expression1 and expression2.

Comments The type of the result is Double, with the following exceptions:

A runtime error is generated if the result overflows its legal range.

When either or both expressions is Variant , then the following additional rules apply:

• If either expression is Null , then the result is Null .

• Empty is treated as an Integer of value 0.

• If both expressions are either Integer or Single variants and the result overflows,
then the result is automatically promoted to a Double variant.

If one expression is and the other expression is then the type of the result is

Integer Integer Single

Single Single Single

Boolean Boolean Single

34 BasicScript Language Reference

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 34 of 39 Printed: 9/25/96

Example 'This example assigns values to two variables and their
'quotient to a third variable, then displays the result.
Sub Main()

i% = 100
j# = 22.55
k# = i% / j#
MsgBox "The quotient of i/j is: " & k#

End Sub

See Also \ (operator); Operator Precedence (topic).

Platform(s) All.

\ (operator)

Syntax expression1 \ expression2

Description Returns the integer division of expression1 and expression2.

Comments Before the integer division is performed, each expression is converted to the data type of
the most precise expression. If the type of the expressions is either Single, Double,
Date, or Currency, then each is rounded to Long.

If either expression is a Variant , then the following additional rules apply:

• If either expression is Null , then the result is Null .

• Empty is treated as an Integer of value 0.

Example 'This example assigns the quotient of two literals to a variable
'and displays the result.
Sub Main()

s% = 100.99 \ 2.6
MsgBox "Integer division of 100.99\2.6 is: " & s%

End Sub

See Also \ (operator); Operator Precedence (topic).

Platform(s) All.

^ (operator)

Syntax expression1 ^ expression2

Description Returns expression1 raised to the power specified in expression2.

_ (keyword) 35

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 35 of 39 Printed: 9/25/96

Comments The following are special cases:

The type of the result is always Double, except with Boolean expressions, in which case
the result is Boolean. Fractional and negative exponents are allowed.

If either expression is a Variant containing Null , then the result is Null .

It is important to note that raising a number to a negative exponent produces a fractional
result.

Example Sub Main()
s# = 2 ^ 5 'Returns 2 to the 5th power.
r# = 16 ^ .5 'Returns the square root of 16.
MsgBox "2 to the 5th power is: " & s#
MsgBox "The square root of 16 is: " & r#

End Sub

See Also Operator Precedence (topic).

Platform(s) All.

_ (keyword)

Syntax text1 _

text2

Description Line-continuation character, which allows you to split a single BasicScript statement
onto more than one line.

Comments The line-continuation character cannot be used within strings and must be preceded by
white space (either a space or a tab).

The line-continuation character can be followed by a comment, as shown below:
i = 5 + 6 & _ 'Continue on the next line.

"Hello"

Example Const crlf = Chr$(13) + Chr$(10)
Sub Main()

'The line-continuation operator is useful when concatenating
'long strings.
message = "This is a line of text that" + crlf + "extends" _

Special Case Value

n^0 1

0^ -n Undefined

0^+n 0

1^n 1

36 BasicScript Language Reference

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 36 of 39 Printed: 9/25/96

 + "beyond the borders of the editor" + crlf + "so it" _
 + "is split into multiple lines"

'It is also useful for separating and continuing long
'calculation lines.
b# = .124
a# = .223
s# = ((((Sin(b#) ^ 2) + (Cos(a#) ^ 2)) ^ .5) / _

 (((Sin(a#) ^ 2) + (Cos(b#) ^ 2)) ^ .5)) * 2.00
MsgBox message & crlf & "The value of s# is: " & s#

End Sub

Platform(s) All.

+ (operator)

Syntax expression1 + expression2

Description Adds or concatenates two expressions.

Comments Addition operates differently depending on the type of the two expressions:

When using + to concatenate two variants, the result depends on the types of each
variant at runtime. You can remove any ambiguity by using the & operator.

If one expression is
and the other
expression is then

Numeric Numeric Perform a numeric add (see below).

String String Concatenate, returning a string.

Numeric String A runtime error is generated.

Variant String Concatenate, returning a String variant.

Variant Numeric Perform a variant add (see below).

Empty variant Empty variant Return an Integer variant, value 0.

Empty variant Any data type Return the non-Empty operand
unchanged.

Null variant Any data type Return Null .

Variant Variant Add if either is numeric; otherwise,
concatenate.

< (operator) 37

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 37 of 39 Printed: 9/25/96

Numeric Add

A numeric add is performed when both expressions are numeric (i.e., not variant or
string). The result is the same type as the most precise expression, with the following
exceptions:

A runtime error is generated if the result overflows its legal range.

Variant Add

If both expressions are variants, or one expression is Numeric and the other expression
is Variant , then a variant add is performed. The rules for variant add are the same as
those for normal numeric add, with the following exceptions:

• If the type of the result is an Integer variant that overflows, then the result is a
Long variant.

• If the type of the result is a Long, Single, or Date variant that overflows, then the
result is a Double variant.

Example 'This example assigns string and numeric variable values and
'then uses the + operator to concatenate the strings and form
'the sums of numeric variables.
Sub Main()

i$ = "Concatenation" + " is fun!"
j% = 120 + 5 'Addition of numeric literals
k# = j% + 2.7 'Addition of numeric variable
MsgBox "This concatenation becomes: '" i$ + _

Str(j%) + Str(k#) & "'"
End Sub

See Also & (operator); Operator Precedence (topic).

Platform(s) All.

< (operator)

See Comparison Operators (topic).

<= (operator)

See Comparison Operators (topic).

If one expression is and the other expression is then the type of the result is

Single Long Double

Boolean Boolean Integer

38 BasicScript Language Reference

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 38 of 39 Printed: 9/25/96

<> (operator)

See Comparison Operators (topic).

= (statement)

Syntax variable = expression

Description Assigns the result of an expression to a variable.

Comments When assigning expressions to variables, internal type conversions are performed
automatically between any two numeric quantities. Thus, you can freely assign numeric
quantities without regard to type conversions. However, it is possible for an overflow
error to occur when converting from larger to smaller types. This occurs when the larger
type contains a numeric quantity that cannot be represented by the smaller type. For
example, the following code will produce a runtime error:

Dim amount As Long

Dim quantity As Integer

amount = 400123 'Assign a value out of range for int.

quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

The assignment operator (=) cannot be used to assign objects. Use the Set statement
instead.

Example Sub Main()
a$ = "This is a string"
b% = 100
c# = 1213.3443
MsgBox a$ & "," & b% & "," & c#

End Sub

See Also Let (statement); Operator Precedence (topic); Set (statement); Expression Evaluation
(topic).

Platform(s) All.

= (operator)

See Comparison Operators (topic).

> (operator) 39

Summit Software Confidential
Filename: lrspchar.fm5 Template: LRprint.FM5
Page: 39 of 39 Printed: 9/25/96

> (operator)

See Comparison Operators (topic).

>= (operator)

See Comparison Operators (topic).

40 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 40 of 87 Printed: 9/25/96

Abs (function)

Syntax Abs(expression)

Description Returns the absolute value of expression.

Comments If expression is Null , then Null is returned. Empty is treated as 0.

The type of the result is the same as that of expression, with the following exceptions:

• If expression is an Integer that overflows its legal range, then the result is returned
as a Long. This only occurs with the largest negative Integer:

Dim a As Variant

Dim i As Integer

i = -32768

a = Abs(i) 'Result is a Long.

i = Abs(i) 'Overflow!

• If expression is a Long that overflows its legal range, then the result is returned as a
Double. This only occurs with the largest negative Long:

Dim a As Variant

Dim l As Long

l = -2147483648

a = Abs(l) 'Result is a Double.

l = Abs(l) 'Overflow!

• If expression is a Currency value that overflows its legal range, an overflow error is
generated.

Example 'This example assigns absolute values to variables of four types
'and displays the result.
Sub Main()

s1% = Abs(-10.55)
s2& = Abs(-10.55)
s3! = Abs(-10.55)
s4# = Abs(-10.55)
MsgBox "The absolute values are: " & s1% & "," & s2& & "," _

& s3! & "," & s4#
End Sub

See Also Sgn (function).

Platform(s) All.

ActivateControl (statement)

Syntax ActivateControl control

ActivateControl (statement) 41

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 41 of 87 Printed: 9/25/96

Description Sets the focus to the control with the specified name or ID.

Comments The control parameter specifies either the name or the ID of the control to be activated,
as shown in the following table:

The ActivateControl statement generates a runtime error if the dialog control
referenced by control cannot be found.

You can use the ActivateControl statement to set the focus to a custom control within a
dialog box. First, set the focus to the control that immediately precedes the custom
control, then simulate a Tab keypress, as in the following example:

ActivateControl "Portrait"

DoKeys "{TAB}"

Example 'This example runs Notepad using Program Manager's Run command.
'It uses the ActivateControl command to switch focus between the
'different controls of the Run dialog box.
Sub Main()

If AppFind$("Program Manager") = "" Then Exit Sub
AppActivate "Program Manager"
Menu "File.Run"
SendKeys "Notepad"
ActivateControl "Run minimized"
SendKeys " "
ActivateControl "OK"
SendKeys "{Enter}"

End Sub

See Also DlgFocus (function).

Platform(s) Windows.

If control is Then

String A control by that name is activated.

For push buttons, option buttons, or check boxes, the control
with this name is activated. For list boxes, combo boxes, and
text boxes, the control that immediately follows the text
control with this name is activated.

Numeric A control with this ID is activated. The ID is first converted to
an Integer.

Note: The ActivateControl statement is used to activate a control in another
application's dialog box. Use the DlgFocus statement to activate a control in a
dynamic dialog box.

42 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 42 of 87 Printed: 9/25/96

And (operator)

Syntax result = expression1 And expression2

Description Performs a logical or binary conjunction on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
conjunction is performed as follows:

Binary Conjunction

If the two expressions are Integer, then a binary conjunction is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to
Long, and a binary conjunction is then performed, returning a Long result.

Binary conjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

Examples Sub Main()
n1 = 1001
n2 = 1000
b1 = True
b2 = False
'This example performs a numeric bitwise And operation and
'stores the result in N3.
n3 = n1 And n2

If expression1 is and expression2 is then the result is

True True True

True False False

True Null Null

False True False

False False False

False Null Null

Null True Null

Null False False

Null Null Null

If bit in expression1 is and bit in expression2 is the result is

1 1 1

0 1 0

1 0 0

0 0 0

AnswerBox (function) 43

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 43 of 87 Printed: 9/25/96

'This example performs a logical And comparing B1 and B2
'and displays the result.
If b1 And b2 Then

MsgBox "b1 and b2 are True; n3 is: " & n3
Else

MsgBox "b1 and b2 are False; n3 is: " & n3
End If

End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); Eqv (operator); Imp
(operator).

Platform(s) All.

AnswerBox (function)

Syntax AnswerBox(prompt [,[button1] [,[button2] [,[button3] [,[title]
[, helpfile, context]]]]]]])

Description Displays a dialog box prompting the user for a response and returns an Integer
indicating which button was clicked (1 for the first button, 2 for the second, and so on).

Comments The AnswerBox function takes the following parameters:

Parameter Description

prompt Text to be displayed above the text box. The prompt parameter can
be any expression convertible to a String.

BasicScript resizes the dialog box to hold the entire contents of
prompt, up to a maximum width of 5/8 of the width of the screen
and a maximum height of 5/8 of the height of the screen. BasicScript
word-wraps any lines too long to fit within the dialog box and
truncates all lines beyond the maximum number of lines that fit in
the dialog box.

You can insert a carriage-return/line-feed character in a string to
cause a line break in your message.

A runtime error is generated if this parameter is Null .

button1 The text for the first button. If omitted, then "OK and "Cancel" are
used. A runtime error is generated if this parameter is Null .

button2 The text for the second button. A runtime error is generated if this
parameter is Null .

button3 The text for the third button. A runtime error is generated if this
parameter is Null .

44 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 44 of 87 Printed: 9/25/96

The width of each button is determined by the width of the widest button.

The AnswerBox function returns 0 if the user selects Cancel.

If both the helpfile and context parameters are specified, then context-sensitive help can
be invoked using the help key (F1 on most platforms). Invoking help does not remove
the dialog.

Example 'This example displays a dialog box containing three buttons. It
'displays an additional message based on which of the three
'buttons is selected.
Sub Main()

r% = AnswerBox ("Copy files?", "Save", "Restore", "Cancel")
Select Case r%

Case 1
MsgBox "Files will be saved."

Case 2
MsgBox "Files will be restored."

Case Else
MsgBox "Operation canceled."

End Select
End Sub

See Also MsgBox (statement);AskBox, AskBox$ (functions); AskPassword, AskPassword$
(functions); InputBox, InputBox$ (functions); OpenFileName$ (function);
SaveFileName$ (function); SelectBox (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Any (data type)

Description Used with the Declare statement to indicate that type checking is not to be performed
with a given argument.

Comments Given the following declaration:
Declare Sub Foo Lib "FOO.DLL" (a As Any)

title String specifying the title of the dialog. If missing, then the default
title is used.

helpfile Name of the file containing context-sensitive help for this dialog. If
this parameter is specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this
dialog's help. If this parameter is specified, then helpfile must also
be specified.

Parameter Description

AppActivate (statement) 45

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 45 of 87 Printed: 9/25/96

the following calls are valid:
Foo 10

Foo "Hello, world."

Example 'This example calls the FindWindow to determine whether Program
'Manager is running. This example will only run under Windows and
'Win32 platforms.
'This example uses the Any keyword to pass a NULL pointer, which
'is accepted by the FindWindow function.
Declare Function FindWindow16 Lib "user" Alias _

"FindWindow" (ByVal Class As Any,ByVal Title As Any) As
Integer
Declare Function FindWindow32 Lib "user32" Alias _
"FindWindowA" (ByVal Class As Any,ByVal Title As Any) As Long
Sub Main()

Dim hWnd As Variant
If Basic.Os = ebWin16 Then

hWnd = FindWindow16("PROGMAN",0&)
ElseIf Basic.Os = ebWin32 Then

hWnd = FindWindow32("PROGMAN",0&)
Else

hWnd = 0
End If
If hWnd <> 0 Then

MsgBox "Program Manager is running, window handle is " _
& hWnd

End If
End Sub

See Also Declare (statement).

Platform(s) All.

AppActivate (statement)

Syntax AppActivate title | taskID,[wait]

Description Activates an application given its name or task ID.

Comments The AppActivate statement takes the following named parameters:

Named Parameter Description

title A String containing the name of the application to be
activated.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell
function.

46 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 46 of 87 Printed: 9/25/96

On some platforms, applications don’t activate immediately. To compensate, the
AppActivate statement will wait a maximum of 10 seconds before failing, giving the
activated application plenty of time to become activated.

Examples 'This example activates Program Manager.
Sub Main()

AppActivate "Program Manager"
End Sub
'This example runs another application, then activates it.
Sub Main()

Dim id as variant
id = Shell("Notepad",7)'Run Notepad minimized.
AppActivate "Program Manager"'Activate Program Manager.
AppActivate id 'Now activate Notepad.

End Sub

See Also Shell (function);SendKeys (statement);WinActivate (statement).

Platform(s) Windows, Macintosh, Win32, OS/2.

Platform Notes Windows, Win32: The title parameter is the exact string appearing in the title bar of the
named application's main window. If no application is found whose title exactly
matches title, then a second search is performed for applications whose title string
begins with title. If more than one application is found that matches title, then the first
application encountered is used.

Minimized applications are not restored before activation. Thus, activating a minimized
DOS application will not restore it; rather, it will highlight its icon.

A runtime error results if the window being activated is not enabled, as is the case if that
application is currently displaying a modal dialog box.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

wait An optional boolean value indicating whether BasicScript will
wait for calling application to be activated before activating
the specified application. If False (the default), then
BasicScript will activate the specified application
immediately.

Note: When activating applications using the task ID, it is important to declare the
variable used to hold the task ID as a Variant . The type of the ID depends on the
platform on which BasicScript is running.

Named Parameter Description

AppClose (statement) 47

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 47 of 87 Printed: 9/25/96

Macintosh: On the Macintosh, the title parameter specifies the title of the desired
application. The MacID function can be used to specify the application signature of the
application to be activated:

AppActivate MacID(text$) | task

The title parameter is a four-character string containing an application signature. A
runtime error occurs if the MacID function is used on platforms other than the
Macintosh.

AppClose (statement)

Syntax AppClose [title | taskID]

Description Closes the named application.

Comments The title parameter is a String containing the name of the application. If the title
parameter is absent, then the AppClose statement closes the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example 'This example activates Excel, then closes it.
Sub Main()

If AppFind$("Microsoft Excel") = "" Then
MsgBox "Excel is not running."
Exit Sub

End If
AppActivate "Microsoft Excel"
AppClose "Microsoft Excel"

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement);
AppMove (statement); AppSize (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: A runtime error results if the application being closed is not enabled,
as is the case if that application is currently displaying a modal dialog box.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches title,
then a second search is performed for applications whose title string begins with title. If
more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

48 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 48 of 87 Printed: 9/25/96

AppFilename$ (function)

Syntax AppFilename$([title | taskID])

Description Returns the filename of the named application.

Comments The title parameter is a String containing the name of the desired application. If the title
parameter is omitted, then the AppFilename$ function returns the filename of the active
application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example 'This example switches the focus to Excel, then changes the
'current directory to be the same as that of Excel.
Sub Main()

If AppFind$("Microsoft Excel") = "" Then
MsgBox "Excel is not running."
Exit Sub

End If
AppActivate "Microsoft Excel"'Activate Excel.
s$ = AppFilename$ 'Find where the Excel executable is.
d$ = FileParse$(s$,2)'Get the path portion of the filename.
MsgBox d$ 'Display directory name.

End Sub

See Also AppFind, AppFind$ (functions).

Platform(s) Windows, OS/2.

Platform Notes Windows, Win32: For DOS applications launched from Windows, the AppFilename
function returns the name of the DOS program, not winoldap.exe.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches title,
then a second search is performed for applications whose title string begins with title. If
more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppFind, AppFind$ (functions)

Syntax AppFind[$] (title | taskID)

AppGetActive$ (function) 49

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 49 of 87 Printed: 9/25/96

Description Returns a String containing the full name of the application matching either title or
taskID.

Comments The title parameter specifies the title of the application to find. If there is no exact
match, BasicScript will find an application whose title begins with title.

Alternatively, you can specify the ID of the task as returned by the Shell function.

The AppFind$ functions returns a String, whereas the AppFind function returns a
String variant. If the specified application cannot be found, then AppFind$ returns a
zero-length string and AppFind returns Empty. Using AppFind allows you detect
failure when attempting to find an application with no caption (i.e., Empty is returned
instead of a zero-length String).

AppFind$ is generally used to determine whether a given application is running. The
following expression returns True if Microsoft Word is running:

AppFind$ ("Microsoft Word")

Example 'This example checks to see whether Excel is running before
'activating it.
Sub Main()

If AppFind$ ("Microsoft Excel") <> "" Then
AppActivate "Microsoft Excel"

Else
MsgBox "Excel is not running."

End If
End Sub

See Also AppFilename$ (function).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, this function returns a String containing the exact text
appearing in the title bar of the active application's main window.

AppGetActive$ (function)

Syntax AppGetActive$()

Description Returns a String containing the name of the application.

Comments If no application is active, the AppGetActive$ function returns a zero-length string.

You can use AppGetActive$ to retrieve the name of the active application. You can then
use this name in calls to routines that require an application name.

Example Sub Main()
n$ = AppGetActive$ ()
AppMinimize n$

End Sub

50 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 50 of 87 Printed: 9/25/96

See Also AppActivate (statement); WinFind (function).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, this function returns a String containing the exact text
appearing in the title bar of the active application's main window.

AppGetPosition (statement)

Syntax AppGetPosition x, y, width, height [, title | taskID]

Description Retrieves the position of the named application.

Comments The AppGetPosition statement takes the following parameters:

The x, y, width, and height variables are filled with the position and size of the
application's window. If an argument is not a variable, then the argument is ignored, as
in the following example, which only retrieves the x and y parameters and ignores the
width and height parameters:

Dim x as integer, y as integer

AppGetPosition x,y,0,0,"Program Manager"

Example Sub Main()
Dim x As Integer, y As Integer
Dim cx As Integer, cy As Integer
AppGetPosition x,y,cx,cy,"Program Manager"

End Sub

See Also AppMove (statement); AppSize (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: The position and size of the window are returned in twips.

Parameter Description

x, y Names of Integer variables to receive the position of the
application's window.

width, height Names of Integer variables to receive the size of the
application's window.

title A string containing the name of the application. If the title
parameter is omitted, then the active application is used.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell
function.

AppGetState (function) 51

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 51 of 87 Printed: 9/25/96

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches title,
then a second search is performed for applications whose title string begins with title. If
more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppGetState (function)

Syntax AppGetState[([title | taskID])]

Description Returns an Integer specifying the state of the specified top-level window.

Comments The AppGetState function returns any of the following values:

The title parameter is a String containing the name of the desired application. If it is
omitted, then the AppGetState function returns the name of the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example 'This example saves the state of Program Manager, changes it,
'then restores it to its original setting.
Sub Main()

If AppFind$("Program Manager") = "" Then
MsgBox "Can't find Program Manager."
Exit Sub

End If
AppActivate "Program Manager"'Activate Program Manager.
state = AppGetState 'Save its state.
AppMinimize 'Minimize it.
MsgBox "Program Manager is minimized. Select OK to restore

it."
AppActivate "Program Manager"
AppSetState state 'Restore it.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement).

If the window is Then AppGetState returns Value

Maximized ebMinimized 1

Minimized ebMaximized 2

Restored ebRestored 3

52 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 52 of 87 Printed: 9/25/96

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: Under Windows, the title parameter is the exact string appearing in
the title bar of the named application's main window. If no application is found whose
title exactly matches title, then a second search is performed for applications whose title
string begins with title. If more than one application is found that matches title, then the
first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppHide (statement)

Syntax AppHide [title | taskID]

Description Hides the named application.

Comments If the named application is already hidden, the AppHide statement will have no effect.

The title parameter is a String containing the name of the desired application. If it is
omitted, then the AppHide statement hides the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

AppHide generates a runtime error if the named application is not enabled, as is the
case if that application is displaying a modal dialog box.

Example 'This example hides Program Manager.
Sub Main()

'See whether Program Manager is running.
If AppFind$("Program Manager") = "" Then Exit Sub
AppHide "Program Manager"
MsgBox "Program Manager is hidden. Press OK to show it again."
AppShow "Program Manager"

End Sub

See Also AppShow (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: Under Windows, the title parameter is the exact string appearing in
the title bar of the named application's main window. If no application is found whose
title exactly matches title, then a second search is performed for applications whose title
string begins with title. If more than one application is found that matches title, then the
first application encountered is used.

AppList (statement) 53

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 53 of 87 Printed: 9/25/96

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppList (statement)

Syntax AppList AppNames$()

Description Fills an array with the names of all open applications.

Comments The AppNames$ parameter must specify either a zero- or one-dimensioned dynamic
String array or a one-dimensional fixed String array. If the array is dynamic, then it will
be redimensioned to match the number of open applications. For fixed arrays, AppList
first erases each array element, then begins assigning application names to the elements
in the array. If there are fewer elements than will fit in the array, then the remaining
elements are unused. BasicScript returns a runtime error if the array is too small to hold
the new elements.

After calling this function, you can use LBound and UBound to determine the new size
of the array.

Example 'This example minimizes all applications on the desktop.
Sub Main()

Dim apps$()
AppList apps
'Check to see whether any applications were found.
If ArrayDims(apps) = 0 Then Exit Sub
For i = LBound(apps) To UBound(apps)

AppMinimize apps(i)
Next i

End Sub

See Also WinList (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the name of an application is considered to be the exact
text that appears in the title bar of the application's main window.

AppMaximize (statement)

Syntax AppMaximize [title | taskID]

Description Maximizes the named application.

54 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 54 of 87 Printed: 9/25/96

Comments The title parameter is a String containing the name of the desired application. If it is
omitted, then the AppMaximize function maximizes the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example Sub Main()
AppMaximize "Program Manager"'Maximize Program Manager.
If AppFind$("NotePad") <> "" Then

AppActivate "NotePad"'Set the focus to NotePad.
AppMaximize 'Maximize it.

End If
End Sub

See Also AppMinimize (statement); AppRestore (statement); AppMove (statement); AppSize
(statement); AppClose (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: If the named application is maximized or hidden, the AppMaximize
statement will have no effect.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches title,
then a second search is performed for applications whose title string begins with title. If
more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppMaximize generates a runtime error if the named application is not enabled, as is
the case if that application is displaying a modal dialog box.

AppMinimize (statement)

Syntax AppMinimize [title | taskID]

Description Minimizes the named application.

Comments The title parameter is a String containing the name of the desired application. If it is
omitted, then the AppMinimize function minimizes the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example Sub Main()
AppMinimize "Program Manager"'Maximize Program Manager.
If AppFind$("NotePad") <> "" Then

AppActivate "NotePad"'Set the focus to NotePad.

AppMove (statement) 55

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 55 of 87 Printed: 9/25/96

AppMinimize 'Maximize it.
End If

End Sub

See Also AppMaximize (statement); AppRestore (statement); AppMove (statement); AppSize
(statement); AppClose (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: If the named application is minimized or hidden, the AppMinimize
statement will have no effect.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches title,
then a second search is performed for applications whose title string begins with title. If
more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppMinimize generates a runtime error if the named application is not enabled, as is
the case if that application is displaying a modal dialog box.

AppMove (statement)

Syntax AppMove x, y [, title | taskID]

Description Sets the upper left corner of the named application to a given location.

Comments The AppMove statement takes the following parameters:

Example 'This example activates Program Manager, then moves it 10 pixels
'to the right.
Sub Main()

Dim x%,y%

Parameter Description

x, y Integer coordinates specifying the upper left corner of the new
location of the application, relative to the upper left corner of the
display.

title String containing the name of the application to move. If this
parameter is omitted, then the active application is moved.

taskID A number specifying the task ID of the application to be activated.
Acceptable task IDs are returned by the Shell function.

56 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 56 of 87 Printed: 9/25/96

AppActivate "Program Manager"'Activate Program Manager.
AppGetPosition x%,y%,0,0'Retrieve its position.
x% = x% + Screen.TwipsPerPixelX * 10'Add 10 pixels.
AppMove x% + 10,y%'Nudge it 10 pixels to the right.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement);
AppSize (statement); AppClose (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: If the named application is maximized or hidden, the AppMove
statement will have no effect.

The x and y parameters are specified in twips.

AppMove will accept x and y parameters that are off the screen.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches title,
then a second search is performed for applications whose title string begins with title. If
more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppMove generates a runtime error if the named application is not enabled, as is the
case if that application is currently displaying a modal dialog box.

AppRestore (statement)

Syntax AppRestore [title | taskID]

Description Restores the named application.

Comments The title parameter is a String containing the name of the application to restore. If this
parameter is omitted, then the active application is restored.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example 'This example minimizes Program Manager, then restores it.
Sub Main()

If AppFind$("Program Manager") = "" Then Exit Sub
AppActivate "Program Manager"
AppMinimize "Program Manager"
MsgBox "Program Manager is minimized. Press OK to restore it."
AppRestore "Program Manager"

AppSetState (statement) 57

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 57 of 87 Printed: 9/25/96

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppMove (statement); AppSize
(statement); AppClose (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: Under Windows, the title parameter is the exact string appearing in
the title bar of the named application's main window. If no application is found whose
title exactly matches title, then a second search is performed for applications whose title
string begins with title. If more than one application is found that matches title, then the
first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppRestore will have an effect only if the main window of the named application is
either maximized or minimized.

AppRestore will have no effect if the named window is hidden.

AppRestore generates a runtime error if the named application is not enabled, as is the
case if that application is currently displaying a modal dialog box.

AppSetState (statement)

Syntax AppSetState newstate [, title | taskID]

Description Maximizes, minimizes, or restores the named application, depending on the value of
newstate.

Comments The AppSetState statement takes the following parameters:

The newstate parameter can be any of the following values:

Parameter Description

newstate An Integer specifying the new state of the window.

title A String containing the name of the application to change. If
omitted, then the active application is used.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell
function.

Constant Value Description

ebMinimized 1 The named application is minimized.

58 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 58 of 87 Printed: 9/25/96

Example See AppGetState (function).

See Also AppGetState (function); AppMinimize (statement); AppMaximize (statement);
AppRestore (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: Under Windows, the title parameter is the exact string appearing in
the title bar of the named application's main window. If no application is found whose
title exactly matches title, then a second search is performed for applications whose title
string begins with title. If more than one application is found that matches title, then the
first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppShow (statement)

Syntax AppShow [title | taskID]

Description Makes the named application visible.

Comments The title parameter is a String containing the name of the application to show. If this
parameter is omitted, then the active application is shown.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example See AppHide (statement).

See Also AppHide (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: If the named application is already visible, AppShow will have no
effect.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches title,
then a second search is performed for applications whose title string begins with title. If
more than one application is found that matches title, then the first application
encountered is used.

ebMaximized 2 The named application is maximized.

ebRestored 3 The named application is restored.

Constant Value Description

AppSize (statement) 59

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 59 of 87 Printed: 9/25/96

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

AppShow generates a runtime error if the named application is not enabled, as is the
case if that application is displaying a modal dialog box.

AppSize (statement)

Syntax AppSize width, height [, title | taskID]

Description Sets the width and height of the named application.

Comments The AppSize statement takes the following parameters:

Example 'This example enlarges the active application by 10 pixels in
'both the vertical and horizontal directions.
Sub Main()

Dim w%,h%
AppGetPosition 0,0,w%,h%'Get current width/height.
x% = x% + Screen.TwipsPerPixelX * 10'Add 10 pixels.
y% = y% + Screen.TwipsPerPixelY * 10'Add 10 pixels.
AppSize w%,h% 'Change to new size.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement);
AppMove (statement); AppClose (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: The width and height parameters are specified in twips.

This statement will only work if the named application is restored (i.e., not minimized
or maximized).

Parameter Description

width, height Integer coordinates specifying the new size of the
application.

title String containing the name of the application to resize.
If this parameter is omitted, then the active application is
use.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell
function.

60 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 60 of 87 Printed: 9/25/96

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches title,
then a second search is performed for applications whose title string begins with title. If
more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

A runtime error results if the application being resized is not enabled, which is the case
if that application is displaying a modal dialog box when an AppSize statement is
executed.

AppType (function)

Syntax AppType [(title | taskID)]

Description Returns an Integer indicating the executable file type of the named application:

Comments The title parameter is a String containing the name of the application. If this parameter
is omitted, then the active application is used.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example 'This example creates an array of strings containing the names
'of all the running Windows applications. It uses the AppType
'command to determine whether an application is a Windows
'application or a DOS application.
Sub Main()

Dim apps$(),wapps$()
AppList apps'Retrieve a list of all Windows and DOS apps.
If ArrayDims(apps) = 0 Then

MsgBox "There are no running applications."
Exit Sub

End If
'Create an array to hold only the Windows apps.
ReDim wapps$(UBound(apps))
n = 0'Copy the Windows apps from one array to the target array.
For i = LBound(apps) to UBound(apps)

If AppType (apps(i)) = ebWindows Then
wapps(n) = apps(i)

Returns If the file type is:

ebDos DOS executable

ebWindows Windows executable

ArrayDims (function) 61

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 61 of 87 Printed: 9/25/96

n = n + 1
End If

Next i
If n = 0 Then'Make sure at least one Windows app was found.

MsgBox "There are no running Windows applications."
Exit Sub

End If
ReDim Preserve wapps(n - 1) 'Resize to hold the exact number.
'Let the user pick one.
index% = SelectBox("Apps","Select an application:",wapps)

End Sub

See Also AppFilename$ (function).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: Under Windows, the title parameter is the exact string appearing in
the title bar of the named application's main window. If no application is found whose
title exactly matches title, then a second search is performed for applications whose title
string begins with title. If more than one application is found that matches title, then the
first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the
name of the file before the name of the application. For example, under NT, the caption
for Notepad is "Notepad - (Untitled)", whereas under Windows 95, the caption is
"Untitled - Notepad". You must keep this in mind when specifying the title parameter.

ArrayDims (function)

Syntax ArrayDims(arrayvariable)

Description Returns an Integer containing the number of dimensions of a given array.

Comments This function can be used to determine whether a given array contains any elements or if
the array is initially created with no dimensions and then redimensioned by another
function, such as the FileList function, as shown in the following example.

Example 'This example allocates an empty (null-dimensioned) array; fills
'the array with a list of filenames, which resizes the array;
'then tests the array dimension and displays an appropriate
'message.
Sub Main()

Dim f$()
FileList f$,"c:*.bat"
If ArrayDims (f$) = 0 Then

MsgBox "The array is empty."
Else

MsgBox "The array size is: " & (UBound(f$) - UBound(f$) + 1)

62 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 62 of 87 Printed: 9/25/96

End If
End Sub

See Also LBound (function);UBound (function); Arrays (topic).

Platform(s) All.

Arrays (topic)

Declaring Array Variables

Arrays in BasicScript are declared using any of the following statements:
Dim

Public

Private

For example:
Dim a(10) As Integer

Public LastNames(1 to 5,-2 to 7) As Variant

Private

Arrays of any data type can be created, including Integer, Long, Single, Double,
Boolean, Date, Variant , Object, user-defined structures, and data objects.

The lower and upper bounds of each array dimension must be within the following
range:

-32768 <= bound <= 32767

Arrays can have up to 60 dimensions.

Arrays can be declared as either fixed or dynamic, as described below.

Fixed Arrays

The dimensions of fixed arrays cannot be adjusted at execution time. Once declared, a
fixed array will always require the same amount of storage. Fixed arrays can be declared
with the Dim, Private, or Public statement by supplying explicit dimensions. The
following example declares a fixed array of eleven strings (assuming the option base is
0):

Dim a(10) As String

Fixed arrays can be used as members of user-defined data types. The following example
shows a structure containing fixed-length arrays:

Type Foo

rect(4) As Integer

colors(10) As Integer

End Type

Arrays (topic) 63

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 63 of 87 Printed: 9/25/96

Only fixed arrays can appear within structures.

Dynamic Arrays

Dynamic arrays are declared without explicit dimensions, as shown below:
Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redim statement:
Redim Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned any
number of times. When redimensioning an array, the old array is first erased unless you
use the Preserve keyword, as shown below:

Redim Preserve Ages$(100)

Dynamic arrays cannot be members of user-defined data types.

Passing Arrays

Arrays are always passed by reference. When you pass an array, you can specify the
array name by itself, or with parentheses as shown below:

Dim a(10) As String

FileList a 'Both of these are OK

FileList a()

Querying Arrays

The following table describes the functions used to retrieve information about arrays.

Operations on Arrays

The following table describes the function that operate on arrays:

Use this function To

LBound Retrieve the lower bound of an array. A runtime is generated if
the array has no dimensions.

UBound Retrieve the upper bond of an array. A runtime error is
generated if the array has no dimensions.

ArrayDims Retrieve the number of dimensions of an array. This function
returns 0 if the array has no dimensions.

Use the command To

ArraySort Sort an array of integers, longs, singles, doubles, currency,
Boolean s, dates, or variants.

FileList Fill an array with a list of files in a given directory.

DiskDrives Fill an array with a list of valid drive letters.

AppList Fill an array with a list of running applications.

64 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 64 of 87 Printed: 9/25/96

ArraySort (statement)

Syntax ArraySort array()

Description Sorts a single-dimensioned array in ascending order.

Comments If a string array is specified, then the routine sorts alphabetically in ascending order
using case-sensitive string comparisons. If a numeric array is specified, the ArraySort
statement sorts smaller numbers to the lowest array index locations.

BasicScript generates a runtime error if you specify an array with more than one
dimension.

When sorting an array of variants, the following rules apply:

• A runtime error is generated if any element of the array is an object.

• String is greater than any numeric type.

• Null is less than String and all numeric types.

• Empty is treated as a number with the value 0.

• String comparison is case-sensitive (this function is not affected by the Option
Compare setting).

Example 'This example dimensions an array and fills it with filenames
'using FileList, then sorts the array and displays it in a
'select box.
Sub Main()

Dim f$()
FileList f$,"c:*.*"
ArraySort f$
r% = SelectBox("Files","Choose one:",f$)

WinList Fill an array with a list of top-level windows.

SelectBox Display the contents of an array in a list box.

PopupMenu Display the contents of an array in a popup menu.

ReadInSection Fill an array with the item names from a section in an INI
file.

FileDirs Fill an array with a list of subdirectories.

Erase Erase all the elements of an array.

ReDim Establish the bounds and dimensions of an array.

Dim Declare an array.

Use the command To

Asc, AscB, AscW(functions) 65

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 65 of 87 Printed: 9/25/96

End Sub

See Also ArrayDims (function); LBound (function);UBound (function).

Platform(s) All.

Asc, AscB, AscW(functions)

Syntax Asc(string)
AscB(string)
AscW(string)

Description Returns an Integer containing the numeric code for the first character of string.

Comments This function returns the character value of the first character of string. On single-byte
systems, this function returns a number between 0 and 255, whereas on MBCS systems,
this function returns a number between -32768 and 32767. On wide platforms, this
function returns the MBCS character code after converting the wide character to MBCS.

To return the value of the first byte of a string, use the AscB function. This function is
used when you need the value of the first byte of a string known to contain byte data
rather than character data. On single-byte systems, the AscB function is identical to the
Asc function.

On platforms where BasicScript uses wide string internally (such as Win32), the AscW
function returns the character value native to that platform. For example, on Win32
platforms, this function returns the UNICODE character code. On single-byte and
MBCS platforms, the AscW function is equivalent to the Asc function.

The following table summarizes the values returned by these functions:

Function String Format Returns

Asc Value of the first byte of string (between 0 and 255)

MBCS Value of the first character of string (between -32769
and 32767)

Wide Value of the first character of string after conversion to
MBCS.

AscB Value of the first byte of string.

MBCS Value of the first byte of string.

Wide Value of the first byte of string.

AscW Same as Asc.

MBCS Same as Asc.

Wide Value of the wide character native to the operating
system.

66 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 66 of 87 Printed: 9/25/96

Example 'This example fills an array with the ASCII values of the
'string's components and displays the result.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

s$ = InputBox("Please enter a string.","Enter String")
If s$ = "" Then End'Exit if no string entered.
For i = 1 To Len(s$)

message = message & Asc (Mid$(s$,i,1)) & crlf
Next i
MsgBox "The Asc values of the string are:" & message

End Sub

See Also Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions).

Platform(s) All.

AskBox, AskBox$ (functions)

Syntax AskBox[$](prompt$ [,[default$] [,[title$][, helpfile, context]]])

Description Displays a dialog box requesting input from the user and returns that input as a String.

Comments The AskBox/AskBox$ functions take the following parameters:

The AskBox$ function returns a String containing the input typed by the user in the text
box. A zero-length string is returned if the user selects Cancel.

Parameter Description

prompt$ String containing the text to be displayed above the text
box. The dialog box is sized to the appropriate width
depending on the width of prompt$. A runtime error is
generated if prompt$ is Null .

default$ String containing the initial content of the text box. The
user can return the default by immediately selecting OK. A
runtime error is generated if default$ is Null .

title$ String specifying the title of the dialog. If missing, then the
default title is used.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also
be specified.

context Number specifying the ID of the topic within helpfile for
this dialog's help. If this parameter is specified, then helpfile
must also be specified.

AskPassword, AskPassword$ (functions) 67

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 67 of 87 Printed: 9/25/96

The AskBox function returns a String variant containing the input typed by the user in
the text box. An Empty variant is returned if the user selects Cancel.

When the dialog box is displayed, the text box has the focus.

The user can type a maximum of 255 characters into the text box displayed by
AskBox$.

If both the helpfile and context parameters are specified, then a Help button is added in
addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

Example 'This example asks the user to enter a filename and then
'displays what he or she has typed.
Sub Main()

s$ = AskBox$ ("Type in the filename:")
MsgBox "The filename was: " & s$

End Sub

See Also MsgBox (statement); AskPassword, AskPassword$ (functions); InputBox, InputBox$
(functions); OpenFileName$ (function); SaveFileName$ (function); SelectBox
(function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

AskPassword, AskPassword$ (functions)

Syntax AskPassword[$](prompt$ [,[title$] [, helpfile, context]])

Description Returns a String containing the text that the user typed.

Comments Unlike the AskBox/AskBox$ functions, the user sees asterisks in place of the characters
that are actually typed. This allows the hidden input of passwords.

The AskPassword/AskPassword$ functions take the following parameters:

Parameter Description

prompt$ String containing the text to be displayed above the text
box. The dialog box is sized to the appropriate width
depending on the width of prompt$. A runtime error is
generated if prompt$ is Null .

title$ String specifying the title of the dialog. If missing, then the
default title is used.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also
be specified.

68 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 68 of 87 Printed: 9/25/96

When the dialog box is first displayed, the text box has the focus.

A maximum of 255 characters can be typed into the text box.

The AskPassword$ function returns the text typed into the text box, up to a maximum
of 255 characters. A zero-length string is returned if the user selects Cancel.

The AskPassword function returns a String variant. An Empty variant is returned if
the user selects Cancel.

If both the helpfile and context parameters are specified, then a Help button is added in
addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

Example Sub Main()
s$ = AskPassword$ ("Type in the password:")
MsgBox "The password entered is: " & s$

End Sub

See Also MsgBox (statement); AskBox, AskBox$ (functions); InputBox, InputBox$ (functions);
OpenFileName$ (function); SaveFileName$ (function); SelectBox (function);
AnswerBox (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Atn (function)

Syntax Atn(number)

Description Returns the angle (in radians) whose tangent is number.

Comments Some helpful conversions:

• Pi (3.1415926536) radians = 180 degrees.

• 1 radian = 57.2957795131 degrees.

• 1 degree = .0174532925 radians.

Example 'This example finds the angle whose tangent is 1 (45 degrees)
'and displays the result.
Sub Main()

a# = Atn (1.00)

context Number specifying the ID of the topic within helpfile for
this dialog's help. If this parameter is specified, then helpfile
must also be specified.

Parameter Description

Basic.Architecture$ (property) 69

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 69 of 87 Printed: 9/25/96

MsgBox "1.00 is the tangent of " & a# _
& " radians (45 degrees)."

End Sub

See Also Tan (function); Sln (function); Cos (function).

Platform(s) All.

Basic.Architecture$ (property)

Syntax Basic.Architecture$

Description Returns a String containing the CPU architecture on which BasicScript is executing.

Comments The following table describes what Basic.Architecture$ returns on various platforms:

The Basic.Architecture$ property returns an empty string if the architecture cannot be
determined by BasicScript.

Example '
'Print the CPU architecture...
'
Sub Main()

MsgBox Basic.Architecture$
End Sub

See Also Basic.Processor$ (property); Basic.ProcessorCount (property).

Platform(s) All.

Basic.Capability (method)

Syntax Basic.Capability(which)

Description Returns True if the specified capability exists on the current platform; returns False
otherwise.

Platform Sample return Value from Basic.Architecture$

Windows "Intel"

Win32 "Intel" , "MIPS" , "Alpha AXP" , or "PowerPC"

OS/2 "Intel"

NetWare "Intel", "Motorola"

Macintosh "PowerPC", "68K"

UNIX "i386", "i486"

70 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 70 of 87 Printed: 9/25/96

Comments The which parameter is an Integer specifying the capability for which to test. It can be
any of the following values:

Example 'This example tests to see whether your current platform
'supports disk drives and hidden file attributes and displays
'the result.
Sub Main()

message = "This operating system "
If Basic.Capability (1) Then

message = message & "supports disk drives."
Else

message = message & "does not support disk drives."
End If
MsgBox message

End Sub

See Also Cross-Platform Scripting (topic);Basic.OS (property).

Platform(s) All.

Basic.CodePage (property)

Syntax Basic.CodePage

Description Returns an Integer representing the code page for the current locale.

Value Returns True If

1 The platform supports disk drives

2 The platform supports system file attribute (ebSystem)

3 The platform supports the hidden file attribute (ebHidden)

4 The platform supports the volume label file attribute (ebVolume)

5 The platform supports the archive file attribute (ebArchive)

6 The platform supports denormalized floating-point math

7 The platform supports file locking (i.e., the Lock and Unlock
statements)

8 The platform uses big endian byte ordering

9 The internal string format used by BasicScript uses 2-byte characters.

10 The internal string format used by BasicScript is MBCS.

11 The platform supports wide characters.

12 The platform is MBCS.

Basic.Eoln$ (property) 71

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 71 of 87 Printed: 9/25/96

Comments Under Windows, Win32, NetWare, and OS/2, this property returns ANSI code page for
the current locale, such as 437 for MS-DOS Latin US or 932 for Japanese.

On the Macintosh, this property returns a number from 0 to 32 containing the script
code (e.g., 0 for Roman, 1 for Japanese, and so on) as defined by Apple.

Example Sub Main
If Basic.OS = ebWin16 And Basic.CodePage = 437 Then

MsgBox "Running US Windows"
Else if Basic.OS = ebWin32 And Basic.CodePage = 932 Then

MsgBox "Japanese NT"
End If

End Sub

See Also Basic.Locale$ (property); Basic.OS (property).

Platform(s) All.

Basic.Eoln$ (property)

Syntax Basic.Eoln$

Description Returns a String containing the end-of-line character sequence appropriate to the
current platform.

Comments This string will be either a carriage return, a carriage return/line feed, or a line feed.

Example 'This example writes two lines of text in a message box.
Sub Main()

MsgBox "This is the first line of text." & Basic.Eoln$ _
& "This is the second line of text."

End Sub

See Also Cross-Platform Scripting (topic); Basic.PathSeparator$ (property).

Platform(s) All.

Basic.FreeMemory (property)

Syntax Basic.FreeMemory

Description Returns a Long representing the number of bytes of free memory in BasicScript's data
space.

Comments This function returns the size of the largest free block in BasicScript's data space.
Before this number is returned, the data space is compacted, consolidating free space
into a single contiguous free block.

72 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 72 of 87 Printed: 9/25/96

BasicScript's data space contains strings and dynamic arrays.

Example 'This example displays free memory in a dialog box.
Sub Main()

MsgBox "The largest free memory block is: " & Basic.FreeMemory
End Sub

See Also System.TotalMemory (property); System.FreeMemory (property);
System.FreeResources (property); Basic.FreeMemory (property).

Platform(s) All.

Basic.HomeDir$ (property)

Syntax Basic.HomeDir$

Description Returns a String specifying the directory containing BasicScript.

Comments This method is used to find the directory in which the BasicScript files are located.

Example 'This example assigns the home directory to HD and displays it.
Sub Main()

hd$ = Basic.HomeDir$
MsgBox "The BasicScript home directory is: " & hd$

End Sub

See Also System.WindowsDirectory$ (property).

Platform(s) All.

Basic.Locale$ (property)

Syntax Basic.Locale$

Description Returns a String containing the locale under which BasicScript is running.

Comments The locale helps you identify information about your environment, such as the date
formats, time format, and other country-sensitive information.

Basic.Locale$ (property) 73

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 73 of 87 Printed: 9/25/96

The following table describes the returned value from Basic.Locale$ on various
platforms:

Platform Return value from Basic.Locale$

Win32 Returns a string in the format:

abbrevlang,langid,nativelang,englang

abbrevlang: Three-letter name of the language. This name is
formed by taking the two-letter language abbreviation as
found in the ISO Standard 639 and adding a third letter, as
appropriate, to indicate the sublanguage. This is the same as
that name found in the sLanguage item in the intl section of
the Windows 3.1 WIN.INI file.

langid: Language ID as defined by the operating system.

nativelang: Native name of the language.

englang: Full english name of the language as defined by ISO
standard 639.

Windows Returns a string in the format:

abbrevlang,country

country: Native name of the country.

abbrevlang: Three-letter name of the language. This name is
formed by taking the two-letter language abbreviation as
found in the ISO Standard 639 and adding a third letter, as
appropriate, to indicate the sublanguage. This is the same as
that name found in the sLanguage item in the intl section of
the Windows 3.1 WIN.INI file.

Netware Returns a string in the following format:

countrycode [,countryname]

countrycode: Country code based on the telephone country
code (1 = US, 2 = Canada, and so on).

countryname: Name of the country (such as "USA"). The
name of country is only provided for NetWare version 4.0 or
later.

74 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 74 of 87 Printed: 9/25/96

Example '
'This example checks to see if we are running in a Japanese
'version of Windows.
'
Sub Main

If Basic.OS = ebWin16 And Item$(Basic.Locale$,1) = "jpn" Then
MsgBox "Running Windows on a Japanese computer."

End If
End Sub

See Also Basic.OS (property); Basic.CodePage (property).

Platform(s) All.

Basic.OperatingSystem$ (property)

Syntax Basic.OperatingSystem$

Description Returns a String containing the name of the operating system.

Comments The following table describes the values returned by this function:

OS/2 Returns a string in the following format:

countrycode,[localename]

The parameters are defined as follows:

countrycode: Country code based on the telephone country
code (with the exception of Canada, which uses 2).

localename: Name of the locale as identified by the LC_ALL
or LANG environment variables. If this parameter is missing,
then the host application is using the default C language
locale.

UNIX ???

Macintosh Returns a string in the following format:

langcode,langname

langcode: A number representing the current language (e.g.,
0 for English, 1 for French, 11 for Japanese, and so on).

langname: The English language name of the language.

Platform Return value from Basic.Locale$

Platform Sample values returned by Basic.OperatingSystem$

Windows "Windows" , "Windows for Workgroups"

Basic.OperatingSystemVendor$ (property) 75

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 75 of 87 Printed: 9/25/96

The version of the operating system is determined by calling
Basic.OperatingSystemVersion$.

Example '
'This script checks the Windows version for special networking
’capabilities.
'
Sub Main()

If Basic.OS = ebWin16 Then
If Basic.OperatingSystem$ = "Windows" Then
MsgBox "Special networking capabilities aren’t present."

ElseIf Basic.OperatingSystem$ = "Windows for Workgroups" Then
MsgBox "Network capabilities are present."

End If
End Sub

See Also Basic.OperatingSystemVendor$ (property); Basic.OperatingSystemVersion$
(property); Basic.OS (property).

Platform(s) All.

Basic.OperatingSystemVendor$ (property)

Syntax Basic.OperatingSystemVendor$

Description Returns a String containing the version of the operating system under which
BasicScript is running.

Comments The following table describes the what this function returns for various platforms:

Win32 "Win32s" , "Windows 95" , "Windows NT"

OS/2 "OS/2"

Macintosh "Macintosh"

Netware "NetWare"

UNIX "Linux", "sco", "UNIX_SV"

Platform Sample values returned by Basic.OperatingSystem$

Platform
Sample return value from
Basic.OperatingSystemVendor$

Windows "Microsoft"

Win32 "Microsoft"

OS/2 "IBM"

Netware Returns the name of the company that distributed NetWare.

76 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 76 of 87 Printed: 9/25/96

The name of the operating system is returned by the Basic.OperatingSystem$ property.
The version of the operating system is determined by the
Basic.OperatingSystemVersion$ property.

Example '
'The following example prints the operating system vendor
'
Sub Main

MsgBox "The manufacturer of the operating system is: " & _
Basic.OperatingSystemVendor$

End Sub

See Also Basic.OperatingSystem$ (property); Basic.OperatingSystemVersion$ (property);
Basic.OS (property).

Platform(s) All.

Basic.OperatingSystemVersion$ (property)

Syntax Basic.OperatingSystemVersion$

Description Returns a String containing the version of the operating system under which
BasicScript is running.

Example '
'This example checks the Windows version to ensure that a
'feature is supported.
'
Sub Main

If Basic.OperatingSystem$ = "Windows"
If Basic. OperatingSystemVersion$ <= 3 Then

MsgBox "That feature is not supported."
Else

MsgBox "Windows version 3.1 or greater"
End If

End If
End Sub

See Also Basic.OperatingSystem$ (property);Basic.OperatingSystemVendor$ (property);
Basic.OS (property).

Macintosh "Apple"

UNIX "Novell System Laboratories", "Linux", Santa Cruz
Operations"

Platform
Sample return value from
Basic.OperatingSystemVendor$

Basic.OS (property) 77

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 77 of 87 Printed: 9/25/96

Platform(s) All.

Platform Notes Win32, Macintosh: The version number is returned in the following format:
major. minor. buildnumber

The parts of the version number are described in the following table:

Windows, NetWare, OS/2: The version number is returns as major.minor.

UNIX: The version returned does not follow a standard format and is specific to the
operating system.

Basic.OS (property)

Syntax Basic.OS

Description Returns an Integer indicating the current platform.

Comments

Part Description

major Identifies the major version number of the operating system.

minor Identifies the minor version number of the operating system.

buildnumber Identifies the build number of the operating system.

Value Constant Platform

0 ebWin16 Microsoft Windows

2 edWin32 Microsoft Windows 95

Microsoft Windows NT Workstation (Intel, Alpha,
AXP, MIPS,)

Microsoft Windows NT Server (Intel, Alpha, AXP,
MIPS)

Microsoft Win32s running under Windows 3.1

3 ebSolaris Sun Solaris 2.x

4 ebSunOS SunOS

5 ebHPUX HP-UX

7 ebIrix Silicon Graphics IRIX

8 ebAIX IBM AIX

9 ebNetWare Novell NetWare

10 ebMacintosh Apple Macintosh

11 ebOS2 IBM OS/2

78 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 78 of 87 Printed: 9/25/96

The value returned is not necessarily the platform under which BasicScript is running
but rather an indicator of the platform for which BasicScript was created. For example,
it is possible to run BasicScript for Windows under Windows NT Workstation. In this
case, Basic.OS will return 0.

Example 'This example determines the operating system for which this
'version was created and displays the appropriate message.
Sub Main()

Select Case Basic.OS
Case ebWin16

s = "Windows"
Case ebNetWare

s = "NetWare"
Case Else

s = "neither Windows nor NetWare"
End Select
MsgBox "You are currently running " & s

End Sub

See Also Cross-Platform Scripting (topic).

Platform(s) All.

Basic.PathSeparator$ (property)

Syntax Basic.PathSeparator$

Description Returns a String containing the path separator appropriate for the current platform.

Comments The returned string is any one of the following characters: / (slash), \ (back slash), :
(colon).

Example Sub Main()
MsgBox "The path separator for this platform is: " _

& Basic.PathSeparator$
End Sub

See Also Basic.Eoln$ (property); Cross-Platform Scripting (topic).

Platform(s) All.

Basic.Processor$ (property)

Syntax Basic.Processor$

Description Returns a String containing the name of the CPU in the computer on which BasicScript
is running.

Basic.ProcessorCount (property) 79

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 79 of 87 Printed: 9/25/96

Comments You can retrieve the number of processors within the computer using the
Basic.ProcessorCount property.

The following table describes the possible values returned by this property:

An empty string is returned if BasicScript cannot determine the processor type.

Example '
'This example prints the CPU of the computer on which
'BasicScript is executing.
'
Sub Main()

MsgBox "Processor = " & Basic.Processor$
End Sub

See Also Basic.ProcessorCount (property).

Platform(s) All.

Basic.ProcessorCount (property)

Syntax Basic.ProcessorCount

Description Returns the number of CPUs installed on the computer on which BasicScript is running.

Comments You can determine the type of processor using the Basic.Processor$ property.

This property return 1 if the CPU has only one processor or is otherwise incapable of
containing more than one processor.

Platform Sample values returned from Basic.Processor$

Windows "8086" , "80186" , "80286" , "80386" , "80486" . On
Pentium computers, the value "80486" is returned.

Win32 On Intel platforms, one of the following is returned:
"80386" , "80486" , "Pentium" . On MIPS platforms, the
string "R x" is returned, such as "R4000" . On Alpha
platforms, one of the following is returned: "321064",
"321066", "321164". On PowerPC platforms, one of the
following is returned: "601" , "603" , "604" , "603+" ,
"604+" , "620" .

OS/2 "80386", "80486", "Pentium".

UNIX "i386", "i486"

NetWare "680x0" , "80x86"

Macintosh On 68K platforms, one of the following is returned: "68000" ,
"68010" , "68020" , "68030" , "68040" . On PowerMac
platforms, the string "601" is returned.

80 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 80 of 87 Printed: 9/25/96

Example '
'Print the number of processors in the computer.
'
Sub Main()

MsgBox "There are " & Basic.ProcessorCount & _
" processor(s) in the computer."

End Sub

See Also Basic.Processor$ (property).

Platform(s) All.

Basic.Version$ (property)

Syntax Basic.Version$

Description Returns a String containing the version of BasicScript.

Comments This function returns the major and minor version numbers in the format
major.minor.BuildNumber, as in "2.00.30."

Example 'This example displays the current version of BasicScript.
Sub Main()

MsgBox "Version " & Basic.Version$ _
& " of BasicScript is running"

End Sub

Platform(s) All.

Beep (statement)

Syntax Beep

Description Makes a single system beep.

Example 'This example causes the system to beep five times and displays
'a reminder message.
Sub Main()

For i = 1 To 5
Beep
Sleep(200)

Next i
MsgBox "You have an upcoming appointment!"

End Sub

See Also Mci (function).

Platform(s) All.

Begin Dialog (statement) 81

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 81 of 87 Printed: 9/25/96

Begin Dialog (statement)

Syntax Begin Dialog DialogName [x],[y], width, height, title$ [,[. DlgProc]
[,[PicName$] [, style]]]

Dialog Statements
End Dialog

Description Defines a dialog box template for use with the Dialog statement and function.

Comments A dialog box template is constructed by placing any of the following statements
between the Begin Dialog and End Dialog statements (no other statements besides
comments can appear within a dialog box template):

The Begin Dialog statement requires the following parameters:

Picture PictureButton OptionButton

OptionGroup CancelButton Text

TextBox GroupBox DropListBox

ListBox ComboBox CheckBox

PushButton OKButton

Parameter Description

x, y Integer coordinates specifying the position of the upper left
corner of the dialog box relative to the parent window. These
coordinates are in dialog units.

If either coordinate is unspecified, then the dialog box will be
centered in that direction on the parent window.

width, height Integer coordinates specifying the width and height of the
dialog box (in dialog units).

DialogName Name of the dialog box template. Once a dialog box template
has been created, a variable can be dimensioned using this
name.

title$ String containing the name to appear in the title bar of the
dialog box. If this parameter specifies a zero-length string, then
the name "BasicScript" is used.

82 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 82 of 87 Printed: 9/25/96

BasicScript generates an error if the dialog box template contains no controls.

A dialog box template must have at least one PushButton, OKButton , or
CancelButton statement. Otherwise, there will be no way to close the dialog box.

Dialog units are defined as 1/4 the width of the font in the horizontal direction and 1/8
the height of the font in the vertical direction.

Any number of user dialog boxes can be created, but each one must be created using a
different name as the DialogName. Only one user dialog box may be invoked at any
time.

Expression Evaluation within the Dialog Box Template

The Begin Dialog statement creates the template for the dialog box. Any expression or
variable name that appears within any of the statements in the dialog box template is not
evaluated until a variable is dimensioned of type DialogName. The following example
shows this behavior:

MyTitle$ = "Hello, World"

Begin Dialog MyTemplate 16,32,116,64,MyTitle$

OKButton 12,40,40,14

End Dialog

MyTitle$ = "Sample Dialog"

Dim Dummy As MyTemplate

rc% = Dialog(Dummy)

The above example creates a dialog box with the title "Sample Dialog".

.DlgProc Name of the dialog function. The routine specified by .DlgProc
will be called by BasicScript when certain actions occur during
processing of the dialog box. (See DlgProc [prototype] for
additional information about dialog functions.)

If this parameter is omitted, then BasicScript processes the
dialog box using the default dialog box processing behavior.

PicName$ String specifying the name of a DLL containing pictures. This
DLL is used as the origin for pictures when the picture type is
10. If this parameter is omitted, then no picture library will be
used.

style Specifies extra styles for the dialog. It can be any of the
following values:

0- Dialog does not contain a title or close box.

1 - Dialog contains a title and no close box.

2 (or omitted) - Dialog contains both the title and close box.

Parameter Description

Boolean (data type) 83

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 83 of 87 Printed: 9/25/96

Expressions within dialog box templates cannot reference external subroutines or
functions.

All controls within a dialog box use the same font. The fonts used for the text and text
box controls can be changed explicitly by setting the font parameters in the Text and
TextBox statements. A maximum of 128 fonts can be used within a single dialog box,
although the practical limitation may be less.

Example 'This example creates an exit dialog box.
Sub Main()

Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32,24,63,8,"Save Changes",.SaveChanges
OKButton 12,40,40,14
CancelButton 60,40,40,14

End Dialog
Dim QuitDialog As QuitDialogTemplate
rc% = Dialog(QuitDialog)

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement); TextBox
(statement); DlgProc (function); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Boolean (data type)

Syntax Boolean

Description A data type capable of representing the logical values True and False.

Comments Boolean variables are used to hold a binary value—either True or False. Variables can
be declared as Boolean using the Dim, Public, or Private statement.

Variants can hold Boolean values when assigned the results of comparisons or the
constants True or False.

Internally, a Boolean variable is a 2-byte value holding –1 (for True) or 0 (for False).

Any type of data can be assigned to Boolean variables. When assigning, non-0 values
are converted to True, and 0 values are converted to False. When converting strings to
Boolean, BasicScript recognizes localized versions of the strings "True" and "False",
converting these to the True and False respectively.

When appearing as a structure member, Boolean members require 2 bytes of storage.

84 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 84 of 87 Printed: 9/25/96

When used within binary or random files, 2 bytes of storage are required.

When passed to external routines, Boolean values are sign-extended to the size of an
integer on that platform (either 16 or 32 bits) before pushing onto the stack.

There is no type-declaration character for Boolean variables.

Boolean variables that have not yet been assigned are given an initial value of False.

See Also Currency (data type);Date (data type); Integer (data type); Long (data type); Object
(data type); Single (data type); String (data type); Variant (data type); DefType
(statement); CBool (function).

Platform(s) All.

ButtonEnabled (function)

Syntax ButtonEnabled(name$ | id)

Description Returns True if the specified button within the current window is enabled; returns False
otherwise.

Comments The ButtonEnabled function takes the following parameters:

When a button is enabled, it can be clicked using the SelectButton statement.

Example 'This code fragment checks to see whether a button is enabled
'before clicking it.
Sub Main()

If ButtonEnabled ("Browse...") Then
SelectButton "Browse..."

Else
MsgBox "Can't browse right now."

End If
End Sub

See Also ButtonExists (function); SelectButton (statement).

Platform(s) Windows.

Parameter Description

name$ String containing the name of the push button.

id Integer specifying the ID of the push button.

Note: The ButtonEnabled function is used to determine whether a push button is
enabled in another application's dialog box. Use the DlgEnable function to retrieve
the enabled state of a push button in a dynamic dialog box.

ButtonExists (function) 85

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 85 of 87 Printed: 9/25/96

ButtonExists (function)

Syntax ButtonExists(name$ | id)

Description Returns True if the specified button exists within the current window; returns False
otherwise.

Comments The ButtonExists function takes the following parameters:

Example 'This code fragment selects the More button if it exists. If it
'does not exist, then this code fragment does nothing.
Sub Main()

If ButtonExists ("More >>") Then
SelectButton "More >>"'Display more stuff.

End If
End Sub

See Also ButtonEnabled (function); SelectButton (statement).

Platform(s) Windows.

ByRef (keyword)

Syntax ...,ByRef parameter,...

Description Used within the Sub...End Sub, Function...End Function, or Declare statement to
specify that a given parameter can be modified by the called routine.

Comments Passing a parameter by reference means that the caller can modify that variable's value.

Unlike the ByVal keyword, the ByRef keyword cannot be used when passing a
parameter. The absence of the ByVal keyword is sufficient to force a parameter to be
passed by reference:

MySub ByVal i 'Pass i by value.

MySub ByRef i 'Illegal (will not compile).

MySub i 'Pass i by reference.

Example Sub Test(ByRef a As Variant)

Parameter Description

name$ String containing the name of the push button.

id Integer specifying the ID of the push button.

Note: The ButtonExists function is used to determine whether a push button exists
in another application's dialog box. There is no equivalent function for use with
dynamic dialog boxes.

86 BasicScript Language Reference

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 86 of 87 Printed: 9/25/96

a = 14
End Sub
Sub Main()

b = 12
Test b
MsgBox "The ByRef value is: " & b'Displays 14.

End Sub

See Also () (keyword); ByVal (keyword).

Platform(s) All.

ByVal (keyword)

Syntax ...ByVal parameter...

Description Forces a parameter to be passed by value rather than by reference.

Comments The ByVal keyword can appear before any parameter passed to any function, statement,
or method to force that parameter to be passed by value. Passing a parameter by value
means that the caller cannot modify that variable's value.

Enclosing a variable within parentheses has the same effect as the ByVal keyword:
Foo ByVal i 'Forces i to be passed by value.

Foo(i) 'Forces i to be passed by value.

When calling external statements and functions (i.e., routines defined using the Declare
statement), the ByVal keyword forces the parameter to be passed by value regardless of
the declaration of that parameter in the Declare statement. The following example
shows the effect of the ByVal keyword used to passed an Integer to an external routine:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

i% = 6

Foo ByVal i% 'Pass a 2-byte Integer.

Foo i% 'Pass a 4-byte pointer to an Integer.

Since the Foo routine expects to receive a pointer to an Integer, the first call to Foo will
have unpredictable results.

Example 'This example demonstrates the use of the ByVal keyword.
Sub Foo(a As Integer)

a = a + 1
End Sub
Sub Main()

Dim i As Integer
i = 10
Foo i
MsgBox "The ByVal value is: " & i

'Displays 11 (Foo changed the value).

ByVal (keyword) 87

Summit Software Confidential
Filename: lra-b.fm5 Template: LRprint.FM5
Page: 87 of 87 Printed: 9/25/96

Foo ByVal i
MsgBox "The ByVal value is still: " & i

'Displays 11 (Foo did not change the value).
End Sub

See Also () (keyword); ByRef (keyword).

Platform(s) All.

88 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 88 of 131 Printed: 9/25/96

Call (statement)

Syntax Call subroutine_name [(arguments)]

Description Transfers control to the given subroutine, optionally passing the specified arguments.

Comments Using this statement is equivalent to:
subroutine_name [arguments]

Use of the Call statement is optional. The Call statement can only be used to execute
subroutines; functions cannot be executed with this statement. The subroutine to which
control is transferred by the Call statement must be declared outside of the Main
procedure, as shown in the following example.

Examples 'This example demonstrates the use of the Call statement to pass
'control to another function.
Sub Example_Call(s$)

'This subroutine is declared externally to Main and displays
'the text passed in the parameter s$.
MsgBox "Call: " & s$

End Sub
Sub Main()

'This example assigns a string variable to display, then
'calls subroutine Example_Call, passing parameter S$ to be
'displayed in a message box within the subroutine.
s$ = "DAVE"
Example_Call s$
Call Example_Call("SUSAN")

End Sub

See Also Goto (statement); GoSub (statement); Declare (statement).

Platform(s) All.

CancelButton (statement)

Syntax CancelButton x, y, width, height [, .Identifier]

Description Defines a Cancel button that appears within a dialog box template.

Comments This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

Selecting the Cancel button (or pressing Esc) dismisses the user dialog box, causing the
Dialog function to return 0. (Note: A dialog function can redefine this behavior.)
Pressing the Esc key or double-clicking the close box will have no effect if a dialog box
does not contain a CancelButton statement.

CBool (function) 89

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 89 of 131 Printed: 9/25/96

The CancelButton statement requires the following parameters:

A dialog box must contain at least one OKButton , CancelButton, or PushButton
statement; otherwise, the dialog box cannot be dismissed.

Example 'This example creates a dialog box with OK and Cancel buttons.
Sub Main()

Begin Dialog SampleDialogTemplate 37,32,48,52,"Sample"
OKButton 4,12,40,14,.OK
CancelButton 4,32,40,14,.Cancel

End Dialog
Dim SampleDialog As SampleDialogTemplate
r% = Dialog(SampleDialog)
If r% = 0 Then MsgBox "Cancel was pressed!"

End Sub

See Also CheckBox (statement); ComboBox (statement); Dialog (function); Dialog (statement);
DropListBox (statement); GroupBox (statement); ListBox (statement); OKButton
(statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement); PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

CBool (function)

Syntax CBool(expression)

Description Converts expression to True or False, returning a Boolean value.

Comments The expression parameter is any expression that can be converted to a Boolean. A
runtime error is generated if expression is Null .

All numeric data types are convertible to Boolean. If expression is zero, then the CBool
returns False; otherwise, CBool returns True. Empty is treated as False.

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control
in dialog units.

.Identifier Optional parameter specifying the name by which this control
can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable). If this parameter is omitted, then
the word "Cancel" is used.

90 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 90 of 131 Printed: 9/25/96

If expression is a String, then CBool first attempts to convert it to a number, then
converts the number to a Boolean. A runtime error is generated if expression cannot be
converted to a number.

A runtime error is generated if expression cannot be converted to a Boolean.

Example 'This example uses CBool to determine whether a string is
'numeric or just plain text.
Sub Main()

Dim IsNumericOrDate As Boolean
s$ = "34224.54"
IsNumericOrDate = CBool (IsNumeric(s$) Or IsDate(s$))
If IsNumericOrDate = True Then

MsgBox s$ & " is either a valid date or number!"
Else

MsgBox s$ & " is not a valid date or number!"
End If

End Sub

See Also CCur (function); CDate, CVDate (functions); CDbl (function); CInt (function);
CLng (function); CSng (function); CStr (function); CVar (function); CVErr
(function); Boolean (data type).

Platform(s) All.

CCur (function)

Syntax CCur(expression)

Description Converts any expression to a Currency.

Comments This function accepts any expression convertible to a Currency, including strings. A
runtime error is generated if expression is Null or a String not convertible to a number.
Empty is treated as 0.

When passed a numeric expression, this function has the same effect as assigning the
numeric expression number to a Currency.

When used with variants, this function guarantees that the variant will be assigned a
Currency (VarType 6).

Example 'This example displays the value of a String converted into a
'Currency value.
Sub Main()

i$ = "100.44"
MsgBox "The currency value is: " & CCur(i$)

End Sub

CDate, CVDate (functions) 91

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 91 of 131 Printed: 9/25/96

See Also CBool (function); CDate, CVDate (functions); CDbl (function); CInt (function);
CLng (function); CSng (function); CStr (function); CVar (function); CVErr
(function); Currency (data type).

Platform(s) All.

CDate, CVDate (functions)

Syntax CDate(expression)
CVDate(expression)

Description Converts expression to a date, returning a Date value.

Comments The expression parameter is any expression that can be converted to a Date. A runtime
error is generated if expression is Null .

If expression is a String, an attempt is made to convert it to a Date using the current
country settings. If expression does not represent a valid date, then an attempt is made to
convert expression to a number. A runtime error is generated if expression cannot be
represented as a date.

These functions are sensitive to the date and time formats of your computer.

The CDate and CVDate functions are identical.

Example 'This example takes two dates and computes the difference
'between them.
Sub Main()

Dim date1 As Date
Dim date2 As Date
Dim diff As Date
date1 = CDate (#1/1/1994#)
date2 = CDate ("February 1, 1994")
diff = DateDiff("d",date1,date2)
MsgBox "The date difference is " & CInt(diff) & " days."

End Sub

See Also CCur (function); CBool (function); CDbl (function); CInt (function); CLng
(function); CSng (function); CStr (function); CVar (function); CVErr (function);
Date (data type).

Platform(s) All.

CDbl (function)

Syntax CDbl(expression)

92 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 92 of 131 Printed: 9/25/96

Description Converts any expression to a Double.

Comments This function accepts any expression convertible to a Double, including strings. A
runtime error is generated if expression is Null . Empty is treated as 0.0.

When passed a numeric expression, this function has the same effect as assigning the
numeric expression number to a Double.

When used with variants, this function guarantees that the variant will be assigned a
Double (VarType 5).

Example 'This example displays the result of two numbers as a Double.
Sub Main()

i% = 100
j! = 123.44
MsgBox "The double value is: " & CDbl (i% * j!)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CInt (function);
CLng (function); CSng (function); CStr (function); CVar (function); CVErr
(function); Double (data type).

Platform(s) All.

ChDir (statement)

Syntax ChDir path

Description Changes the current directory of the specified drive to path.

Comments This routine will not change the current drive. (See ChDrive [statement].)

Example 'This example saves the current directory, then changes to the
'root directory, displays the old and new directories, restores
'the old directory, and displays it.
Const crlf = $(13) + Chr$(10)
Sub Main()

save$ = CurDir$
ChDir (Basic.PathSeparator$)
MsgBox "Old: " & save$ & crlf & "New: " & CurDir$
ChDir (save$)
MsgBox "Directory restored to: " & CurDir$

End Sub

See Also ChDrive (statement); CurDir , CurDir$ (functions); Dir , Dir$ (functions); MkDir
(statement); RmDir (statement); DirList (statement).

Platform(s) All.

Platform Notes UNIX: UNIX platforms do not support drive letters.

ChDrive (statement) 93

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 93 of 131 Printed: 9/25/96

Platform Notes NetWare: NetWare (and other operating systems) may not support the use of dots to
indicate the current and parent directories unless configured to do so.

NetWare does not support drive letters. Directory specifications under NetWare use the
following format:

volume:[dir\ [dir\]...] file.ext

The volume specification can be up to 14 characters.

Windows, Win32: BasicScript tracks and remembers the current directory for all drives
in the system for that process.

Macintosh: The Macintosh does not support drive letters.

The Macintosh uses the colon (":") as the path separator. A double colon ("::") specifies
the parent directory.

ChDrive (statement)

Syntax ChDrive drive

Description Changes the default drive to the specified drive.

Comments Only the first character of drive is used.

Also, drive is not case-sensitive.

If drive is empty, then the current drive is not changed.

Example 'This example saves the current directory in CD, then extracts
'the current drive letter and saves it in Save$. If the current
'drive is D, then it is changed to C; otherwise, it is changed
'to D. Then the saved drive is restored and displayed.
Const crlf$ = Chr$(13) + Chr$(10)
Sub Main()

cd$ = CurDir$
save$ = Mid$(CurDir$,1,1)
If save$ = "D" Then

ChDrive ("C")
Else

ChDrive ("D")
End If
MsgBox "Old: " & save$ & crlf & "New: " & CurDir$
ChDrive (save$)
MsgBox "Directory restored to: " & CurDir$

End Sub

See Also ChDir (statement); CurDir , CurDir$ (functions); Dir , Dir$ (functions); MkDir
(statement); RmDir (statement); DiskDrives (statement).

94 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 94 of 131 Printed: 9/25/96

Platform(s) Windows, Win32, NetWare. OS/2.

Platform Notes UNIX, Macintosh: UNIX platforms and the Macintosh do not support drive letters.

NetWare: Since NetWare does not support drive letters, the drive parameter specifies a
volume name (up to 14 characters).

CheckBox (statement)

Syntax CheckBox x, y, width, height, title$, .Identifier

Description Defines a check box within a dialog box template.

Comments Check box controls are either on or off, depending on the value of .Identifier.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The CheckBox statement requires the following parameters:

When the dialog box is first created, the value referenced by .Identifier is used to set the
initial state of the check box. When the dialog box is dismissed, the final state of the
check box is placed into this variable. By default, the .Identifier variable contains 0,
meaning that the check box is unchecked.

Example 'This example displays a dialog box with two check boxes in
'different states.
Sub Main()

Begin Dialog SaveOptionsTemplate 36,32,151,52,"Save"
GroupBox 4,4,84,40,"GroupBox"

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in
dialog units.

title$ String containing the text that appears within the check box.
This text may contain an ampersand character to denote an
accelerator letter, such as "&Font" for Font (indicating that the
Font control may be selected by pressing the F accelerator key).

.Identifier Name by which this control can be referenced by statements in a
dialog function (such as DlgFocus and DlgEnable). This
parameter also creates an integer variable whose value
corresponds to the state of the check box (1 = checked; 0 =
unchecked). This variable can be accessed using the syntax:
DialogVariable.Identifier.

CheckBoxEnabled (function) 95

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 95 of 131 Printed: 9/25/96

CheckBox 12,16,67,8,"Include heading",.IncludeHeading
CheckBox 12,28,73,8,"Expand keywords",.ExpandKeywords
OKButton 104,8,40,14,.OK
CancelButton 104,28,40,14,.Cancel

End Dialog
Dim SaveOptions As SaveOptionsTemplate
SaveOptions.IncludeHeading = 1'Check box initially on.
SaveOptions.ExpandKeywords = 0'Check box initially off.
r% = Dialog(SaveOptions)
If r% = -1 Then

MsgBox "OK was pressed."
End If

End Sub

See Also CancelButton (statement); Dialog (function); Dialog (statement); DropListBox
(statement); GroupBox (statement); ListBox (statement); OKButton (statement);
OptionButton (statement); OptionGroup (statement); Picture (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, OS/2, Macintosh, UNIX.

Platform Notes Windows, Win32, OS/2: On Windows, Win32, and OS/2 platforms, accelerators are
underlined, and the accelerator combination Alt+letter is used.

Macintosh: On the Macintosh, accelerators are normal in appearance, and the
accelerator combination Command+letter is used..

CheckBoxEnabled (function)

Syntax CheckBoxEnabled(name$ | id)

Description Returns True if the specified check box within the current window is enabled; returns
False otherwise.

Comments The CheckBoxEnabled function takes the following parameters:

When a check box is enabled, its state can be set using the SetCheckBox statement.

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.

Note: The CheckBoxEnabled function is used to determine whether a check box is
enabled in another application's dialog box. Use the DlgEnable function within
dynamic dialog boxes.

96 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 96 of 131 Printed: 9/25/96

Example 'This code checks to see whether a check box is enabled.
Sub Main()

If CheckBoxEnabled ("Portrait") Then
SetCheckBox "Portrait",1

End If
End Sub

See Also CheckBoxExists (function); GetCheckBox (function); SetCheckBox (statement).

Platform(s) Windows.

CheckBoxExists (function)

Syntax CheckBoxExists(name$ | id)

Description Returns True if the specified check box exists within the current window; returns False
otherwise.

Comments The CheckBoxExists function takes the following parameters:

Example 'This code fragment checks to ensure that the Portrait check
'box is selectable before selecting it.
Sub Main()

If CheckBoxExists ("Portrait") Then
If CheckBoxEnabled("Portrait") Then

SetCheckBox "Portrait",1
End If

End If
End Sub

See Also CheckBoxEnabled (function); GetCheckBox (function); SetCheckBox (statement).

Platform(s) Windows.

Choose (function)

Syntax Choose(index, expression1, expression2,..., expression13)

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.

Note: The CheckBoxExists function is used to determine whether a check box
exists in another application's dialog box. There is no equivalent function for use
with dynamic dialog boxes.

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions) 97

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 97 of 131 Printed: 9/25/96

Description Returns the expression at the specified index position.

Comments The index parameter specifies which expression is to be returned. If index is 1, then
expression1 is returned; if index is 2, then expression2 is returned, and so on. If index is
less than 1 or greater than the number of supplied expressions, then Null is returned.

The index parameter is rounded down to the nearest whole number.

The Choose function returns the expression without converting its type. Each
expression is evaluated before returning the selected one.

Example 'This example assigns a variable of indeterminate type to a.
Sub Main()

Dim a As Variant
Dim c As Integer
c% = 2
a = Choose (c%,"Hello, world",#1/1/94#,5.5,False)
'Display the date passed as parameter 2.
MsgBox "Item " & c% & " is '" & a & "'"

End Sub

See Also Switch (function); IIf (function); If ...Then...Else (statement); Select...Case
(statement).

Platform(s) All.

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions)

Syntax Chr[$](charcode)
ChrB[$](charcode)
ChrW[$](charcode)

Description Returns the character whose value is charcoode.

Comments The Chr$, ChrB$, and ChrW$ functions return a String, whereas the Chr , ChrB , and
ChrW functions return a String variant.

These functions behave differently depending on the string format used by BasicScript.
These differences are summarized in the following table:

Function
String
Format Description of charcode Returns

Chr

Chr$

SBCS Value between 0 and 255 A 1-byte character string.

MBCS Value of an MBCS
character between -32768
and 32767

A 1-byte or 2-byte MBCS
character string depending on
charcode.

98 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 98 of 131 Printed: 9/25/96

The Chr$ function can be used within constant declarations, as in the following
example:

Const crlf = Chr$ (13) + Chr$ (10)

Some common uses of this function are:

Examples Sub Main()
'Concatenates carriage return (13) and line feed (10) to
'CRLF$, then displays a multiple-line message using CRLF$ to
'separate lines.
crlf$ = Chr$ (13) + Chr$ (10)
MsgBox "First line." & crlf$ & "Second line."
'Fills an array with the ASCII characters for ABC and
'displays their corresponding characters.
Dim a%(2)
For i = 0 To 2

a%(i) = (65 + i)
Next i

Wide Value of an MBCS
character between -32768
and 32767

A 2-byte character string.

ChrB

ChrB$

SBCS Value between 0 and 255 A 1-byte character string.

MBCS Value between 0 and 255 A 1-byte character string.

Wide Value between 0 and 255 A 1-byte character string.

ChrW

ChrW$

SBCS Value between 0 and 255 A 1-byte character string (same
as the Chr and Chr$ functions)

MBCS Value of an MBCS
character between -32768
and 32767

A 1-byte or 2-byte MBCS
character string depending on
charcode.

Wide Value of a wide character
between -32768 and 32767

A 2-byte character string.

Chr$(9) Tab

Chr$(13) + Chr$(10) End-of-line (carriage return, linefeed)

Chr$(26) End-of-file

Chr$(0) Null

Function
String
Format Description of charcode Returns

CInt (function) 99

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 99 of 131 Printed: 9/25/96

MsgBox "The first three elements of the array are: " _
& Chr$ (a%(0)) & Chr$ (a%(1)) & Chr$ (a%(2))

End Sub

See Also Asc (function); Str, Str$ (functions).

Platform(s) All.

CInt (function)

Syntax CInt(expression)

Description Converts expression to an Integer.

Comments This function accepts any expression convertible to an Integer, including strings. A
runtime error is generated if expression is Null . Empty is treated as 0.

The passed numeric expression must be within the valid range for integers:
-32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning a
numeric expression to an Integer. Note that integer variables are rounded before
conversion.

When used with variants, this function guarantees that the expression is converted to an
Integer variant (VarType 2).

Example 'This example demonstrates the various results of integer
'manipulation with CInt.
Sub Main()

'(1) Assigns i# to 100.55 and displays its integer
'representation (101).
i# = 100.55
MsgBox "The value of CInt (i) = " & CInt (i#)
'(2) Sets j# to 100.22 and displays the CInt representation
'(100).
j# = 100.22
MsgBox "The value of CInt (j) = " & CInt (j#)
'(3) Assigns k% (integer) to the CInt sum of j# and k% and
'displays k% (201).
k% = CInt (i# + j#)
MsgBox "The integer sum of 100.55 and 100.22 is: " & k%
'(4) Reassigns i# to 50.35 and recalculates k%, then
'displays the result (note rounding).
i# = 50.35
k% = CInt (i# + j#)
MsgBox "The integer sum of 50.35 and 100.22 is: " & k%

100 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 100 of 131 Printed: 9/25/96

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function);
CLng (function); CSng (function); CStr (function); CVar (function); CVErr
(function); Integer (data type).

Platform(s) All.

Clipboard$ (function)

Syntax Clipboard$[()]

Description Returns a String containing the contents of the Clipboard.

Comments If the Clipboard doesn't contain text or the Clipboard is empty, then a zero-length string
is returned.

Example 'This example puts text on the Clipboard, displays it, clears
'the Clipboard, and displays the Clipboard again.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

See Also Clipboard$ (statement); Clipboard.GetText (method); Clipboard.SetText (method).

Platform(s) Windows, Win32, Macintosh, OS/2.

Clipboard$ (statement)

Syntax Clipboard$ NewContent$

Description Copies NewContent$ into the Clipboard.

Example 'This example puts text on the Clipboard, displays it, clears
'the Clipboard, and displays the Clipboard again.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

Clipboard.Clear (method) 101

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 101 of 131 Printed: 9/25/96

See Also Clipboard$ (function); Clipboard.GetText (method); Clipboard.SetText (method).

Platform(s) Windows, Win32, Macintosh, OS/2.

Clipboard.Clear (method)

Syntax Clipboard.Clear

Description This method clears the Clipboard by removing any content.

Example 'This example puts text on the Clipboard, displays it, clears
'the Clipboard, and displays the Clipboard again.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

Platform(s) Windows, Win32, Macintosh, OS/2.

Clipboard.GetFormat (method)

Syntax WhichFormat = Clipboard.GetFormat(format)

Description Returns True if data of the specified format is available in the Clipboard; returns False
otherwise.

Comments This method is used to determine whether the data in the Clipboard is of a particular
format. The format parameter is an Integer representing the format to be queried:

Example 'This example puts text on the Clipboard, checks whether there
'is text on the Clipboard, and if there is, displays it.
Sub Main()

Clipboard$ "Hello out there!"

Format Value Description

ebCFText 1 Text

ebCFBitmap 2 Bitmap

ebCFMetafile 3 Metafile

ebCFDIB 8 Device-independent bitmap (DIB)

ebCFPalette 9 Color palette

ebCFUnicodeText 13 Unicode text

102 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 102 of 131 Printed: 9/25/96

If Clipboard.GetFormat (ebCFText) Then
 MsgBox Clipboard$
Else

MsgBox "There is no text in the Clipboard."
End If

End Sub

See Also Clipboard$ (function); Clipboard$ (statement).

Platform(s) Windows, Win32, Macintosh, OS/2.

Clipboard.GetText (method)

Syntax text$ = Clipboard.GetText([format])

Description Returns the text contained in the Clipboard.

Comments The format parameter, if specified, must be ebCFText (1).

Example 'This example retrieves the text from the Clipboard and checks
'to make sure that it contains the word "dog."
Option Compare Text
Sub Main()

If Clipboard.GetFormat(1) Then
If Instr(Clipboard.GetText (1),"dog",1) = 0 Then

MsgBox "The Clipboard doesn't contain the word ""dog."""
Else

MsgBox "The Clipboard contains the word ""dog""."
End If

Else
MsgBox "The Clipboard does not contain text."

End If
End Sub

See Also Clipboard$ (statement); Clipboard$ (function); Clipboard.SetText (method).

Platform(s) Windows, Win32, Macintosh, OS/2.

Platform Notes Win32: Under Win32, the format parameter must be either ebCFText or
ebCFUnicodeText. If the format parameter is omitted, then BasicScript first looks for
text of the specified type depending on the platform:

Platform Clipboard Format

Windows NT UNICODE

Windows 95 MBCS

Win32s MBCS

Clipboard.SetText (method) 103

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 103 of 131 Printed: 9/25/96

Clipboard.SetText (method)

Syntax Clipboard.SetText data$ [, format]

Description Copies the specified text string to the Clipboard.

Comments The data$ parameter specifies the text to be copied to the Clipboard. The format
parameter, if specified, must be ebCFText (1).

Example 'This example gets the contents of the Clipboard and uppercases
'it.
Sub Main()

If Not Clipboard.GetFormat(1) Then Exit Sub
Clipboard.SetText UCase$(Clipboard.GetText(1)),1

End Sub

See Also Clipboard$ (statement); Clipboard.GetText (method); Clipboard$ (function).

Platform(s) Windows, Win32, Macintosh, OS/2.

Platform Notes Win32: Under Win32, the format parameter must be either ebCFText or
ebCFUnicodeText. If the format parameter is omitted, then BasicScript places the text
into the clipboard in the following format depending on the platform.

CLng (function)

Syntax CLng(expression)

Description Converts expression to a Long.

Comments This function accepts any expression convertible to a Long, including strings. A
runtime error is generated if expression is Null . Empty is treated as 0.

The passed expression must be within the following range:
-2147483648 <= expression <= 2147483647

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning the
numeric expression to a Long. Note that long variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to a
Long variant (VarType 3).

Platform Clipboard Format

Windows NT UNICODE

Windows 95 MBCS

Win32s MBCS

104 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 104 of 131 Printed: 9/25/96

Example 'This example displays the results for various conversions of i
'and j (note rounding).
Sub Main()

i% = 100
j& = 123.666
MsgBox "The result is: " & CLng(i% * j&)'Displays 12367.
MsgBox "The variant type is: " & Vartype(CLng(i%))

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function);
CInt (function); CSng (function); CStr (function); CVar (function); CVErr
(function); Long (data type).

Platform(s) All.

Close (statement)

Syntax Close [[#] filenumber [,[#] filenumber]...]

Description Closes the specified files.

Comments If no arguments are specified, then all files are closed.

Example 'This example opens four files and closes them in various
'combinations.
Sub Main()

Open "test1" For Output As #1
Open "test2" For Output As #2
Open "test3" For Random As #3
Open "test4" For Binary As #4
MsgBox "The next available file number is :" & FreeFile()
Close #1 'Closes file 1 only.
Close #2, #3'Closes files 2 and 3.
Close 'Closes all remaining files(4).
MsgBox "The next available file number is :" & FreeFile()

End Sub

See Also Open (statement); Reset (statement); End (statement).

Platform(s) All.

ComboBox (statement)

Syntax ComboBox x, y, width, height, ArrayVariable, .Identifier

Description This statement defines a combo box within a dialog box template.

ComboBox (statement) 105

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 105 of 131 Printed: 9/25/96

Comments When the dialog box is invoked, the combo box will be filled with the elements from the
specified array variable.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The ComboBox statement requires the following parameters:

When the dialog box is invoked, the elements from ArrayVariable are placed into the
combo box. The .Identifier variable defines the initial content of the edit field of the
combo box. When the dialog box is dismissed, the .Identifier variable is updated to
contain the current value of the edit field.

Example 'This example creates a dialog box that allows the user to
'select a day of the week.
Sub Main()

Dim days$(6)
days$(0) = "Monday"
days$(1) = "Tuesday"
days$(2) = "Wednesday"
days$(3) = "Thursday"
days$(4) = "Friday"
days$(5) = "Saturday"
days$(6) = "Sunday"
Begin Dialog DaysDialogTemplate 16,32,124,96,"Days"

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog
box.

width, height Integer coordinates specifying the dimensions of the control
in dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of
the combo box. If this array has no dimensions, then the
combo box will be initialized with no elements. A runtime
error results if the specified array contains more than one
dimension.

ArrayVariable can specify an array of any fundamental data
type (structures are not allowed). Null and Empty values are
treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements
in a dialog function (such as DlgFocus and DlgEnable). This
parameter also creates a string variable whose value
corresponds to the content of the edit field of the combo box.
This variable can be accessed using the syntax:

DialogVariable.Identifier.

106 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 106 of 131 Printed: 9/25/96

OKButton 76,8,40,14,.OK
Text 8,10,39,8,"&Weekdays:"
ComboBox 8,20,60,72,days$,.Days

End Dialog
Dim DaysDialog As DaysDialogTemplate
DaysDialog.Days = "Tuesday"
r% = Dialog(DaysDialog)
MsgBox "You selected: " & DaysDialog.Days

End Sub

See Also CancelButton (statement); CheckBox (statement); Dialog (function); Dialog
(statement); DropListBox (statement); GroupBox (statement); ListBox (statement);
OKButton (statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement), PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

ComboBoxEnabled (function)

Syntax ComboBoxEnabled(name$ | id)

Description Returns True if the specified combo box is enabled within the current window or dialog
box; returns False otherwise.

Comments The ComboBoxEnabled function takes the following parameters:

A runtime error is generated if the specified combo box does not exist.

Example 'This example checks to see whether a combo box is active. If it
'is, then it inserts some text into it.
Sub Main()

If ComboBoxEnabled ("Filename:") Then

Parameter Description

name$ String containing the name of the combo box.

The name of a combo box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a combo box. A runtime error is
generated if a combo box with that name cannot be found within
the active window.

id Integer specifying the ID of the combo box.

Note: The ComboBoxEnabled function is used to determine whether a combo box
is enabled in another application's dialog box. Use the DlgEnable function in
dynamic dialog boxes.

ComboBoxExists (function) 107

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 107 of 131 Printed: 9/25/96

SelectComboBoxItem "Filename:","sample.txt"
End If
If ComboBoxEnabled (365) Then

SelectComboBoxItem 365,3'Select the third item.
End If

End Sub

See Also ComboBoxExists (function); GetComboBoxItem$ (function);
GetComboBoxItemCount (function); SelectComboBoxItem (statement).

Platform(s) Windows.

ComboBoxExists (function)

Syntax ComboBoxExists(name$ | id)

Description Returns True if the specified combo box exists within the current window or dialog
box; returns False otherwise.

Comments The ComboBoxExists function takes the following parameters:

Example 'This code fragment checks to ensure that a combo box exists and
'is enabled before selecting the last item.
Sub Main()

If ComboBoxExists ("Filename:") Then
If ComboBoxEnabled("Filename:") Then

NumItems = GetComboBoxItemCount("Filename:")
SelectComboBoxItem "Filename:",NumItems

End If
End If

End Sub

Parameter Description

name$ String containing the name of the combo box.

The name of a combo box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a combo box. A runtime error is
generated if a combo box with that name cannot be found within
the active window

id Integer specifying the ID of the combo box.

Note: The ComboBoxExists function is used to determine whether a combo box
exists in another application's dialog box. There is no equivalent function for use
with dynamic dialog boxes.

108 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 108 of 131 Printed: 9/25/96

See Also ComboBoxEnabled (function); GetComboBoxItem$ (function);
GetComboBoxItemCount (function); SelectComboBoxItem (statement).

Platform(s) Windows.

Command, Command$ (functions)

Syntax Command[$][()]

Description Returns the argument from the command line used to start the application.

Comments Command$ returns a string, whereas Command returns a String variant.

Example 'This example gets the command line and parameters, checks to
'see whether the string "/s" is present, and displays the result.
Sub Main()

cmd$ = Command$
If (InStr(cmd$,"/s")) <> 0 Then

MsgBox "Application was started with the /s switch."
Else

MsgBox "Application was started without the /s switch."
End If
If cmd$ <> "" Then

MsgBox "The command line startup options were: " & cmd$
Else

MsgBox "No command line startup options were used!"
End If

End Sub

See Also Environ , Environ$ (functions).

Platform(s) All.

Comments (topic)

Comments can be added to BasicScript code in the following manner:

All text between a single quotation mark and the end of the line is ignored:
MsgBox "Hello" 'Displays a message box.

The REM statement causes the compiler to ignore the entire line:
REM This is a comment.

BasicScript supports C-style multiline comment blocks /*...*/, as shown in the
following example:
MsgBox "Before comment"
/* This stuff is all commented out.
This line, too, will be ignored.

Comparison Operators (topic) 109

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 109 of 131 Printed: 9/25/96

This is the last line of the comment. */
MsgBox "After comment"

Comparison Operators (topic)

Syntax expression1 [< | > | <= | >= | <> | =] expression2

Description Comparison operators return True or False depending on the operator.

Comments The comparison operators are listed in the following table:

This operator behaves differently depending on the types of the expressions, as shown in
the following table:

Note: C-style comments can be nested.

Operator Returns True If

> expression1 is greater than expression2

< expression1 is less than expression2

<= expression1 is less than or equal to expression2

>= expression1 is greater than or equal to expression2

<> expression1 is not equal to expression2

= expression1 is equal to expression2

If one expression
is

And the other
expression is Then

Numeric Numeric A numeric comparison is performed (see
below).

String String A string comparison is performed (see
below).

Numeric String A compile error is generated.

Variant String A string comparison is performed (see
below).

Variant Numeric A variant comparison is performed (see
below).

Null variant Any data type Returns Null .

Variant Variant A variant comparison is performed (see
below).

110 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 110 of 131 Printed: 9/25/96

String Comparisons

If the two expressions are strings, then the operator performs a text comparison between
the two string expressions, returning True if expression1 is less than expression2. The
text comparison is case-sensitive if Option Compare is Binary ; otherwise, the
comparison is case-insensitive.

When comparing letters with regard to case, lowercase characters in a string sort greater
than uppercase characters, so a comparison of "a" and "A" would indicate that "a" is
greater than "A".

Numeric Comparisons

When comparing two numeric expressions, the less precise expression is converted to
be the same type as the more precise expression.

Dates are compared as doubles. This may produce unexpected results as it is possible to
have two dates that, when viewed as text, display as the same date when, in fact, they are
different. This can be seen in the following example:

Sub Main()

Dim date1 As Date

Dim date2 As Date

date1 = Now

date2 = date1 + 0.000001 'Adds a fraction of a

'second.

MsgBox date2 = date1 'Prints False (the dates are

'different).

MsgBox date1 & "," & date2 'Prints two dates that are

'the same.

End Sub

Variant Comparisons

When comparing variants, the actual operation performed is determined at execution
time according to the following table:

If one variant is
And the other
variant is Then

Numeric Numeric Compares the variants as numbers.

String String Compares the variants as text.

Numeric String The number is less than the string.

Null Any other data typeNull .

Numeric Empty Compares the number with 0.

String Empty Compares the string with a zero-length
string.

Const (statement) 111

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 111 of 131 Printed: 9/25/96

Examples Sub Main()
'Tests two literals and displays the result.
If 5 < 2 Then

MsgBox "5 is less than 2."
Else

MsgBox "5 is not less than 2."
End If
'Tests two strings and displays the result.
If "This" < "That" Then

MsgBox "'This' is less than 'That'."
Else

MsgBox "'That' is less than 'This'."
End If

End Sub

See Also Operator Precedence (topic); Is (operator); Like (operator); Option Compare
(statement).

Platform(s) All.

Const (statement)

Syntax Const name [As type] = expression [, name [As type] = expression]...

Description Declares a constant for use within the current script.

Comments The name is only valid within the current BasicScript script. Constant names must
follow these rules:

1. Must begin with a letter.

2. May contain only letters, digits, and the underscore character.

3. Must not exceed 80 characters in length.

4. Cannot be a reserved word.

Constant names are not case-sensitive.

The expression must be assembled from literals or other constants. Calls to functions
are not allowed except calls to the Chr$ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-declaration
character, as shown below:

Const a% = 5 'Constant Integer whose value is 5

Const b# = 5 'Constant Double whose value is 5.0

Const c$ = "5" 'Constant String whose value is "5"

Const d! = 5 'Constant Single whose value is 5.0

112 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 112 of 131 Printed: 9/25/96

Const e& = 5 'Constant Long whose value is 5

The type can also be given by specifying the As type clause:
Const a As Integer = 5 'Constant Integer whose value is 5

Const b As Double = 5 'Constant Double whose value is 5.0

Const c As String = "5" 'Constant String whose value is "5"

Const d As Single = 5 'Constant Single whose value is 5.0

Const e As Long = 5 'Constant Long whose value is 5

You cannot specify both a type-declaration character and the type:
Const a% As Integer = 5 'THIS IS ILLEGAL.

If an explicit type is not given, then BasicScript will choose the most imprecise type that
completely represents the data, as shown below:

Const a = 5 'Integer constant

Const b = 5.5 'Single constant

Const c = 5.5E200 'Double constant

Constants defined within a Sub or Function are local to that subroutine or function.
Constants defined outside of all subroutines and functions can be used anywhere within
that script. The following example demonstrates the scoping of constants:

Const DefFile = "default.txt"

Sub Test1

Const DefFile = "foobar.txt"

MsgBox DefFile 'Displays "foobar.txt".

End Sub

Sub Test2

MsgBox DefFile 'Displays "default.txt".

End Sub

Example 'This example displays the declared constants in a dialog box
'(crlf produces a new line in the dialog box).
Const crlf = Chr$(13) + Chr$(10)
Const s As String = "This is a constant."
Sub Main()

MsgBox s$ & crlf & "The constants are shown above."
End Sub

See Also DefType (statement); Let (statement); = (statement); Constants (topic).

Platform(s) All.

Constants (topic) 113

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 113 of 131 Printed: 9/25/96

Constants (topic)

Constants are variables that cannot change value during script execution. The following
constants are predefined by BasicScript.

Application State Constants (Used with AppSetState and AppGetState)

Constant Value Description

ebMinimized 1 The application is minimized.

ebMaximized 2 The application is maximized.

ebRestored 3 The application is restored.

BasicScript Constants

Constant Value Description

True -1 Boolean value True.

False 0 Boolean value False.

Empty Empty Variant of type 0, indicating that the variant is
uninitialized.

Nothing 0 Value indicating that an object variable no longer
references a valid object.

Null Null Variant of type 1, indicating that the variant
contains no data.

Character Constants

Constant Value Description

ebBack Chr$(8) String containing a backspace.

ebCr Chr$(13) String containing a carriage return.

ebCrLf Chr$(13) & Chr$(10) String containing a carriage-return
linefeed pair.

ebFormFeed Chr$(11) String containing a form feed.

ebLf Chr$(10) String containing a line feed.

ebNullChar Chr$(0) String containing a single null
character.

114 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 114 of 131 Printed: 9/25/96

ebNullString 0 Special string value used to pass null
pointers to external routines.

ebTab Chr$(9) String containing a tab.

ebVerticalTab Chr$(12) String containing a vertical tab.

Clipboard Constants (Used with Clipboard.GetText, Clipboard.SetText, and
Clipboard.GetFormat)

Constant Value Description

ebCFText 1 Text.

ebCFBitmap 2 Bitmap.

ebCFMetafile 3 Metafile.

ebCFDIB 8 Device-independent bitmap.

ebCFPalette 9 Palette.

ebCFUnicode 13 Unicode text.

Compiler Constants

Constant Value

AIX True if development environment is AIX.

HPUX True if development environment is HPUX.

Irix True if development environment is Irix.

LINUX True if development environment is LINUX.

Macintosh True if development environment is Macintosh (680x0 or
PowerPC).

MacPPC True if development environment is PowerMac.

Mac68K True if development environment is 68K Macintosh.

Netware True if development environment is NetWare.

OS2 True if development environment is OS/2.

Character Constants

Constant Value Description

Constants (topic) 115

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 115 of 131 Printed: 9/25/96

OSF1 True if development environment is OSF/1.

SCO True if development environment is SCO.

Solaris True if development environment is Solaris.

SunOS True if development environment is SunOS.

UNIX True if development environment is any UNIX platform.

UnixWare True if development environment is UnixWare.

VMS True if development environment is VMS.

Win16 True if development environment is 16-bit Windows.

Win32 True if development environment is 32-bit Windows.

Empty Empty

False False

Null Null

True True

Date Constants (Used with WeekDay, Format, DateAdd, DateDiff)

Constant Value Description

ebUseSunday 0 Use the date setting as specified by the current
locale.

ebSunday 1 Sunday.

ebMonday 2 Monday.

ebTuesday 3 Tuesday.

ebWednesday 4 Wednesday.

ebThursday 5 Thursday.

ebFriday 6 Friday.

ebSaturday 7 Saturday.

ebFirstJan1 1 Start with week in which January 1 occurs.

Compiler Constants (Continued)

Constant Value

116 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 116 of 131 Printed: 9/25/96

ebFirstFourDays 2 Start with first week with at least four days in the
new year.

ebFirstFullWeek 3 Start with first full week of the year.

File Constants (Used with Dir, Dir$, FileList, SetAttr, GetAttr, FileAttr)

Constant Value Description

ebNormal 0 Read-only, archive, subdir, and none.

ebReadOnly 1 Read-only files.

ebHidden 2 Hidden files.

ebSystem 4 System files.

ebVolume 8 Volume labels.

ebDirectory 16 Subdirectory.

ebArchive 32 Files that have changed since the last backup.

ebNone 64 Files with no attributes.

File Type Constants (Used with AppType and FileType)

Constant Value Description

ebDOS 1 A DOS executable file.

ebWindows 2 A Windows executable file.

Font Constants (Used with Text and TextBox)

Constant Value Description

ebRegular 1 Normal font (i.e., neither bold nor italic).

ebItalic 2 Italic font.

ebBold 4 Bold font.

ebBoldItalic 6 Bold-italic font.

Date Constants (Used with WeekDay, Format, DateAdd, DateDiff) (Continued)

Constant Value Description

Constants (topic) 117

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 117 of 131 Printed: 9/25/96

IMEStat Constants (Returned by the IMEStat Function)

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.

ebIMEDisabled 3 IME disabled.

ebIMEHiragana 4 Hiragana double-byte character.

ebIMEKatakanaDbl 5 Katakana double-byte characters.

ebIMEKatakanaSng 6 Katakana single-byte characters.

ebIMEAlphaDbl 7 Alphanumeric double-byte characters.

ebIMEAlphaSng 8 Alphanumeric single-byte characters.

Math Constants

Constant Value Description

PI 3.1415... Value of PI.

MsgBox Constants

Constant Value Description

ebOKOnly 0 Displays only the OK button.

ebOKCancel 1 Displays OK and Cancel buttons.

ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.

ebYesNo 4 Displays Yes and No buttons.

ebRetryCancel 5 Displays Cancel and Retry buttons.

ebCritical 16 Displays the stop icon.

ebQuestion 32 Displays the question icon.

ebExclamation 48 Displays the exclamation icon.

ebInformation 64 Displays the information icon.

118 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 118 of 131 Printed: 9/25/96

ebApplicationModal 0 The current application is suspended until the
dialog box is closed.

ebDefaultButton1 0 First button is the default button.

ebDefaultButton2 256 Second button is the default button.

ebDefaultButton3 512 Third button is the default button.

ebSystemModal 4096 All applications are suspended until the
dialog box is closed.

ebOK 1 Returned from MsgBox indicating that OK
was pressed.

ebCancel 2 Returned from MsgBox indicating that
Cancel was pressed.

ebAbort 3 Returned from MsgBox indicating that Abort
was pressed.

ebRetry 4 Returned from MsgBox indicating that Retry
was pressed.

ebIgnore 5 Returned from MsgBox indicating that
Ignore was pressed.

ebYes 6 Returned from MsgBox indicating that Yes
was pressed.

ebNo 7 Returned from MsgBox indicating that No
was pressed.

Platform Constants (Returned by Basic.OS)

Constant Value Description

ebWin16 0 Microsoft Windows (16-bit).

ebWin32 2 Microsoft Windows 95

Microsoft Windows NT Workstation

Microsoft Windows NT Server

Microsoft Win32s running under Windows 3.1

MsgBox Constants (Continued)

Constant Value Description

Constants (topic) 119

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 119 of 131 Printed: 9/25/96

ebSolaris 3 Sun Solaris 2.x

ebSunOS 4 SunOS

ebHPUX 5 HP-UX

ebIrix 7 Silicon Graphics IRIX

ebAIX 8 IBM AIX

ebNetware 9 Novell Netware

ebMacintosh 10 Apple Macintosh

ebOS2 11 IBM OS/2

ebSCO 13 SCO UNIX

ebUnixWare 14 Novell UnixWare

ebOSF1 15 OSF/1

ebVMS 16 VMS

ebLINUX 17 LINUX

Printer Constants (Used with PrinterSetOrientation and PrinterGetOrientation)

Constant Value Description

ebLandscape 1 Landscape paper orientation.

ebPortrait 2 Portrait paper orientation.

Que Constants (Used with the Que Statements)

Constant Value Description

ebLeftButton 1 Left mouse button.

ebRightButton 2 Right mouse button.

Shell Constants (Used with the Shell Function)

Constant Value Description

ebHide 0 Application is initially hidden.

Platform Constants (Returned by Basic.OS) (Continued)

Constant Value Description

120 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 120 of 131 Printed: 9/25/96

ebNormalFocus 1 Application is displayed at the default
position and has the focus.

ebMinimizedFocus 2 Application is initially minimized and has the
focus.

ebMaximizedFocus 3 Application is maximized and has the focus.

ebNormalNoFocus 4 Application is displayed at the default
position and does not have the focus.

ebMinimizedNoFocus 6 Application is minimized and does not have
the focus.

String Conversion Constants (Used with the StrConv Function)

Constant Value Description

ebUpperCase 1 Converts string to uppercase.

ebLowerCase 2 Converts string to lowercase.

ebProperCase 3 Capitalizes the first letter of each word.

ebWide 4 Converts narrow characters to wide characters.

ebNarrow 8 Converts wide characters to narrow characters.

ebKatakana 16 Converts Hiragana characters to Katakana
characters.

ebHiragana 32 Converts Katakana characters to Hiragana
characters.

ebUnicode 64 Converts string from MBCS to UNICODE.

ebFromUnicode 128 Converts string from UNICODE to MBCS.

Variant Constants (Returned by the VarType Function)

Constant Value Description

ebEmpty 0 Variant has not been initialized.

ebNull 1 Variant contains no valid data.

Shell Constants (Used with the Shell Function) (Continued)

Constant Value Description

Cos (function) 121

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 121 of 131 Printed: 9/25/96

You can define your own constants using the Const statement.

Preprocessor constants are defined using #Const.

Cos (function)

Syntax Cos(number)

Description Returns a Double representing the cosine of number.

Comments The number parameter is a Double specifying an angle in radians.

Example 'This example assigns the cosine of pi/4 radians (45 degrees)
'to C# and displays its value.
Sub Main()

c# = Cos(3.14159 / 4)
MsgBox "The cosine of 45 degrees is: " & c#

End Sub

ebInteger 2 Variant contains an Integer.

ebLong 3 Variant contains a Long.

ebSingle 4 Variant contains a Single.

ebDouble 5 Variant contains a Double.

ebCurrency 6 Variant contains a Currency.

ebDate 7 Variant contains a Date.

ebString 8 Variant contains a String.

ebObject 9 Variant contains an Object.

ebError 10 Variant contains an Error .

ebBoolean 11 Variant contains a Boolean.

ebVariant 12 Variant contains an array of Variants.

ebDataObject 13 Variant contains a data object.

ebArray 8192 Added to any of the other types to indicate an
array of that type.

Variant Constants (Returned by the VarType Function) (Continued)

Constant Value Description

122 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 122 of 131 Printed: 9/25/96

See Also Tan (function); Sin (function); Atn (function).

Platform(s) All.

CreateObject (function)

Syntax CreateObject(class)

Description Creates an OLE Automation object and returns a reference to that object.

Comments The class parameter specifies the application used to create the object and the type of
object being created. It uses the following syntax:

" application.class",

where application is the application used to create the object and class is the type of the
object to create.

At runtime, CreateObject looks for the given application and runs that application if
found. Once the object is created, its properties and methods can be accessed using the
dot syntax (e.g., object.property = value).

There may be a slight delay when an automation server is loaded (this depends on the
speed with which a server can be loaded from disk). This delay is reduced if an instance
of the automation server is already loaded.

Examples 'This first example instantiates Microsoft Excel. It then uses
'the resulting object to make Excel visible and then close Excel.
Sub Main()

Dim Excel As Object
On Error GoTo Trap1 'Set error trap.
Set Excel = CreateObject ("excel.application")
Excel.Visible = True 'Make Excel visible.
Sleep 5000 'Wait 5 seconds.
Excel.Quit 'Close Excel.
Exit Sub 'Exit before error trap.

Trap1:
MsgBox "Can't create Excel object."'Display error message.
Exit Sub 'Reset error handler.

End Sub
'This second example uses CreateObject to instantiate a Visio
'object. It then uses the resulting object to create a new
'document.
Sub Main()

Dim Visio As Object
Dim doc As Object
Dim page As Object
Dim shape As Object
Set Visio = CreateObject ("visio.application")

Cross-Platform Scripting (topic) 123

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 123 of 131 Printed: 9/25/96

'Create Visio object.
Set doc = Visio.Documents.Add("")'Create a new document.
Set page = doc.Pages(1) 'Get first page.
Set shape = page.DrawRectangle(1,1,4,4)
shape.text = "Hello, world." 'Set text within shape.

End Sub

See Also GetObject (function); Object (data type).

Platform(s) Windows, Win32, Macintosh.

Cross-Platform Scripting (topic)

This section discusses different techniques that can be used to ensure that a given script
runs on all platforms that support BasicScript.

Querying the Platform

A script can query the platform in order to take appropriate actions for that platform.
This is done using the Basic.OS property. The following example uses this method to
display a message to the user:

Sub Main()

If Basic.OS = ebWindows Then

MsgBox "This is a message."

Else

Print "This is a message."

End If

End Sub

Querying the Capabilities of a Platform

Some capabilities of the current platform can be determined using the Basic.Capability
method. This method takes a number indicating which capability is being queried and
returns either True or False depending on whether that capability is or is not supported
on the current platform. The following example uses this technique to read hidden files:

Sub Main()

If Basic.Capability(3) Then

f$ = Dir$("*",ebHidden) 'Hidden files supported.

Else

f$ = Dir$("*") 'Hidden files not

'supported.

End If

'Print all the files.

While f$ <> ""

124 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 124 of 131 Printed: 9/25/96

x = x + 1

MsgBox "Matching file " & x & " is: " & f$

f$ = Dir$

Wend

End Sub

Byte Ordering with Files

One of the main differences between platforms is byte ordering. On some platforms, the
processor requires that the bytes that make up a given data item be reversed from their
expected ordering.

Byte ordering becomes problematic if binary data is transferred from one platform to
another. This can only occur when writing data to files. For this reason, it is strongly
recommended that files that are to be transported to a different platform with different
byte ordering be sequential (i.e., do not use Binary and Random files).

If a Binary or Random file needs to be transported to another platform, you will have to
take into consideration the following:

1. You must either decide on a byte ordering for your file or write information to the
file indicating its byte ordering so that it can be queried by the script that is to read
the file.

2. When reading a file on a platform in which the byte ordering matches, nothing
further needs to be done. If the byte ordering is different, then the bytes of each data
item read from a file need to be reversed. This is a difficult proposition.

Byte Ordering with Structures

Due to byte ordering differences between platforms, structure copying using the LSet
statement produces different results. Consider the following example:

Type TwoInts

first As Integer

second As Integer

End Type

Type OneLong

first As Long

End Type

Sub Main()

Dim l As OneLong

Dim i As TwoInts

l.First = 4

LSet i = l

MsgBox "First integer: " & i.first

MsgBox "Second integer: " & i.second

Cross-Platform Scripting (topic) 125

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 125 of 131 Printed: 9/25/96

End Sub

On Intel-based platforms, bytes are stored in memory with the most significant byte first
(known as little-endian format). Thus, the above example displays two dialog boxes, the
first one displaying the number 4 and the second displaying the number 0.

On UNIX and Macintosh platforms, bytes are stored in memory with the least
significant byte first (known as big-endian format). Thus, the above example displays
two dialog boxes, the first one displaying the number 0 and the second displaying the
number 4.

Scripts that rely on binary images of data must take the byte ordering of the current
platform into account.

Reading and Writing to Text Files

Different platforms use different characters to represent end-of-line in a file. For
example, under Windows, a carriage-return/linefeed pair is used. Under UNIX, a line
feed by itself is used. On the Macintosh, a carriage return is used.

BasicScript takes this into account when reading text files. The following combinations
are recognized and interpreted as end-of-line:

When writing to text files, BasicScript uses the end-of-line appropriate to that platform.
You can retrieve the same end-of-line used by BasicScript using the Basic.Eoln$
property:

crlf = Basic.Eoln$

Print #1,"Line 1." & crlf & "Line 2."

Alignment

A major difference between platforms supported by BasicScript is the forced alignment
of data. BasicScript handles most alignment issues itself.

Portability of Compiled Code

Scripts compiled under BasicScript can be executed without recompilation on any
platform supported by BasicScript.

Unsupported Language Elements

A compiled BasicScript script is portable to any platform on which BasicScript runs.
Because of this, it is possible to execute a script that was compiled on another platform
and contains calls to language elements not supported by the current platform.

Carriage return Chr(13)

Carriage return/line feed Chr(13) + Chr(10)

Line feed Chr(10)

126 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 126 of 131 Printed: 9/25/96

BasicScript generates a runtime error when unsupported language elements are
encountered during execution. For example, the following script will execute without
errors under Windows but generate a runtime error when run under UNIX:

Sub Main()

MsgBox "Hello, world."

End Sub

If you trap a call to an unsupported function, the function will return one of the
following values:

Path Separators

Different file systems use different characters to separate parts of a pathname. For
example, under Windows, Win32, and OS/2, the backslash character is used:

s$ = "c:\sheets\bob.xls"

Under UNIX, the forward slash is used:
s$ = "/sheets/bob.xls"

When creating scripts that operate on any of these platforms, BasicScript recognizes the
forward slash universally as a valid path separator. Thus, the following file specification
is valid on all these platforms:

s$ = "/sheets/bob.xls"

On the Macintosh, the slashes are valid filename characters. Instead, BasicScript
recognizes the colon as the valid file separator character:

s$ = "sheets:bob.xls"

You can find out the path separator character for your platform using the
Basic.PathSeparator$ property:

s$ = "sheets" & Basic.PathSeparator$ & "bob.xls"

Data Type Skipped Function Returns

Integer 0

Double 0.0

Single 0.0

Long 0

Date December 31, 1899

Boolean False

Variant Empty

Object Nothing

CSng (function) 127

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 127 of 131 Printed: 9/25/96

Relative Paths

Specifying relative paths is different across platforms. Under UNIX, Windows, Win32,
and OS/2, a period (.) is used to specify the current directory, and two periods (..) are
used to indicate the parent directory, as shown below:

s$ = ".\bob.xls" 'File in the current directory

s$ = "..\bob.xls" 'File in the parent directory

On the Macintosh, double colons are used to specify the parent folder:
s$ = "::bob.xls"'File in the parent folder

Drive Letters

Not all platforms support drive letters. For example, considering the following file
specification:

c:\test.txt

Under UNIX, this specifies a single file called c:\test.txt. Under Windows, this specifies
a file called test.txt in the root directory of drive c. On the Macintosh, this specifies a file
called \test.txt in a folder called c. You can use the Basic.Capability method to
determine whether your platform supports drive letters:

Sub Main()

If Basic.Capability(1) Then s$ = "c:/" Else s$ = ""

s$ = s$ & "test.xls"

MsgBox "The platform-specific filename is: " & s$

End Sub

UNC Pathnames

Many platforms support UNC pathnames, including Windows and Win32. If you
choose to use these, make sure that UNC pathnames are supported on the platforms on
which your script will run.

CSng (function)

Syntax CSng(expression)

Description Converts expression to a Single.

Comments This function accepts any expression convertible to a Single, including strings. A
runtime error is generated if expression is Null . Empty is treated as 0.0.

A runtime error results if the passed expression is not within the valid range for Single.

When passed a numeric expression, this function has the same effect as assigning the
numeric expression to a Single.

128 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 128 of 131 Printed: 9/25/96

When used with variants, this function guarantees that the expression is converted to a
Single variant (VarType 4).

Example 'This example displays the value of a String converted to a
'Single.
Sub Main()

s$ = "100"
MsgBox "The single value is: " & CSng(s$)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function);
CInt (function); CLng (function); CStr (function); CVar (function); CVErr
(function); Single (data type).

Platform(s) All.

CStr (function)

Syntax CStr(expression)

Description Converts expression to a String.

Comments Unlike Str$ or Str, the string returned by CStr will not contain a leading space if the
expression is positive. Further, the CStr function correctly recognizes thousands and
decimal separators for your locale.

Different data types are converted to String in accordance with the following rules:

Example 'This example displays the value of a Double converted to a
'String.
Sub Main()

s# = 123.456
MsgBox "The string value is: " & CStr (s#)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function);
CInt (function); CLng (function); CSng (function); CVar (function); CVErr
(function); String (data type); Str, Str$ (functions).

Data Type CStr Returns

Any numeric type A string containing the number without the leading space
for positive values

Date A string converted to a date using the short date format

Boolean A string containing either "True" or "False"

Null variant A runtime error

Empty variant A zero-length string

CurDir, CurDir$ (functions) 129

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 129 of 131 Printed: 9/25/96

Platform(s) All.

CurDir, CurDir$ (functions)

Syntax CurDir[$][(drive)]

Description Returns the current directory on the specified drive. If no drive is specified or drive is
zero-length, then the current directory on the current drive is returned.

Comments CurDir$ returns a String, whereas CurDir returns a String variant.

BasicScript generates a runtime error if drive is invalid.

Example 'This example saves the current directory, changes to the next
'higher directory, and displays the change; then restores the
'original directory and displays the change. Note: The dot
'designators will not work with all platforms.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

save$ = CurDir$
ChDir ("..")
MsgBox "Old directory: " & save$ & crlf & "New directory: " _

& CurDir$
ChDir (save$)
MsgBox "Directory restored to: " & CurDir$

End Sub

See Also ChDir (statement); ChDrive (statement); Dir , Dir$ (functions); MkDir (statement);
RmDir (statement).

Platform(s) All.

Platform Notes UNIX: On UNIX platforms, the drive parameter is ignored. Since UNIX platforms do
not support drive letters, the current directory is always returned.

NetWare: Since NetWare does not support drive letters, the drive parameter specifies a
volume name (up to 14 characters). The returned value will have the following format:

volume:[dir[\dir]...]

Currency (data type)

Syntax Currency

Description A data type used to declare variables capable of holding fixed-point numbers with 15
digits to the left of the decimal point and 4 digits to the right.

Comments Currency variables are used to hold numbers within the following range:

130 BasicScript Language Reference

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 130 of 131 Printed: 9/25/96

-922,337,203,685,477.5808 <= currency <=
922,337,203,685,477.5807

Due to their accuracy, Currency variables are useful within calculations involving
money.

The type-declaration character for Currency is @.

Storage

Internally, currency values are 8-byte integers scaled by 10000. Thus, when appearing
within a structure, currency values require 8 bytes of storage. When used with binary or
random files, 8 bytes of storage are required.

See Also Date (data type); Double (data type); Integer (data type); Long (data type); Object
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement); CCur (function).

Platform(s) All.

CVar (function)

Syntax CVar(expression)

Description Converts expression to a Variant .

Comments This function is used to convert an expression into a variant. Use of this function is not
necessary (except for code documentation purposes) because assignment to variant
variables automatically performs the necessary conversion:

Sub Main()

Dim v As Variant

v = 4 & "th" 'Assigns "4th" to v.

MsgBox "You came in: " & v

v = CVar (4 & "th") 'Assigns "4th" to v.

MsgBox "You came in: " & v

End Sub

Example 'This example converts an expression into a Variant.
Sub Main()

Dim s As String
Dim a As Variant
s = CStr("The quick brown fox ")
message = CVar (s & "jumped over the lazy dog.")
MsgBox message

End Sub

CVErr (function) 131

Summit Software Confidential
Filename: lrc.fm5 Template: LRprint.FM5
Page: 131 of 131 Printed: 9/25/96

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function);
CInt (function); CLng (function); CSng (function); CStr (function); CVErr
(function); Variant (data type).

Platform(s) All.

CVErr (function)

Syntax CVErr(expression)

Description Converts expression to an error.

Comments This function is used to convert an expression into a user-defined error number.

A runtime error is generated under the following conditions:

• If expression is Null .

• If expression is a number outside the legal range for errors, which is as follows:
0 <= expression <= 65535

• If expression is Boolean.

• If expression is a String that can't be converted to a number within the legal range.

Empty is treated as 0.

Example 'This example simulates a user-defined error and displays the
'error number.
Sub Main()

MsgBox "The error is: " & CStr(CVErr (2046))
End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function);
CInt (function); CLng (function); CSng (function); CStr (function); CVar (function),
IsError (function).

Platform(s) All.

132 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 132 of 204 Printed: 9/25/96

Date (data type)

Syntax Date

Description A data type capable of holding date and time values.

Comments Date variables are used to hold dates within the following range:
January 1, 100 00:00:00 <= date <= December 31, 9999 23:59:59

-6574340 <= date <= 2958465.99998843

Internally, dates are stored as 8-byte IEEE double values. The integer part holds the
number of days since December 31, 1899, and the fractional part holds the number of
seconds as a fraction of the day. For example, the number 32874.5 represents January 1,
1990 at 12:00:00.

When appearing within a structure, dates require 8 bytes of storage. Similarly, when
used with binary or random files, 8 bytes of storage are required.

There is no type-declaration character for Date.

Date variables that haven't been assigned are given an initial value of 0 (i.e., December
31, 1899).

Date Literals

Literal dates are specified using number signs, as shown below:
Dim d As Date

d = #January 1, 1990#

The interpretation of the date string (i.e., January 1, 1990 in the above example) occurs
at runtime, using the current country settings. This is a problem when interpreting dates
such as 1/2/1990. If the date format is M/D/Y, then this date is January 2, 1990. If the
date format is D/M/Y, then this date is February 1, 1990. To remove any ambiguity
when interpreting dates, use the universal date format:

date_variable = #YY/MM/DD HH:MM:SS#

The following example specifies the date June 3, 1965, using the universal date format:
Dim d As Date

d = #1965/6/3 10:23:45#

See Also Currency (data type); Double (data type); Integer (data type); Long (data type);
Object (data type); Single (data type); String (data type); Variant (data type); Boolean
(data type); DefType (statement); CDate, CVDate (functions).

Platform(s) All.

Date, Date$ (functions) 133

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 133 of 204 Printed: 9/25/96

Date, Date$ (functions)

Syntax Date[$][()]

Description Returns the current system date.

Comments The Date$ function returns the date using the short date format. The Date function
returns the date as a Date variant.

Use the Date/Date$ statements to set the system date.

Example 'This example saves the current date to Cdate$, then changes
'the date and displays the result. It then changes the date
'back to the saved date and displays the result.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

TheDate$ = Date$ ()
Date$ = "01/01/95"
MsgBox "Saved date is: " & TheDate$ & crlf _

& "Changed date is: " & Date$ ()
Date$ = TheDate$
MsgBox "Restored date to: " & TheDate$

End Sub

See Also CDate, CVDate (functions); Time, Time$ (functions); Date, Date$ (statements); Now
(function); Format, Format$ (functions); DateSerial (function); DateValue
(function).

Platform(s) All.

Date, Date$ (statements)

Syntax Date[$] = newdate

Description Sets the system date to the specified date.

Comments The Date$ statement requires a string variable using one of the following formats:

MM-DD-YYYY

MM-DD-YY

MM/DD/YYYY
MM/DD/YY,

Note: In prior versions of BasicScript, the Date$ function returned the date using a
fixed date format. The date is now returned using the current short date format
(defined by the operating system), which may differ from the previous fixed format.

134 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 134 of 204 Printed: 9/25/96

where MM is a two-digit month between 1 and 31, DD is a two-digit day between 1 and
31, and YYYY is a four-digit year between 1/1/100 and 12/31/9999.

The Date statement converts any expression to a date, including string and numeric
values. Unlike the Date$ statement, Date recognizes many different date formats,
including abbreviated and full month names and a variety of ordering options. If
newdate contains a time component, it is accepted, but the time is not changed. An error
occurs if newdate cannot be interpreted as a valid date.

Example 'This example saves the current date to Cdate$, then changes
'the date and displays the result. It then changes the date
'back to the saved date and displays the result.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

TheDate$ = Date$()
Date$ = "01/01/95"
MsgBox "Saved date is: " & TheDate$ & crlf _

& "Changed date is: " & Date$()
Date$ = TheDate$
MsgBox "Restored date to: " & TheDate$

End Sub

See Also Date, Date$ (functions); Time, Time$ (statements).

Platform(s) All.

Platform Notes On some platforms, you may not have permission to change the date, causing runtime
error 70 to be generated. This can occur on all UNIX platforms, Win32, and OS/2.

The range of valid dates varies from platform to platform. The following table describes
the minimum and maximum dates accepted by various platforms:

DateAdd (function)

Syntax DateAdd(interval, number, date)

Description Returns a Date variant representing the sum of date and a specified number (number) of
time intervals (interval).

Platform Minimum Date Maximum Date

Macintosh January 1, 1904 February 6, 2040

Windows January 1, 1980 December 31, 2099

Windows 95 January 1, 1980 December 31, 2099

OS/2 January 1, 1980 December 31, 2079

NetWare January 1, 1980 December 31, 2099

DateAdd (function) 135

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 135 of 204 Printed: 9/25/96

Comments This function adds a specified number (number) of time intervals (interval) to the
specified date (date). The following table describes the named parameters to the
DateAdd function:

The interval parameter specifies what unit of time is to be added to the given date. It can
be any of the following:

To add days to a date, you may use either day, day of the year, or weekday, as they are
all equivalent ("d", "y", "w").

The DateAdd function will never return an invalid date/time expression. The following
example adds two months to December 31, 1992:

s# = DateAdd ("m", 2, "December 31, 1992")

In this example, s is returned as the double-precision number equal to "February 28,
1993", not "February 31, 1993".

BasicScript generates a runtime error if you try subtracting a time interval that is larger
than the time value of the date.

Example 'This example gets today's date using the Date$ function; adds
'three years, two months, one week, and two days to it; and

Named Parameter Description

interval String expression indicating the time interval used in the
addition.

number Integer indicating the number of time intervals you wish to
add. Positive values result in dates in the future; negative
values result in dates in the past.

date Any expression convertible to a Date string expression. An
example of a valid date/time string would be "January 1,
1993".

Time Interval

"y" Day of the year

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

136 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 136 of 204 Printed: 9/25/96

'then displays the result in a dialog box.
Sub Main()

Dim sdate$
sdate$ = Date$
NewDate# = DateAdd ("yyyy", 4, sdate$)
NewDate# = DateAdd ("m", 3, NewDate#)
NewDate# = DateAdd ("ww", 2, NewDate#)
NewDate# = DateAdd ("d", 1, NewDate#)
s$ = "Four years, three months, two weeks,"
s$ = s$ + " and one day from now will be: "
s$ = s$ & Format(NewDate#, "long date")
MsgBox s$

End Sub

See Also DateDiff (function).

Platform(s) All.

DateDiff (function)

Syntax DateDiff(interval, date1, date2 [, [firstdayofweek] [, firstweekofyear]])

Description Returns a Date variant representing the number of given time intervals between date1
and date2.

Comments The following describes the named parameters:

Named Parameter Description

interval String expression indicating the specific time interval you
wish to find the difference between. An error is generated if
interval is Null .

date1 Any expression convertible to a Date. An example of a valid
date/time string would be "January 1, 1994".

date2 Any expression convertible to a Date. An example of a valid
date/time string would be "January 1, 1994".

firstdayofweek Indicates the first day of the week. If omitted, then sunday is
assumed (i.e., the constant ebSunday described below).

firstweekofyear Indicates the first week of the year. If omitted, then the first
week of the year is considered to be that containing January 1
(i.e., the constant ebFirstJan1 as described bellow).

DateDiff (function) 137

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 137 of 204 Printed: 9/25/96

The following lists the valid time interval strings and the meanings of each. The
Format$ function uses the same expressions.

To find the number of days between two dates, you may use either day or day of the
year, as they are both equivalent ("d", "y").

The time interval weekday ("w") will return the number of weekdays occurring between
date1 and date2, counting the first occurrence but not the last. However, if the time
interval is week ("ww"), the function will return the number of calendar weeks between
date1 and date2, counting the number of Sundays. If date1 falls on a Sunday, then that
day is counted, but if date2 falls on a Sunday, it is not counted.

The firstdayofweek parameter, if specified, can be any of the following constants:

The firstdayofyear parameter, if specified, can be any of the following constants:

Time Interval

"y" Day of the year

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

138 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 138 of 204 Printed: 9/25/96

The DateDiff function will return a negative date/time value if date1 is a date later in
time than date2. If date1 or date2 are Null , then Null is returned.

Example 'This example gets today's date and adds ten days to it. It
'then calculates the difference between the two dates in days
'and weeks and displays the result.
Sub Main()

today$ = Format(Date$,"Short Date")
NextWeek = Format(DateAdd("d", 14, today$),"Short Date")
DifDays# = DateDiff ("d", today$, NextWeek)
DifWeek# = DateDiff ("w", today$, NextWeek)
s$ = "The difference between " & today$ & " and " & NextWeek
s$ = s$ & " is: " & DifDays# & " days or " _

& DifWeek# & " weeks"
MsgBox s$

End Sub

See Also DateAdd (function).

Platform(s) All.

DatePart (function)

Syntax DatePart(interval, date [, [firstdayofweek] [, firstweekofyear]])

Description Returns an Integer representing a specific part of a date/time expression.

Comments The DatePart function decomposes the specified date and returns a given date/time
element. The following table describes the named parameters:

ebFirstJan1 1 The first week of the year is that in which January 1
occurs (the default).

ebFirstFourDays 2 The first week of the year is that containing at least
four days in the year.

ebFirstFullWeek 3 The first week of the year is the first full week of the
year.

Constant Value Description

Named Parameter Description

interval String expression that indicates the specific time interval you
wish to identify within the given date.

date Any expression convertible to a Date. An example of a valid
date/time string would be "January 1, 1995".

firstdayofweek Indicates the first day of the week. If omitted, then sunday is
assumed (i.e., the constant ebSunday described below).

DatePart (function) 139

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 139 of 204 Printed: 9/25/96

The following table lists the valid time interval strings and the meanings of each. The
Format$ function uses the same expressions.

The firstdayofweek parameter, if specified, can be any of the following constants:

The firstdayofyear parameter, if specified, can be any of the following constants:

firstweekofyear Indicates the first week of the year. If omitted, then the first
week of the year is considered to be that containing January 1
(i.e., the constant ebFirstJan1 as described bellow).

Time Interval

"y" Day of the year

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

ebFirstJan1 1 The first week of the year is that in which January 1
occurs (the default).

Named Parameter Description

140 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 140 of 204 Printed: 9/25/96

Example 'This example displays the parts of the current date.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

today$ = Date$
qtr = DatePart ("q",today$)
yr = DatePart ("yyyy",today$)
mo = DatePart ("m",today$)
wk = DatePart ("ww",today$)
da = DatePart ("d",today$)
s$ = "Quarter: " & qtr & crlf
s$ = s$ & "Year: " & yr & crlf
s$ = s$ & "Month: " & mo & crlf
s$ = s$ & "Week: " & wk & crlf
s$ = s$ & "Day: " & da & crlf
MsgBox s$

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year
(function); Hour (function); Weekday (function); Format, Format$ (functions).

Platform(s) All.

DateSerial (function)

Syntax DateSerial(year, month, day)

Description Returns a Date variant representing the specified date.

Comments The DateSerial function takes the following named parameters:

Example 'This example converts a date to a real number representing the
'serial date in days since December 30, 1899 (which is day 0).
Sub Main()

tdate# = DateSerial (1993,08,22)

ebFirstFourDays 2 The first week of the year is that containing at least
four days in the year.

ebFirstFullWeek 3 The first week of the year is the first full week of the
year.

Constant Value Description

Named Parameter Description

year Integer between 100 and 9999

month Integer between 1 and 12

day Integer between 1 and 31

DateValue (function) 141

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 141 of 204 Printed: 9/25/96

MsgBox "The DateSerial value for August 22, 1993, is: " _
& tdate#

End Sub

See Also DateValue (function); TimeSerial (function); TimeValue (function); CDate, CVDate
(functions).

Platform(s) All.

DateValue (function)

Syntax DateValue(date)

Description Returns a Date variant representing the date contained in the specified string argument.

Example 'This example returns the day of the month for today's date.
Sub Main()

tdate$ = Date$
tday = DateValue (tdate$)
MsgBox tdate & " date value is: " & tday$

End Sub

See Also TimeSerial (function); TimeValue (function); DateSerial (function).

Platform(s) All.

Platform Notes Windows: Under Windows, date specifications vary depending on the international
settings contained in the "intl" section of the win.ini file. The date items must follow the
ordering determined by the current date format settings in use by Windows..

Day (function)

Syntax Day(date)

Description Returns the day of the month specified by date.

Comments The value returned is an Integer between 0 and 31 inclusive.

The date parameter is any expression that converts to a Date.

Example 'This example gets the current date and then displays it.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

CurDate = Now()
MsgBox "Today is day " & Day(CurDate) & " of the month." _

& crlf & "Tomorrow is day " & Day(CurDate + 1)
End Sub

142 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 142 of 204 Printed: 9/25/96

See Also Minute (function); Second (function); Month (function); Year (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) All.

DDB (function)

Syntax DDB(cost, salvage, life, period [, factor])

Description Calculates the depreciation of an asset for a specified period of time using the
double-declining balance method.

Comments The double-declining balance method calculates the depreciation of an asset at an
accelerated rate. The depreciation is at its highest in the first period and becomes
progressively lower in each additional period. DDB uses the following formula to
calculate the depreciation:

DDB =((Cost-Total_depreciation_from_all_other_periods) * 2)/ Life

The DDB function uses the following named parameters:

The life and period parameters must be expressed using the same units. For example, if
life is expressed in months, then period must also be expressed in months.

Example 'This example calculates the depreciation for capital equipment
'that cost $10,000, has a service life of ten years, and is
'worth $2,000 as scrap. The dialog box displays the depreciation
'for each of the first four years.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

s$ = "Depreciation Table" & crlf & crlf
For yy = 1 To 4

CurDep# = DDB(10000.0,2000.0,10,yy)
s$ = s$ & "Year " & yy & " : " & CurDep# & crlf

Named Parameter Description

cost Double representing the initial cost of the asset

salvage Double representing the estimated value of the asset at the end
of its predicted useful life

life Double representing the predicted length of the asset's useful
life

period Double representing the period for which you wish to calculate
the depreciation

factor Depreciation factor determining the rate the balance declines. If
this parameter is missing, then 2 is assumed (double-declining
method).

DDEExecute (statement) 143

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 143 of 204 Printed: 9/25/96

Next yy
MsgBox s$

End Sub

See Also Sln (function); SYD (function).

Platform(s) All.

DDEExecute (statement)

Syntax DDEExecute channel, command$

Description Executes a command in another application.

Comments The DDEExecute statement takes the following parameters:

If the receiving application does not execute the instructions, BasicScript generates a
runtime error.

Example 'This example selects a cell in an Excel spreadsheet.
Sub Main()

q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also DDEInitiate (function); DDEPoke (statement); DDERequest, DDERequest$
(functions); DDESend (statement); DDETerminate (statement); DDETerminateAll
(statement); DDETimeout (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the DDEML library is required for DDE support. This
library is loaded when the first DDEInitiate statement is encountered and remains
loaded until the BasicScript system is terminated. Thus, the DDEML library is required
only if DDE statements are used within a script.

Parameter Description

channel Integer containing the DDE channel number returned from
DDEInitiate . An error will result if channel is invalid.

command$ String containing the command to be executed. The format of
command$ depends on the receiving application.

144 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 144 of 204 Printed: 9/25/96

DDEInitiate (function)

Syntax DDEInitiate(application$, topic$)

Description Initializes a DDE link to another application and returns a unique number subsequently
used to refer to the open DDE channel.

Comments The DDEInitiate statement takes the following parameters:

This function returns 0 if BasicScript cannot establish the link. This will occur under
any of the following circumstances:

• The specified application is not running.

• The topic was invalid for that application.

• Memory or system resources are insufficient to establish the DDE link.

Example 'This example selects a range of cells in an Excel spreadsheet.
Sub Main()

q$ = Chr(34)
ch% = DDEInitiate ("Excel","c:\sheets\test.xls")
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also DDEExecute (statement); DDEPoke (statement); DDERequest, DDERequest$
(functions); DDESend (function); DDETerminate (statement); DDETerminateAll
(statement); DDETimeout (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the DDEML library is required for DDE support. This
library is loaded when the first DDEInitiate statement is encountered and remains
loaded until the BasicScript system is terminated. Thus, the DDEML library is required
only if DDE statements are used within a script.

Parameter Description

application$ String containing the name of the application (the server) with
which a DDE conversation will be established.

topic$ String containing the name of the topic for the conversation.
The possible values for this parameter are described in the
documentation for the server application.

DDEPoke (statement) 145

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 145 of 204 Printed: 9/25/96

DDEPoke (statement)

Syntax DDEPoke channel, DataItem, value

Description Sets the value of a data item in the receiving application associated with an open DDE
link.

Comments The DDEPoke statement takes the following parameters:

Example 'This example pokes a value into an Excel spreadsheet.
Sub Main()

ch% = DDEInitiate("Excel","c:\sheets\test.xls")
DDEPoke ch%,"R1C1","980"
DDETerminate ch%

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDERequest, DDERequest$
(functions); DDESend (function); DDETerminate (statement); DDETerminateAll
(statement); DDETimeout (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the DDEML library is required for DDE support. This
library is loaded when the first DDEInitiate statement is encountered and remains
loaded until the BasicScript system is terminated. Thus, the DDEML library is required
only if DDE statements are used within a script.

DDERequest, DDERequest$ (functions)

Syntax DDERequest[$](channel, DataItem$)

Description Returns the value of the given data item in the receiving application associated with the
open DDE channel.

Comments DDERequest$ returns a String, whereas DDERequest returns a String variant.

Parameter Description

channel Integer containing the DDE channel number returned from
DDEInitiate. An error will result if channel is invalid.

DataItem Data item to be set. This parameter can be any expression
convertible to a String. The format depends on the server.

value The new value for the data item. This parameter can be any
expression convertible to a String. The format depends on the
server. A runtime error is generated if value is Null .

146 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 146 of 204 Printed: 9/25/96

The DDERequest/DDERequest$ functions take the following parameters:

The format for the returned value depends on the server.

Example 'This example gets a value from an Excel spreadsheet.
Sub Main()

ch% = DDEInitiate("Excel","c:\excel\test.xls")
s$ = DDERequest$ (ch%,"R1C1")
DDETerminate ch%
MsgBox s$

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement); DDESend
(function); DDETerminate (statement); DDETerminateAll (statement);
DDETimeout (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the DDEML library is required for DDE support. This
library is loaded when the first DDEInitiate statement is encountered and remains
loaded until the BasicScript system is terminated. Thus, the DDEML library is required
only if DDE statements are used within a script.

DDESend (statement)

Syntax DDESend application$, topic$, DataItem, value

Description Initiates a DDE conversation with the server as specified by application$ and topic$ and
sends that server a new value for the specified item.

Comments The DDESend statement takes the following parameters:

Parameter Description

channel Integer containing the DDE channel number returned from
DDEInitiate . An error will result if channel is invalid.

DataItem$ String containing the name of the data item to request. The
format for this parameter depends on the server.

Parameter Description

application$ String containing the name of the application (the server) with
which a DDE conversation will be established.

topic$ String containing the name of the topic for the conversation.
The possible values for this parameter are described in the
documentation for the server application.

DataItem Data item to be set. This parameter can be any expression
convertible to a String. The format depends on the server.

DDETerminate (statement) 147

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 147 of 204 Printed: 9/25/96

The DDESend statement performs the equivalent of the following statements:
ch% = DDEInitiate(application$, topic$)

DDEPoke ch%, item, data
DDETerminate ch%

Example 'This code fragment sets the content of the first cell in an
'Excel spreadsheet.
Sub Main()

On Error Goto Trap1
DDESend "Excel","c:\excel\test.xls","R1C1","Hello, world."
On Error Goto 0
'Add more lines here.

Trap1:
MsgBox "Error sending data to Excel."
Exit Sub'Reset error handler.

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDERequest, DDERequest$ (functions); DDETerminate (statement);
DDETerminateAll (statement); DDETimeout (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the DDEML library is required for DDE support. This
library is loaded when the first DDEInitiate statement is encountered and remains
loaded until the BasicScript system is terminated. Thus, the DDEML library is required
only if DDE statements are used within a script.

DDETerminate (statement)

Syntax DDETerminate channel

Description Closes the specified DDE channel.

Comments The channel parameter is an Integer containing the DDE channel number returned from
DDEInitiate . An error will result if channel is invalid.

All open DDE channels are automatically terminated when the script ends.

Example 'This code fragment sets the content of the first cell in an
'Excel spreadsheet.
Sub Main()

value New value for the data item. This parameter can be any
expression convertible to a String. The format depends on the
server. A runtime error is generated if value is Null .

Parameter Description

148 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 148 of 204 Printed: 9/25/96

q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDERequest, DDERequest$ (functions); DDESend (function); DDETerminateAll
(statement); DDETimeout (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the DDEML library is required for DDE support. This
library is loaded when the first DDEInitiate statement is encountered and remains
loaded until the BasicScript system is terminated. Thus, the DDEML library is required
only if DDE statements are used within a script.

DDETerminateAll (statement)

Syntax DDETerminateAll

Description Closes all open DDE channels.

Comments All open DDE channels are automatically terminated when the script ends.

Example 'This code fragment selects the contents of the first cell in
'an Excel spreadsheet.
Sub Main()

q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminateAll

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDERequest, DDERequest$ (functions); DDESend (function); DDETerminate
(statement); DDETimeout (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the DDEML library is required for DDE support. This
library is loaded when the first DDEInitiate statement is encountered and remains
loaded until the BasicScript system is terminated. Thus, the DDEML library is required
only if DDE statements are used within a script.

DDETimeout (statement) 149

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 149 of 204 Printed: 9/25/96

DDETimeout (statement)

Syntax DDETimeout milliseconds

Description Sets the number of milliseconds that must elapse before any DDE command times out.

Comments The milliseconds parameter is a Long and must be within the following range:
0 <= milliseconds <= 2,147,483,647

The default is 10,000 (10 seconds).

Example Sub Main()
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
DDETimeout (20000)
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDERequest, DDERequest$ (functions); DDESend (function); DDETerminate
(statement); DDETerminateAll (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows: Under Windows, the DDEML library is required for DDE support. This
library is loaded when the first DDEInitiate statement is encountered and remains
loaded until the BasicScript system is terminated. Thus, the DDEML library is required
only if DDE statements are used within a script.

Declare (statement)

Syntax Declare {Sub | Function} name[TypeChar] [CDecl | Pascal | System |
StdCall] [Lib " LibName$" [Alias " AliasName$"]] [([ParameterList])]
[As type]

Where ParameterList is a comma-separated list of the following (up to 30 parameters
are allowed):

[Optional] [ByVal | ByRef] ParameterName[()] [As ParameterType]

Description Creates a prototype for either an external routine or a BasicScript routine that occurs
later in the source module or in another source module.

Comments Declare statements must appear outside of any Sub or Function declaration.

Declare statements are only valid during the life of the script in which they appear.

150 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 150 of 204 Printed: 9/25/96

The Declare statement uses the following parameters:

Parameter Description

name Any valid BasicScript name. When you declare functions, you
can include a type-declaration character to indicate the return
type.

This name is specified as a normal BasicScript keyword—i.e., it
does not appear within quotes.

TypeChar An optional type-declaration character used when defining the
type of data returned from functions. It can be any of the
following characters: #, !, $, @, %, or &. For external functions,
the @ character is not allowed.

Type-declaration characters can only appear with function
declarations, and take the place of the As type clause.

Note: Currency data cannot be returned from external
functions. Thus, the @ type-declaration character cannot be
used when declaring external functions.

Decl Optional keyword indicating that the external subroutine or
function uses the C calling convention. With C routines,
arguments are pushed right to left on the stack and the caller
performs stack cleanup.

Pascal Optional keyword indicating that this external subroutine or
function uses the Pascal calling convention. With Pascal
routines, arguments are pushed left to right on the stack and the
called function performs stack cleanup.

System Optional keyword indicating that the external subroutine or
function uses the System calling convention. With System
routines, arguments are pushed right to left on the stack, the
caller performs stack cleanup, and the number of arguments is
specified in the AL register.

StdCall Optional keyword indicating that the external subroutine or
function uses the StdCall calling convention. With StdCall
routines, arguments are pushed right to left on the stack and the
called function performs stack cleanup.

LibName$ Must be specified if the routine is external. This parameter
specifies the name of the library or code resource containing the
external routine and must appear within quotes.

The LibName$ parameter can include an optional path
specifying the exact location of the library or code resource.

Declare (statement) 151

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 151 of 204 Printed: 9/25/96

AliasName$ Alias name that must be given to provide the name of the
routine if the name parameter is not the routine's real name. For
example, the following two statements declare the same routine:

Declare Function GetCurrentTime Lib "user"
() As Integer

Declare Function GetTime Lib "user" Alias
"GetCurrentTime" _

As Integer

Use an alias when the name of an external routine conflicts with
the name of a BasicScript internal routine or when the external
routine name contains invalid characters.

The AliasName$ parameter must appear within quotes.

type Indicates the return type for functions.

For external functions, the valid return types are: Integer,
Long, String, Single, Double, Date, Boolean, and data objects.

Note: Currency, Variant , fixed-length strings, arrays,
user-defined types, and OLE Automation objects cannot be
returned by external functions.

Optional Keyword indicating that the parameter is optional. All optional
parameters must be of type Variant . Furthermore, all
parameters that follow the first optional parameter must also be
optional.

If this keyword is omitted, then the parameter being defined is
required when calling this subroutine or function.

ByVal Optional keyword indicating that the caller will pass the
parameter by value. Parameters passed by value cannot be
changed by the called routine.

ByRef Optional keyword indicating that the caller will pass the
parameter by reference. Parameters passed by reference can be
changed by the called routine. If neither ByVal or ByRef are
specified, then ByRef is assumed.

Parameter Description

152 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 152 of 204 Printed: 9/25/96

Passing Parameters

By default, BasicScript passes arguments by reference. Many external routines require a
value rather than a reference to a value. The ByVal keyword does this. For example, this
C routine

void MessageBeep(int);

would be declared as follows:

Declare Sub MessageBeep Lib "user" (ByVal n As Integer)

As an example of passing parameters by reference, consider the following C routine
which requires a pointer to an integer as the third parameter:

int SystemParametersInfo(int,int,int *,int);

ParameterName Name of the parameter, which must follow BasicScript naming
conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character
(_). Punctuation and type-declaration characters are not
allowed. The exclamation point (!) can appear within the
name as long as it is not the last character, in which case it
is interpreted as a type-declaration character.

3. Must not exceed 80 characters in length.

Additionally, ParameterName can end with an optional
type-declaration character specifying the type of that parameter
(i.e., any of the following characters: %, &, !, #, @).

() Indicates that the parameter is an array.

ParameterType Specifies the type of the parameter (e.g., Integer, String,
Variant , and so on). The As ParameterType clause should only
be included if ParameterName does not contain a
type-declaraction character.

In addition to the default BasicScript data types,
ParameterType can specify any user-defined structure, data
object, or OLE Automation object. If the data type of the
parameter is not known in advance, then the Any keyword can
be used. This forces the BasicScript compiler to relax type
checking, allowing any data type to be passed in place of the
given argument.

Declare Sub Convert Lib "mylib" (a As Any)

The Any data type can only be used when passing parameters to
external routines.

Parameter Description

Declare (statement) 153

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 153 of 204 Printed: 9/25/96

This routine would be declared as follows (notice the ByRef keyword in the third
parameter):

Declare Function SystemParametersInfo Lib "user" (ByVal _

action As Integer, ByVal uParam As Integer,ByRef pInfo _

As Integer, ByVal updateINI As Integer) As Integer

Strings can be passed by reference or by value. When they are passed by reference, a
pointer to a pointer to a null-terminated string is passed. When they are passed by value,
BasicScript passes a pointer to a null-terminated string (i.e., a C string).

When passing a string by reference, the external routine can change the pointer or
modify the contents of the existing. If an external routine modifies a passed string
variable (regardless of whether the string was passed by reference or by value), then
there must be sufficient space within the string to hold the returned characters. This can
be accomplished using the Space function, as shown in the following example which
calls a Windows 16-bit DLL:

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal _

dirname$, ByVal length%)

Sub Main()

Dim s As String

s = Space(128)

GetWindowsDirectory s,128

End Sub

Another alternative to ensure that a string has sufficient space is to declare the string
with a fixed length:

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal _

dirname$, ByVal length%)

Sub Main

Dim s As String * 128

GetWindowsDirectory s,len(s)

End Sub

Calling Conventions with External Routines

For external routines, the argument list must exactly match that of the referenced
routine. When calling an external subroutine or function, BasicScript needs to be told
how that routine expects to receive its parameters and who is responsible for cleanup of
the stack.

154 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 154 of 204 Printed: 9/25/96

The following table describes BasicScript’s calling conventions and how these translate
to those supported by C.

The following table shows which calling conventions are supported on which platform,
and indicates what the default calling convention is when no explicit calling convention
is specified in the Declare statement.

BasicScript
Calling Convention

C Calling
Convention Characteristics

StdCall _stdcall Arguments are pushed right to left.

The called function performs stack
cleanup.

Pascal pascal Arguments are pushed left to right.

The called function performs stack
cleanup

System _System Arguments are pushed right to left.

The caller performs stack cleanup.

The number of arguments is specified in
the ax 1 register.

CDecl cdec1 Arguments are pushed right to left.

The caller performs stack cleanup.

Platform Supported Calling Conventions Default Calling Convention

Windows Pascal, CDecl Pascal

Win32/Intel Pascal, CDecl, StdCall StdCall

Win32/PPC CDecl CDecl

Macintosh On the 68K, the Macintosh supports
only the CDecl calling convention.

The PowerMac supports a single
calling convention that evaluates
parameters left to right. No special
calling convention keywords are
required.

On the 68K, the default
calling convention is CDecl.

On the 68K, a runtime error
occurs if any explicit calling
convention keyword is
specified.

OS/2 System, Pascal, CDecl System

NetWare CDecl, Pascal CDecl

UNIX CDecl CDecl

Declare (statement) 155

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 155 of 204 Printed: 9/25/96

Passing Null Pointers

For external routines defined to receive strings by value, BasicScript passes uninitialized
strings as null pointers (a pointer whose value is 0). The constant ebNullString can be
used to force a null pointer to be passed as shown below:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main()

Foo ebNullString 'pass a null pointer

End Sub

Another way to pass a null pointer is to declare the parameter that is to receive the null
pointer as type Any, then pass a long value 0 by value:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main()

Foo ByVal 0& 'Pass a null pointer.

End Sub

Passing Data to External Routines

The following table shows how the different data types are passed to external routines:

Data type Is passed as

ByRef Boolean A pointer to a 2-byte value containing –1 or 0.

ByVal Boolean A 2-byte value containing –1 or 0.

ByVal Integer A pointer to a 2-byte short integer.

ByRef Integer A 2-byte short integer.

ByVal Long A pointer to a 4-byte long integer.

ByRef Long A 4-byte long integer.

ByRef Single A pointer to a 4-byte IEEE floating-point value (a float).

ByVal Single A 4-byte IEEE floating-point value (a float).

ByRef Double A pointer to an 8-byte IEEE floating-point value (a double).

ByVal Double An 8-byte IEEE floating-point value (a double).

ByVal String A pointer to a null-terminated string. With strings
containing embedded nulls (Chr$(0)), it is not possible to
determine which null represents the end of the string;
therefore, the first null is considered the string terminator.

An external routine can freely change the content of a string.
It cannot, however, write beyond the end of the null
terminator.

156 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 156 of 204 Printed: 9/25/96

ByRef String A pointer to a pointer to a null-terminated string. With
strings containing embedded nulls (Chr$(0)), it is not
possible to determine which null represents the end of the
string; therefore, the first null is considered the string
terminator.

An external routine can freely change the content of a string.
It cannot, however, write beyond the end of the null
terminator.

ByRef Variant A pointer to a 16-byte variant structure. This structure
contains a 2-byte type (the same as that returned by the
VarType function), followed by 6-bytes of slop (for
alignment), followed by 8-bytes containing the value.

ByVal Variant A 16-byte variant structure. This structure contains a 2-byte
type (the same as that returned by the VarType function),
followed by 6-bytes of slop (for alignment), followed by
8-bytes containing the value.

ByVal Object For data objects, a 4-byte unsigned long integer. This value
can only be used by external routines written specifically for
BasicScript.

For OLE Automation objects, a 32-bit pointer to an
LPDISPATCH handle is passed.

ByRef Object For data objects, a pointer to a 4-byte unsigned long integer
that references the object. This value can only be used by
external routines written specifically for BasicScript.

For OLE Automation objects, a pointer an LPDISPATCH
value is passed.

ByVal User-defined
type

The entire structure is passed to the external routine.

It is important to remember that structures in BasicScript are
packed on 2-byte boundaries, meaning that the individual
structure members may not be aligned consistently with
similar structures declared in C.

ByRef User-defined
type

A pointer to the structure.

It is important to remember that structures in BasicScript are
packed on 2-byte boundaries, meaning that the individual
structure members may not be aligned consistently with
similar structures declared in C.

Data type Is passed as

Declare (statement) 157

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 157 of 204 Printed: 9/25/96

Only variable-length strings can be passed to external routines; fixed-length strings are
automatically converted to variable-length strings.

BasicScript passes data to external functions consistent with that routine's prototype as
defined by the Declare statement. There is one exception to this rule: you can override
ByRef parameters using the ByVal keyword when passing individual parameters. The
following example shows a number of different ways to pass an Integer to an external
routine called Foo:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

Sub Main

Dim i As Integer

i = 6

Foo 6 'Passes a temporary integer (value 6) by

'reference

Foo i 'Passes variable "i" by reference

Foo (i) 'Passes a temporary integer (value 6) by

'reference

Foo i + 1 'Passes temporary integer (value 7) by

'reference

Foo ByVal i 'Passes i by value

End Sub

The above example shows that the only way to override passing a value by reference is
to use the ByVal keyword.

Returning Values from External Routines

BasicScript supports the following values returned from external routines: Integer,
Long, Single, Double, String, Boolean, and all object types. When returning a String,
BasicScript assumes that the first null-terminator is the end of the string.

Arrays A pointer to a packed array of elements of the given type.

Arrays can only be passed by reference.

Dialogs Dialogs cannot be passed to external routines.

Note: Use caution when using the ByVal keyword in this way. The external routine
Foo expects to receive a pointer to an Integer—a 32-bit value; using ByVal causes
BasicScript to pass the Integer by value—a 16-bit value. Passing data of the wrong
size to any external routine will have unpredictable results.

Data type Is passed as

158 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 158 of 204 Printed: 9/25/96

Calling External Routines in Multi-Threaded Environments

In multi-threaded environments (such as Win32), BasicScript makes a copy of all data
passed to external routines. This allows other simultaneously executing scripts to
continue executing before the external routine returns.

Care must be exercised when passing a the same by-reference variable twice to external
routines. When returning from such calls, BasicScript must update the real data from the
copies made prior to calling the external function. Since the same variable was passed
twice, you will be unable to determine which variable will be updated.

Example Declare Function IsLoaded% Lib "Kernel" _
Alias "GetModuleHandle" (ByVal name$)

Declare Function GetProfileString Lib "Kernel" _
(ByVal SName$,ByVal KName$,_
ByVal Def$,ByVal Ret$,ByVal Size%) As Integer

Sub Main()
SName$ = "Intl"'Win.ini section name.
KName$ = "sCountry"'Win.ini country setting.
ret$ = String$(255, 0)'Initialize return string.
If GetProfileString(SName$,KName$,"",ret$,Len(ret$)) Then

MsgBox "Your country setting is: " & ret$
Else

MsgBox "There is no country setting in your win.ini file."
End If
If IsLoaded("Progman") Then

MsgBox "Progman is loaded."
Else

MsgBox "Progman is not loaded."
End If

End Sub

See Also Call (statement); Sub...End Sub (statement); Function...End Function (statement).

Platform(s) All platforms support Declare for forward referencing.

The following platforms currently support the use of Declare for referencing external
routines: Windows, Win32/Intel, Win32/PPC, Macintosh, OS/2, NetWare, and some
UNIX platforms. See below for details.

Platform Notes Windows: Under Windows, external routines are contained in DLLs. The libraries
containing the routines are loaded when the routine is called for the first time (i.e., not
when the script is loaded). This allows a script to reference external DLLs that
potentially do not exist.

All the Windows API routines are contained in DLLs, such as "user", "kernel", and
"gdi". The file extension ".exe" is implied if another extension is not given.

If the LibName$ parameter does not contain an explicit path to the DLL, the following
search will be performed for the DLL (in this order):

Declare (statement) 159

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 159 of 204 Printed: 9/25/96

1. The current directory

2. The Windows directory

3. The Windows system directory

4. The directory containing BasicScript

5. All directories listed in the path environment variable

If the first character of AliasName$ is #, then the remainder of the characters specify the
ordinal number of the routine to be called. For example, the following two statements
are equivalent (under Windows, GetCurrentTime is defined as ordinal 15 in the
user.exe module):

Declare Function GetTime Lib "user" Alias "GetCurrentTime" ()
As Integer

Declare Function GetTime Lib "user" Alias "#15" () As Integer

Under Windows, the names of external routines declared using the CDecl keyword are
usually preceded with an underscore character. When BasicScript searches for your
external routine by name, it first attempts to load the routine exactly as specified. If
unsuccessful, BasicScript makes a second attempt by prepending an underscore
character to the specified name. If both attempts fail, then BasicScript generates a
runtime error. Under Windows, external routines declared using the Pascal keyword are
case insensitive, whereas external routines declared using the CDecl keyword are case
sensitive.

Windows has a limitation that prevents Double, Single, and Date values from being
returned from routines declared with the CDecl keyword. Routines that return data of
these types should be declared Pascal.

BasicScript does not perform an increment on OLE automation objects before passing
them to external routines.

Platform Notes Win32: Under Win32, eternal routines are contained in DLLs. The libraries containing
the routines are loaded when the routine is called for the first time (i.e., not when the
script is loaded). This allows a script to reference external DLLs that potentially do not
exist.

All the Win32 API routines are contained in DLLs, such as "user32", "kernel32", and
"gdi32". The file extension ".exe" is implied if another extension is not given.

The Pascal and StdCall calling conventions are identical on Win32 platforms.
Furthermore, on this platform, the arguments are passed using C ordering regardless of
the calling convention—right to left on the stack.

Note: You cannot execute routines contained in 16-bit Windows DLLs from the
32-bit version of BasicScript.

160 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 160 of 204 Printed: 9/25/96

If the LibName$ parameter does not contain an explicit path to the DLL, the following
search will be performed for the DLL (in this order):

1. The directory containing BasicScript

2. The current directory

3. The Windows system directory

4. The Windows directory

5. All directories listed in the path environment variable

If the first character of AliasName$ is #, then the remainder of the characters specify the
ordinal number of the routine to be called. For example, the following two statements
are equivalent (under Win32, GetCurrentTime is defined as GetTickCount, ordinal
300, in kernel32.dll):

Declare Function GetTime Lib "kernel32.dll" Alias
"GetTickCount" () As Long

Declare Function GetTime Lib "kernel32.dll" Alias "#300" () As
Long

Under Win32, name and AliasName$ are case-sensitive.

Under Win32, all string passed by value are converted to MBCS strings. Similarly, any
string returned from an external routine is assumes to be a null-terminated MBCS
string.

BasicScript does not perform an increment on OLE automation objects before passing
them to external routines. When returned from an external function, BasicScript
assumes that the properties and methods of the OLE automation object are UNICODE
and that the object uses the default system locale.

Declare (statement) 161

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 161 of 204 Printed: 9/25/96

Platform Notes NetWare: Under NetWare, external routines are contained within NLMs. If no file
extension is specified in LibName$, then ".nlm" is assumed.

Since the standard C library is implemented as an NLM under NetWare, it is possible to
call many C routines directly from BasicScript. For example, the following code calls
Printf with a String and an Integer:

Declare Sub Printf Lib "CLIB.NLM" (ByVal F$,ByVal s$,ByVal i%)

Sub Main()

Printf "Hello, ","world.",10

End Sub

If LibName$ does not contain an explicit path, then NetWare looks in the system
directory. The NLM specified by LibName$ is loaded when the first call to an external
in that module is accessed, thus allowing execution of scripts containing calls to NLMs
that do not exist. (If the NLM is already loaded, then no work is done.)

Under NetWare, the name and AliasName$ parameters are case-sensitive.

Platform Notes Macintosh: On the Macintosh, external routines are contained in code fragments as
specified by the LibName$ parameter. BasicScript uses the following rules for locating
your code fragment:

1. If LibName$ contains an explicit path, that code fragment will be loaded.

2. If no path is specified in LibName$, then BasicScript will look in the folder
containing BasicScript, then the System folder.

3. If both of the above fail, then BasicScript will search for a code fragment whose
CFRG resource name is the same as LibName$. The search is performed in the
folder containing BasicScript, then the System folder.

The name is compared case-sensitive.

The name, AliasName$, and LibName$ parameters are case-sensitive.

For more information on the calling conventions for code fragments, Apple publishes
the following books:

1. Inside Macintosh: PowerPC System Software

2. Building CFM-68K Runtime Programs for Macintosh Computers

Platform Notes OS/2: If the LibName$ parameter does not contain an explicit path to the DLL, the
following search will be performed for the DLL (in this order):

1. The current directory.

2. All directories listed in the path environment variable.

162 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 162 of 204 Printed: 9/25/96

The Declare statement under OS/2 supports calling both 16-bit and 32-bit routines. The
following table shows how this relates to the supported calling conventions:

If the first character of AliasName$ is #, then the remainder of the characters specify the
ordinal number of the routine to be called. The following example shows an ordinal
used to access the DosQueryCurrentDisk function contained in the doscall1.dll
module:

Declare Function System DosQueryCurrentDisk Lib "doscall1.dll"
Alias "#275" _

(ByRef Drive As Long,ByRef Map As Long) As Integer

Under OS/2, the name and AliasName$ parameters are case-sensitive.

Platform Notes UNIX: The Declare statement can be used to reference routines contained in shared
libraries on the following UNIX platforms: HP-UX, Solaris.

If LibPath$ does not contain an explicit path, then a search is made for the shared
library in each path in the colon separated list as specified by the following environment
variable:

The following example shows how to call the printf function on the HP-UX platform:
Declare Sub PrintString Lib "/lib/libc.sl" Alias "_printf" _

(ByVal FormatString As String,ByVal s As String)

Sub Main
PrintString "Hello, ","world."

End Sub

Calling Convention Supports 16-Bit Calls Supports 32-Bit Calls

System No Yes

Pascal Yes Yes

CDec1 Yes No

Note: BasicScript does not support passing of Single and Double values to external
16-bit subroutines or functions. These data types are also not supported as return
values from external 16-bit functions.

Note: All external routines contained in the doscall1.dll module require the use of an
ordinal.

Platform Environment Variable

HP-UX SHLIB_PATH

Solaris LD_LIBRARY_PATH

DefType (statement) 163

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 163 of 204 Printed: 9/25/96

A special note when passing Single values to external routines on HP-UX: When
passing Single values to external routines compiled in ANSI mode, the parameter in the
Declare statement should be specified as Double. External routines compiled in K&R
mode should have float parameters defined as Single as normal. This is due to calling
convention differences between these two standards: In ANSI mode, floats are
promoted to double prior to passing.

DefType (statement)

Syntax DefInt letterrange
DefLng letterrange
DefStr letterrange
DefSng letterrange
DefDbl letterrange
DefCur letterrange
DefObj letterrange
DefVar letterrange
DefBool letterrange
DefDate letterrange

Description Establishes the default type assigned to undeclared or untyped variables.

Comments The DefType statement controls automatic type declaration of variables. Normally, if a
variable is encountered that hasn't yet been declared with the Dim, Public, or Private
statement or does not appear with an explicit type-declaration character, then that
variable is declared implicitly as a variant (DefVar A–Z). This can be changed using the
DefType statement to specify starting letter ranges for Type other than integer. The
letterrange parameter is used to specify starting letters. Thus, any variable that begins
with a specified character will be declared using the specified Type.

The syntax for letterrange is:
letter [- letter] [, letter [- letter]]...

DefType variable types are superseded by an explicit type declarationusing either a
type-declaration character or the Dim, Public, or Private statement.

The DefType statement only affects how BasicScript compiles scripts and has no effect
at runtime.

The DefType statement can only appear outside all Sub and Function declarations.

The following table describes the data types referenced by the different variations of the
DefType statement:

Statement Data Type

DefInt Integer

DefLng Long

164 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 164 of 204 Printed: 9/25/96

Example DefStr a-l
DefLng m-r
DefSng s-u
DefDbl v-w
DefInt x-z
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a = 100.52
m = 100.52
s = 100.52
v = 100.52
x = 100.52
message = "The values are:"
message = message & "(String) a: " & a
message = message & "(Long) m: " & m
message = message & "(Single) s: " & s
message = message & "(Double) v: " & v
message = message & "(Integer) x: " & x
MsgBox message

End Sub

See Also Currency (data type); Date (data type); Double (data type); Long (data type); Object
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); Integer (data type).

Platform(s) All.

DeleteSetting (statement)

Syntax DeleteSetting appname [, section [, key]]

Description Deletes a setting from the registry.

DefStr String

DefSng Single

DefDbl Double

DefCur Currency

DefObj Object

DefVar Variant

DefBool Boolean

DefDate Date

Statement Data Type

DeleteSetting (statement) 165

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 165 of 204 Printed: 9/25/96

Comments You can control the behavior of DeleteSetting by omitting parameters. If you specify
all three parameters, then DeleteSetting deletes your specified setting. If you omit key,
then DeleteSetting deletes all of the keys from section. If both section and key are
omitted, then DeleteSetting removes that application’s entry from the system registry.

The following table describes the named parameters to the DeleteSetting statement:

Example 'The following example adds two entries to the Windows registry
'if run under Win32 or to NEWAPP.INI on other platforms,
'using the SaveSetting statement. It then uses DeleteSetting
'first to remove the Startup section, then to remove
'the NewApp key altogether.

Sub Main()
SaveSetting appname := "NewApp", section := "Startup", _

key := "Height", setting := 200
SaveSetting appname := "NewApp", section := "Startup", _

key := "Width", setting := 320

DeleteSetting "NewApp", "Startup"'Remove Startup section
DeleteSetting "NewApp" 'Remove NewApp key

End Sub

See Also SaveSetting (statement); GetSetting (function); GetAllSettings (function).

Platform(s) Windows, Win32, OS/2.

Platform Notes Win32: Under Win32, this statement operates on the system registry. All settings are
saved under the following entry in the system registry:

HKEY_CURRENT_USER\Software\BasicScript Program
Settings\ appname\ section\ key

Windows, OS/2: Settings are stored in INI files. The name of the INI file is specified by
appname. If appname is omitted, then this command operates on the WIN.INI file. For
example, to delete the sLanguage setting from the intl section of the WIN.INI file, you
could use the following statement:

s$ = DeleteSetting (,"intl","sLanguage")

Named Parameter Description

appname String expression indicating the name of the application
whose setting will be deleted.

section String expression indicating the name of the section whose
setting will be deleted.

key String expression indicating the name of the setting to be
deleted from the registry.

166 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 166 of 204 Printed: 9/25/96

Desktop.ArrangeIcons (method)

Syntax Desktop.ArrangeIcons

Description Reorganizes the minimized applications on the desktop.

Example Sub Main()
Desktop.ArrangeIcons

End Sub

See Also Desktop.Cascade (method); Desktop.Tile (method).

Platform(s) Windows.

Desktop.Cascade (method)

Syntax Desktop.Cascade

Description Cascades all non-minimized windows.

Example 'This example cascades all the windows on the desktop. It first
'restores any minimized applications so that they are included
'in the cascade.
Sub Main()

Dim apps$()
AppList apps$
For i = LBound(apps) To UBound(apps)

AppRestore apps(i)
Next i
Desktop.Cascade

End Sub

See Also Desktop.Tile (method); Desktop.ArrangeIcons (method).

Platform(s) Windows.

Desktop.SetColors (method)

Syntax Desktop.SetColors ControlPanelItemName$

Description Changes the system colors to one of a predefined color set.

Example 'This example allows the user to select any of the available
'Windows color schemes.
Sub Main()

'Get color schemes from Windows
Dim names$()

Desktop.SetWallpaper (method) 167

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 167 of 204 Printed: 9/25/96

ReadINISection "color schemes",names$,"CONTROL.INI"
SelectAgain:'Allow user to select color scheme

item = SelectBox("Set Colors","Available Color Sets:",names$)
If item <> -1 Then

Desktop.SetColors names$(item)
Goto SelectAgain

End If
End Sub

See Also Desktop.SetWallpaper (method).

Platform(s) Windows.

Platform Notes Windows: Under Windows, the names of the color sets are contained in the control.ini
file.

Desktop.SetWallpaper (method)

Syntax Desktop.SetWallpaper filename$, isTile

Description Changes the desktop wallpaper to the bitmap specified by filename$.

Comments The wallpaper will be tiled if isTile is True; otherwise, the bitmap will be centered on
the desktop.

To remove the wallpaper, set the filename$ parameter to "", as in the following
example:

Desktop.SetWallpaper "",True

Example 'This example reads a list of .BMP files from the Windows
'directory and allows the user to select any of these as
'wallpaper.
Sub Main()

Dim list$()
' Create the prefix for the bitmap filenames
d$ = System.WindowsDirectory$
If Right(d$,1) <> "\" Then d$ = d$ & "\"
f$ = d$ & "*.BMP"
FileList list$,f$'Get list of bitmaps from Windows directory
'Were there any bitmaps?
If ArrayDims(list$) = 0 Then

MsgBox "There aren't any bitmaps in the Windows directory"
Exit Sub

End If
'Add "(none)".
ReDim Preserve list$ (UBound(list$) + 1)
list$(UBound(list$)) = "(none)"

SelectAgain:'Allow user to select item

168 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 168 of 204 Printed: 9/25/96

item = SelectBox("Set Wallpaper","Available Wallpaper:",list$)
Select Case item

Case -1
End

Case UBound(list$)
Desktop.SetWallPaper "",True
Goto SelectAgain

Case Else
Desktop.SetWallPaper d$ & list$(item),True
Goto SelectAgain

End Select
End Sub

See Also Desktop.SetColors (method).

Platform(s) Windows.

Platform Notes Windows: Under Windows, the Desktop.SetWallpaper method makes permanent
changes to the wallpaper by writing the new wallpaper information to the win.ini file.

Desktop.Snapshot (method)

Syntax Desktop.Snapshot [spec]

Description Takes a snapshot of a particular section of the screen and saves it to the Clipboard.

Comments The spec parameter is an Integer specifying the screen area to be saved. It can be any of
the following:

Before the snapshot is taken, each application is updated. This ensures that any
application that is in the middle of drawing will have a chance to finish before the
snapshot is taken.

There is a slight delay if the specified window is large.

Example 'This example takes a snapshot of Program Manager and pastes
'the resulting bitmap into Windows Paintbrush.
Sub Main()

AppActivate "Program Manager"'Activate Program Manager.

0 Entire screen

1 Client area of the active application

2 Entire window of the active application

3 Client area of the active window

4 Entire window of the active window

Desktop.Tile (method) 169

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 169 of 204 Printed: 9/25/96

Desktop.Snapshot 2'Place snapshot into Clipboard.
id = Shell("pbrush")'Run Paintbrush.
Menu "Edit.Paste"'Paste snapshot into Paintbrush.

End Sub

Platform(s) Windows.

Platform Notes Windows: Under Windows, pictures are placed into the Clipboard in bitmap format.

Desktop.Tile (method)

Syntax Desktop.Tile

Description Tiles all non-minimized windows.

Example 'This example tiles all the windows on the desktop. It first
'restores any minimized applications so that they are included
'in the tile.
Sub Main()

Dim apps$()
AppList apps$
For i = LBound(apps) To UBound(apps)

AppRestore apps(i)
Next i
Desktop.Tile

End Sub

See Also Desktop.Cascade (method); Desktop.ArrangeIcons (method).

Platform(s) Windows.

Dialog (function)

Syntax Dialog(DialogVariable [,[DefaultButton] [, Timeout]])

Description Displays the dialog box associated with DialogVariable, returning an Integer indicating
which button was clicked.

Comments The Dialog function returns any of the following values:

–1 The OK button was clicked.

0 The Cancel button was clicked.

170 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 170 of 204 Printed: 9/25/96

The Dialog function accepts the following parameters:

A runtime error is generated if the dialog template specified by DialogVariable does
not contain at least one of the following statements:

>0 A push button was clicked. The returned number represents
which button was clicked based on its order in the dialog box
template (1 is the first push button, 2 is the second push button,
and so on).

Parameter Description

DialogVariable Name of a variable that has previously been dimensioned as a
user dialog box. This is accomplished using the Dim statement:

Dim MyDialog As MyTemplate

All dialog variables are local to the Sub or Function in which
they are defined. Private and public dialog variables are not
allowed.

DefaultButton An Integer specifying which button is to act as the default
button in the dialog box. The value of DefaultButton can be any
of the following

–1 This value indicates that the OK button, if
present, should be used as the default.

0 This value indicates that the Cancel button, if
present, should be used as the default.

>0 This value indicates that the Nth button
should be used as the default. This number is
the index of a push button within the dialog
box template.

If DefaultButton is not specified, then –1 is used. If the number
specified by DefaultButton does not correspond to an existing
button, then there will be no default button.

The default button appears with a thick border and is selected
when the user presses Enter on a control other than a push
button.

Timeout An Integer specifying the number of milliseconds to display
the dialog box before automatically dismissing it. If Timeout is
not specified or is equal to 0, then the dialog box will be
displayed until dismissed by the user.

If a dialog box has been dismissed due to a timeout, the Dialog
function returns 0.

Dialog (statement) 171

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 171 of 204 Printed: 9/25/96

PushButton CancelButton

OKButton PictureButton

Example 'This example displays an abort/retry/ignore disk error dialog
'box.
Sub Main()

Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
Text 8,8,100,8,"The disk drive door is open."
PushButton 8,24,40,14,"Abort",.Abort
PushButton 56,24,40,14,"Retry",.Retry
PushButton 104,24,40,14,"Ignore",.Ignore

End Dialog
Dim DiskError As DiskErrorTemplate
r% = Dialog (DiskError,3,0)
MsgBox "You selected button: " & r%

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(statement); DropListBox (statement); GroupBox (statement); ListBox (statement);
OKButton (statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement); PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Dialog (statement)

Syntax Dialog DialogVariable [,[DefaultButton] [, Timeout]]

Description Same as the Dialog function, except that the Dialog statement does not return a value.
(See Dialog [function].)

Example 'This example displays an abort/retry/ignore disk error dialog
'box.
Sub Main()

Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
Text 8,8,100,8,"The disk drive door is open."
PushButton 8,24,40,14,"Abort",.Abort
PushButton 56,24,40,14,"Retry",.Retry
PushButton 104,24,40,14,"Ignore",.Ignore

End Dialog
Dim DiskError As DiskErrorTemplate
Dialog DiskError,3,0

End Sub

See Also Dialog (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

172 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 172 of 204 Printed: 9/25/96

Dialogs (topic)

Dialogs are supported on the following platforms: Windows, Win32, OS/2, UNIX, and
Macintosh. The following table describes the default font use by BasicScript to display
all runtime dialogs:

When Help is enabled within a dialog, the help key is enabled as described in the
following table:

Dim (statement)

Syntax Dim name [(< subscripts>)] [As [New] type] [, name [(< subscripts>)] [As
[New] type]]...

Description Declares a list of local variables and their corresponding types and sizes.

Default Font in Dialog Boxes

Platform Default Font

Windows For non-MBCS systems, BasicScript uses the 8-point MS
Sans Serif font. For MBCS systems, BasicScript uses the
default system font.

Win32 For non-MBCS systems, BasicScript uses the 8-point MS
Sans Serif font. For MBCS systems, BasicScript uses the
default system font.

Macintosh 10-point Geneva.

UNIX The default font is determined by X resource files (e.g.,
$HOME/.xdefaults).

Help Key in BasicScript Dialogs

Platform Help Key

Windows F1

Win32 F1

OS/2 F1

Macintosh Command+?

UNIX The default help key is F1, unless if has been redefined in
your X resource files.

Dim (statement) 173

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 173 of 204 Printed: 9/25/96

Comments If a type-declaration character is used when specifying name (such as %, @, &, $, or !),
the optional [As type] expression is not allowed. For example, the following are
allowed:

Dim Temperature As Integer

Dim Temperature%

The subscripts parameter allows the declaration of dynamic and fixed arrays. The
subscripts parameter uses the following syntax:

[lower to] upper [,[lower to] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of
the array. If lower is not specified, then the lower bound as specified by Option Base is
used (or 1 if no Option Base statement has been encountered). BasicScript supports a
maximum of 60 array dimensions.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:
Dim a()

The type parameter specifies the type of the data item being declared. It can be any of
the following data types: String, Integer, Long, Single, Double, Currency, Object,
data object, built-in data type, or any user-defined data type. When specifying explicit
object types, you can use the following syntax for type:

module. class

Where module is the name of the module in which the object is defined and class is the
type of object. For example, to specify the OLE automation variable for Excel’s
Application object, you could use the following code:

Dim a As Excel.Application

A Dim statement within a subroutine or function declares variables local to that
subroutine or function. If the Dim statement appears outside of any subroutine or
function declaration, then that variable has the same scope as variables declared with the
Private statement.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-declaration
character:

Dim name As String * length

where length is a literal number specifying the string's length.

Note: Explicit object types can only be specified for data objects and early bound
OLE automation objects—i.e., objects whose type libraries have been registered with
BasicScript.

174 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 174 of 204 Printed: 9/25/96

Implicit Variable Declaration

If BasicScript encounters a variable that has not been explicitly declared with Dim, then
the variable will be implicitly declared using the specified type-declaration character (#,
%, @, $, or &). If the variable appears without a type-declaration character, then the
first letter is matched against any pending DefType statements, using the specified type
if found. If no DefType statement has been encountered corresponding to the first letter
of the variable name, then Variant is used.

Declaring Explicit OLE Automation Objects

The Dim statement can be used to declare variables of an explicit object type for objects
known to BasicScript through type libraries. This is accomplished using the following
syntax:

Dim name As application. class

The application parameter specifies the application used to register the OLE automation
object and class specifies the specific object type as defined in the type library. Objects
declared in this manner are early bound, meaning that the BasicScript is able resolve
method and property information at compile time, improving the performance when
invoking methods and properties off that object variable.

Creating New Objects

The optional New keyword is used to declare a new instance of the specified data object.
This keyword cannot be used when declaring arrays or OLE automation objects.

At runtime, the application or extension that defines that object type is notified that a
new object is being defined. The application responds by creating a new physical object
(within the appropriate context) and returning a reference to that object, which is
immediately assigned to the variable being declared.

When that variable goes out of scope (i.e., the Sub or Function procedure in which the
variable is declared ends), the application is notified. The application then performs
some appropriate action, such as destroying the physical object.

Initial Values

All declared variables are given initial values, as described in the following table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Date December 31, 1899 00:00:00

Currency 0.0

Dim (statement) 175

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 175 of 204 Printed: 9/25/96

Naming Conventions

Variable names must follow these naming rules:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character (_); punctuation is not
allowed. The exclamation point (!) can appear within the name as long as it is not
the last character, in which case it is interpreted as a type-declaration character.

3. The last character of the name can be any of the following type-declaration
characters: #, @, %, !, &, and $.

4. Must not exceed 80 characters in length.

5. Cannot be a reserved word.

Examples 'The following examples use the Dim statement to declare various
'variable types.
Sub Main()

Dim i As Integer
Dim l& 'Long
Dim s As Single
Dim d# 'Double
Dim c$ 'String
Dim MyArray(10) As Integer'10 element integer array
Dim MyStrings$(2,10)'2-10 element string arrays
Dim Filenames$(5 to 10)'6 element string array
Dim Values(1 to 10, 100 to 200)'111 element variant array

End Sub

See Also Redim (statement); Public (statement); Private (statement); Option Base (statement).

Platform(s) All.

Boolean False

Object Nothing

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given an initial value, as
described above.

Arrays Each element of the array is given an initial value, as described
above.

Data Type Initial Value

176 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 176 of 204 Printed: 9/25/96

Dir, Dir$ (functions)

Syntax Dir[$] [(pathname [, attributes])]
Dir[$] [(pathname, filetype [, attributes])]

Description Returns a String containing the first or next file matching pathname.

If pathname is specified, then the first file matching that pathname is returned. If
pathname is not specified, then the next file matching the initial pathname is returned.

Comments Dir$ returns a String, whereas Dir returns a String variant.

The Dir$/Dir functions take the following named parameters:

An error is generated if Dir$ is called without first calling it with a valid pathname.

If there is no matching pathname, then a zero-length string is returned.

Named Parameter Description

pathname String containing a file specification.

If this parameter is specified, then Dir$ returns the first file
matching this file specification. If this parameter is omitted, then
the next file matching the initial file specification is returned.

If no path is specified in pathname, then all files are returned
from the current directory.

An error is generated if pathname$ is Null .

filetype Indicates the type of file to return. If pathname is also specified,
then files of this type are returned from that directory. Otherwise,
files of this type are returned from the current directory.

File types are specified using the MacID function.

attributes Integer specifying attributes of files you want included in the
list, as described below. If this parameter is omitted, then only
the normal, read-only, and archive files are returned.

Dir, Dir$ (functions) 177

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 177 of 204 Printed: 9/25/96

Wildcards

The pathname argument can include wildcards, such as * and ?. The * character
matches any sequence of zero or more characters, whereas the ? character matches any
single character. Multiple *'s and ?'s can appear within the expression to form complete
searching patterns. The following table shows some examples:

Attributes

You can control which files are included in the search by specifying the optional
attributes parameter. The Dir , Dir$ functions always return all normal, read-only, and
archive files (ebNormal Or ebReadOnly Or ebArchive). To include additional files,
you can specify any combination of the following attributes (combined with the Or
operator):

Example 'This example dimensions a null array and fills it with
'directory entries. The result is displayed in a dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim a$(10)
a(1) = Dir$ ("*.*")

This pattern Matches these files Doesn't match these files

S.TXT SAMPLE.TXT

GOOSE.TXT

SAMS.TXT

SAMPLE

SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT

ACATS.TXT

C*T CAT

CAP.TXT

CAT.DOC

C?T CAT

CUT

CAT.TXT

CAPIT

CT

* (All files)

Constant Value Includes

ebNormal 0 Read-only, archive, subdir, and none

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebDirectory 16 Subdirectories

178 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 178 of 204 Printed: 9/25/96

i% = 1
While (a(i%) <> "") And (i% < 10)

i% = i% + 1
a(i%) = Dir$

Wend
MsgBox a(1) & crlf & a(2) & crlf & a(3) & crlf & a(4)

End Sub

See Also ChDir (statement); ChDrive (statement); CurDir , CurDir$ (functions); MkDir
(statement); RmDir (statement); FileList (statement).

Platform(s) All.

Platform Notes Macintosh: The Macintosh does not support wildcard characters such as * and ?. These
are valid filename characters. Instead of wildcards, the Macintosh uses the MacID
function to specify a collection of files of the same type. The syntax for this function is:

Dir$ (pathname,MacID(text$) [, attributes])

The text$ parameter is a four-character string containing a file type, a resource type, an
application signature, or an Apple event. A runtime error occurs if the MacID function
is used on platforms other than the Macintosh.

When the MacID function is used, the pathname parameter specifies the directory in
which to search for files of the indicated type.

Platform Notes Windows: For compatibility with DOS wildcard matching, BasicScript special-cases
the pattern "*.*" to indicate all files, not just files with a periods in their names.

UNIX: On UNIX platforms, the hidden file attribute corresponds to files without the
read or write attributes.

DiskDrives (statement)

Syntax DiskDrives array()

Description Fills the specified String or Variant array with a list of valid drive letters.

Comments The array() parameter specifies either a zero- or a one-dimensioned array of strings or
variants. The array can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new number of
elements. If there are no elements, then the array will be redimensioned to contain no
dimensions. You can use the LBound, UBound, and ArrayDims functions to
determine the number and size of the new array's dimensions.

If the array is fixed, each array element is first erased, then the new elements are placed
into the array. If there are fewer elements than will fit in the array, then the remaining
elements are initialized to zero-length strings (for String arrays) or Empty (for Variant
arrays). A runtime error results if the array is too small to hold the new elements.

DiskFree (function) 179

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 179 of 204 Printed: 9/25/96

Example 'This example builds and displays an array containing the first
'three available disk drives.
Sub Main()

Dim drive$()
DiskDrives drive$
r% = SelectBox("Available Disk Drives",,drive$)

End Sub

See Also ChDrive (statement); DiskFree (function).

Platform(s) Windows, Win32, NetWare.

Platform Notes NetWare: Under NetWare, this command returns a list of volume names.

DiskFree (function)

 Syntax DiskFree&([drive$])

Description Returns a Long containing the free space (in bytes) available on the specified drive.

Comments If drive$ is zero-length or not specified, then the current drive is assumed.

Only the first character of the drive$ string is used.

On systems that do not support drive letters, the drive$ parameter specifies the name of
the path from which to retrieve the free disk space.

Example 'This example uses DiskFree to set the value of i and then
'displays the result in a message box.
Sub Main()

s$ = "c"
i# = DiskFree (s$)
MsgBox "Free disk space on drive '" & s$ & "' is: " & i#

End Sub

See Also ChDrive (statement); DiskDrives (statement).

Platform(s) All.

Platform Notes NetWare: Since NetWare does not support drive letters, the drive$ parameter specifies
a volume name (up to 14 characters).

DlgCaption (function)

Syntax DlgCaption[()]

Description Returns a string containing the caption of the active user-defined dialog box.

Comments This function returns a zero-length string if the active dialog has no caption.

180 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 180 of 204 Printed: 9/25/96

See Also Begin Dialog (statement).

Platform(s) Windows, Win32, Macintosh, UNIX, OS/2.

DlgCaption (statement)

Syntax DlgCaption text

Description Changes the caption of the current dialog to text.

Example 'This example displays a dialog box, adjusting the caption to
'contain the text of the currently selected option button.
Function DlgProc(c As String,a As Integer,v As Integer)

If a = 1 Then
DlgCaption choose(DlgValue("OptionGroup1") + 1, _

"Blue","Green")
ElseIf a = 2 Then

DlgCaption choose(DlgValue("OptionGroup1") + 1, _
"Blue","Green")

End If
End Function
Sub Main()

Begin Dialog UserDialog ,,149,45,"Untitled",.DlgProc
OKButton 96,8,40,14
OptionGroup .OptionGroup1

OptionButton 12,12,56,8,"Blue",.OptionButton1
OptionButton 12,28,56,8,"Green",.OptionButton2

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also Begin Dialog (statement).

Platform(s) Windows, Win32, Macintosh, UNIX, OS/2.

DlgControlId (function)

Syntax DlgControlId(ControlName$)

Description Returns an Integer containing the index of the specified control as it appears in the
dialog box template.

Comments The first control in the dialog box template is at index 0, the second is at index 1, and so
on.

DlgEnable (function) 181

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 181 of 204 Printed: 9/25/96

The ControlName$ parameter contains the name of the .Identifier parameter associated
with that control in the dialog box template.

The BasicScript statements and functions that dynamically manipulate dialog box
controls identify individual controls using either the .Identifier name of the control or
the control's index. Using the index to refer to a control is slightly faster but results in
code that is more difficult to maintain.

Example Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
'If a control is clicked, disable the next three controls.
If Action% = 2 Then

'Enable the next three controls.
start% = DlgControlId (ControlName$)
For i = start% + 1 To start% + 3

DlgEnable i,True
Next i
DlgProc = 1'Don't close the dialog box.

End If
End Function

See Also DlgEnable (function); DlgEnable (statement); DlgFocus (function); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText$ (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgEnable (function)

Syntax DlgEnable(ControlName$ | ControlIndex)

Description Returns True if the specified control is enabled; returns False otherwise.

Comments Disabled controls are dimmed and cannot receive keyboard or mouse input.

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive comparison is used to
locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

If you attempt to disable the control with the focus, BasicScript will automatically set
the focus to the next control in the tab order.

Example If DlgEnable ("SaveOptions") Then

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

182 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 182 of 204 Printed: 9/25/96

MsgBox "The Save Options are enabled."
End If
If DlgEnable (10) And DlgVisible(12) Then code = 1 Else code = 2

See Also DlgControlId (function); DlgEnable (statement); DlgFocus (function); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText$ (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgEnable (statement)

Syntax DlgEnable { ControlName$ | ControlIndex} [, isOn]

Description Enables or disables the specified control.

Comments Disabled controls are dimmed and cannot receive keyboard or mouse input.

The isOn parameter is an Integer specifying the new state of the control. It can be any
of the following values:

Option buttons can be manipulated individually (by specifying an individual option
button) or as a group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. Alternatively, by specifying the ControlIndex
parameter, a control can be referred to using its index in the dialog box template (0 is
the first control in the template, 1 is the second, and so on).

Example DlgEnable "SaveOptions", False'Disable the Save Options control.
DlgEnable "EditingOptions"'Toggle a group of option buttons.
For i = 0 To 5

DlgEnable i,True'Enable six controls.
Next i

0 The control is disabled.

1 The control is enabled.

Omitted Toggles the control between enabled and disabled.

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

DlgFocus (function) 183

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 183 of 204 Printed: 9/25/96

See Also DlgControlId (function); DlgEnable (function); DlgFocus (function); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText$ (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgFocus (function)

Syntax DlgFocus$[()]

Description Returns a String containing the name of the control with the focus.

Comments The name of the control is the .Identifier parameter associated with the control in the
dialog box template.

Example 'This code fragment makes sure that the control being disabled
'does not currently have the focus (otherwise, a runtime error
'would occur).
If DlgFocus$ = "Files" Then'Does it have the focus?

DlgFocus "OK" 'Change the focus to another control.
End If
DlgEnable "Files", False'Now we can disable the control.

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText$ (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgFocus (statement)

Syntax DlgFocus ControlName$ | ControlIndex

Description Sets focus to the specified control.

Comments A runtime error results if the specified control is hidden, disabled, or nonexistent.

184 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 184 of 204 Printed: 9/25/96

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive comparison is used to
locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Example 'This code fragment makes sure that the control being disabled
'does not currently have the focus (otherwise, a runtime error
'would occur).
If DlgFocus$ = "Files" Then'Does it have the focus?

DlgFocus "OK"'Change the focus to another control.
End If
DlgEnable "Files", False'Now we can disable the control.

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText$ (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgListBoxArray (function)

Syntax DlgListBoxArray({ ControlName$ | ControlIndex}, ArrayVariable)

Description Fills a list box, combo box, or drop list box with the elements of an array, returning an
Integer containing the number of elements that were actually set into the control.

Comments The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive comparison is used to
locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the
elements of the control. If this array has no dimensions, then the control will be
initialized with no elements. A runtime error results if the specified array contains more
than one dimension. ArrayVariable can specify an array of any fundamental data type
(structures are not allowed). Null and Empty values are treated as zero-length strings.

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

DlgListBoxArray (statement) 185

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 185 of 204 Printed: 9/25/96

Example 'This dialog function refills an array with files.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 And ControlName$ = "Files" Then
Dim NewFiles$() 'Create a new dynamic array.
FileList NewFiles$,"*.txt"'Fill the array with files.
r% = DlgListBoxArray "Files",NewFiles$'Set list box items.
DlgValue "Files",0'Set the selection to the first item.
DlgProc = 1 'Don't close the dialog box.

End If
MsgBox r% & " items were added to the list box."

End Function

See Also DlgControl Id (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (statement); DlgSetPicture
(statement); DlgText (statement); DlgText$ (function); DlgValue (function); DlgValue
(statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgListBoxArray (statement)

Syntax DlgListBoxArray { ControlName$ | ControlIndex}, ArrayVariable

Description Fills a list box, combo box, or drop list box with the elements of an array.

Comments The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive comparison is used to
locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the
elements of the control. If this array has no dimensions, then the control will be
initialized with no elements. A runtime error results if the specified array contains more
than one dimension. ArrayVariable can specify an array of any fundamental data type
(structures are not allowed). Null and Empty values are treated as zero-length strings.

Example 'This dialog function refills an array with files.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 And ControlName$ = "Files" Then
Dim NewFiles$() 'Create a new dynamic array.
FileList NewFiles$,"*.txt"'Fill the array with files.
DlgListBoxArray "Files",NewFiles$'Set list box items.

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

186 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 186 of 204 Printed: 9/25/96

DlgValue "Files",0'Set the selection to the first item.
End If

End Function

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgSetPicture
(statement); DlgText (statement); DlgText$ (function); DlgValue (function); DlgValue
(statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgProc (function)

Syntax Function DlgProc(ControlName$, Action, SuppValue) As Integer

Description Describes the syntax, parameters, and return value for dialog functions.

Comments Dialog functions are called by BasicScript during the processing of a custom dialog box.
The name of a dialog function (DlgProc) appears in the Begin Dialog statement as the
.DlgProc parameter.

Dialog functions require the following parameters:

When BasicScript displays a custom dialog box, the user may click on buttons, type text
into edit fields, select items from lists, and perform other actions. When these actions
occur, BasicScript calls the dialog function, passing it the action, the name of the control
on which the action occurred, and any other relevant information associated with the
action.

The following table describes the different actions sent to dialog functions:

Parameter Description

ControlName$ String containing the name of the control associated with
Action.

Action Integer containing the action that called the dialog function.

SuppValue Integer of extra information associated with Action. For some
actions, this parameter is not used.

Action Description

1 This action is sent immediately before the dialog box is shown for the
first time. This gives the dialog function a chance to prepare the dialog
box for use. When this action is sent, ControlName$ contains a
zero-length string, and SuppValue is 0.

The return value from the dialog function is ignored in this case.

DlgProc (function) 187

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 187 of 204 Printed: 9/25/96

Before Showing the Dialog Box

After action 1 is sent, BasicScript performs additional processing
before the dialog box is shown. Specifically, it cycles though the
dialog box controls checking for visible picture or picture button
controls. For each visible picture or picture button control, BasicScript
attempts to load the associated picture.

In addition to checking picture or picture button controls, BasicScript
will automatically hide any control outside the confines of the visible
portion of the dialog box. This prevents the user from tabbing to
controls that cannot be seen. However, it does not prevent you from
showing these controls with the DlgVisible statement in the dialog
function.

2 This action is sent when:

• A button is clicked, such as OK, Cancel, or a push button. In this
case, ControlName$ contains the name of the button. SuppValue
contains 1 if an OK button was clicked and 2 if a Cancel button
was clicked; SuppValue is undefined otherwise.

If the dialog function returns 0 in response to this action, then the
dialog box will be closed. Any other value causes BasicScript to
continue dialog processing.

• A check box's state has been modified. In this case,
ControlName$ contains the name of the check box, and
SuppValue contains the new state of the check box (1 if on, 0 if
off).

• An option button is selected. In this case, ControlName$ contains
the name of the option button that was clicked, and SuppValue
contains the index of the option button within the option button
group (0-based).

• The current selection is changed in a list box, drop list box, or
combo box. In this case, ControlName$ contains the name of the
list box, combo box, or drop list box, and SuppValue contains the
index of the new item (0 is the first item, 1 is the second, and so
on).

Action Description

188 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 188 of 204 Printed: 9/25/96

User-defined dialog boxes cannot be nested. In other words, the dialog function of one
dialog box cannot create another user-defined dialog box. You can, however, invoke any
built-in dialog box, such as MsgBox or InputBox$.

Within dialog functions, you can use the following additional BasicScript statements
and functions. These statements allow you to manipulate the dialog box controls
dynamically.

For compatibility with previous versions of BasicScript, the dialog function can
optionally be declared to return a Variant . When returning a variable, BasicScript will
attempt to convert the variant to an Integer. If the returned variant cannot be converted
to an Integer, then 0 is assumed to be returned from the dialog function.

Example 'This dialog function enables/disables a group of option buttons

3 This action is sent when the content of a text box or combo box has
been changed. This action is only sent when the control loses focus.
When this action is sent, ControlName$ contains the name of the text
box or combo box, and SuppValue contains the length of the new
content.

The dialog function's return value is ignored with this action.

4 This action is sent when a control gains the focus. When this action is
sent, ControlName$ contains the name of the control gaining the
focus, and SuppValue contains the index of the control that lost the
focus (0-based).

The dialog function's return value is ignored with this action.

5 This action is sent continuously when the dialog box is idle. If the
dialog function returns 1 in response to this action, then the idle action
will continue to be sent. If the dialog function returns 0, then
BasicScript will not send any additional idle actions.

When the idle action is sent, ControlName$ contains a zero-length
string, and SuppValue contains the number of times the idle action has
been sent so far.

6 This action is sent when the dialog box is moved. The ControlName$
parameter contains a zero-length string, and SuppValue is 0.

The dialog function's return value is ignored with this action.

DlgVisible DlgText$ DlgText

DlgSetPicture DlgListBoxArray DlgFocus

DlgEnable DlgControlId

Action Description

DlgSetPicture (statement) 189

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 189 of 204 Printed: 9/25/96

'when a check box is clicked.
Function SampleDlgProc (ControlName$, Action%, SuppValue%)

If Action% = 2 And ControlName$ = "Printing" Then
DlgEnable "PrintOptions",SuppValue%
SampleDlgProc = 1'Don't close the dialog box.

End If
End Function
Sub Main()

Begin Dialog SampleDialogTemplate _
34,39,106,45,"Sample",.SampleDlgProc
OKButton 4,4,40,14
CancelButton 4,24,40,14
CheckBox 56,8,38,8,"Printing",.Printing
OptionGroup .PrintOptions

OptionButton 56,20,51,8,"Landscape",.Landscape
OptionButton 56,32,40,8,"Portrait",.Portrait

End Dialog
Dim SampleDialog As SampleDialogTemplate
SampleDialog.Printing = 1
r% = Dialog(SampleDialog)

End Sub

See Also Begin Dialog (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgSetPicture (statement)

Syntax DlgSetPicture { ControlName$ | ControlIndex}, PictureName$, PictureType

Description Changes the content of the specified picture or picture button control.

Comments The DlgSetPicture statement accepts the following parameters:

Parameter Description

ControlName$ String containing the name of the .Identifier parameter
associated with a control in the dialog box template. A
case-insensitive comparison is used to locate the specified
control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup
statements do not count as a control.

190 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 190 of 204 Printed: 9/25/96

Examples 'Set picture from a file
DlgSetPicture "Picture1","\windows\checks.bmp",0
' Set control 10's image from a library
DlgSetPicture 27,"FaxReport",10

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgText (statement); DlgText$ (function); DlgValue (function); DlgValue
(statement); DlgVisible (statement); DlgVisible (function); Picture (statement),
PictureButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes Windows, Win32: Under Windows and Win32, picture controls can contain either
bitmaps or WMFs (Windows metafiles). When extracting images from a picture library,
BasicScript assumes that the resource type for metafiles is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

OS/2: Under OS/2, picture controls can contain either bitmaps or Windows metafiles.

Picture libraries under OS/2 are implemented as resources within DLLs. The
PictureName$ parameter corresponds to the name of one of these resources as it appears
within the DLL.

Macintosh: Picture controls on the Macintosh can contain only PICT images. These are
contained in files of type PICT.

PictureName$ String containing the name of the picture. If PictureType is 0,
then this parameter specifies the name of the file containing the
image. If PictureType is 10, then PictureName$ specifies the
name of the image within the resource of the picture library.

If PictureName$ is empty, then the current picture associated
with the specified control will be deleted. Thus, a technique for
conserving memory and resources would involve setting the
picture to empty before hiding a picture control.

PictureType Integer specifying the source for the image. The following
sources are supported:

0 The image is contained in a file on disk.

10 The image is contained in the picture library
specified by the Begin Dialog statement.
When this type is used, the PictureName$
parameter must be specified with the Begin
Dialog statement.

Parameter Description

DlgText (statement) 191

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 191 of 204 Printed: 9/25/96

Picture libraries on the Macintosh are files with collections of named PICT resources.
The PictureName$ parameter corresponds to the name of one the resources as it appears
within the file..

DlgText (statement)

Syntax DlgText { ControlName$ | ControlIndex}, NewText$

Description Changes the text content of the specified control.

Comments The effect of this statement depends on the type of the specified control:

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive comparison is used to
locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Control Type Effect of DlgText

Picture Runtime error.

Option group Runtime error.

Drop list box If an exact match cannot be found, the DlgText statement
searches from the first item looking for an item that starts with
NewText$. If no match is found, then the selection is removed.

OK button Sets the label of the control to NewText$.

Cancel button Sets the label of the control to NewText$.

Push button Sets the label of the control to NewText$.

List box Sets the current selection to the item matching NewText$. If an
exact match cannot be found, the DlgText statement searches
from the first item looking for an item that starts with
NewText$. If no match is found, then the selection is removed.

Combo box Sets the content of the edit field of the combo box to
NewText$.

Text Sets the label of the control to NewText$.

Text box Sets the content of the text box to NewText$.

Group box Sets the label of the control to NewText$.

Option button Sets the label of the control to NewText$.

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

192 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 192 of 204 Printed: 9/25/96

Example DlgText "GroupBox1","Save Options" 'Change text of group box 1.
If DlgText$(9) = "Save Options" Then

DlgText 9,"Editing Options"'Change text to "Editing Options".
End If

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText$ (function); DlgValue (function);
DlgValue (statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgText$ (function)

Syntax DlgText$(ControlName$ | ControlIndex)

Description Returns the text content of the specified control.

Comments The text returned depends on the type of the specified control:

Control Type Value Returned by DlgText$

Picture No value is returned. A runtime error occurs.

Option group No value is returned. A runtime error occurs.

Drop list box Returns the currently selected item. A zero-length string is
returned if no item is currently selected.

OK button Returns the label of the control.

Cancel button Returns the label of the control.

Push button Returns the label of the control.

List box Returns the currently selected item. A zero-length string is
returned if no item is currently selected.

Combo box Returns the content of the edit field portion of the combo box.

Text Returns the label of the control.

Text box Returns the content of the control.

Group box Returns the label of the control.

Option button Returns the label of the control.

DlgValue (function) 193

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 193 of 204 Printed: 9/25/96

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive comparison is used to
locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Example MsgBox DlgText$ (10) 'Display the text in the tenth control.
If DlgText$ ("SaveOptions") = "EditingOptions" Then

MsgBox "You are currently viewing the editing options."
End If

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgValue (function);
DlgValue (statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgValue (function)

Syntax DlgValue(ControlName$ | ControlIndex)

Description Returns an Integer indicating the value of the specified control.

Comments The value of any given control depends on its type, according to the following table:

A runtime error is generated if DlgValue is used with controls other than those listed in
the above table.

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Control Type D1gValue Returns

Option group The index of the selected option button within the group (0 is the
first option button, 1 is the second, and so on).

List box The index of the selected item.

Drop list box The index of the selected item.

Check box 1 if the check box is checked; 0 otherwise.

194 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 194 of 204 Printed: 9/25/96

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. Alternatively, by specifying the ControlIndex
parameter, a control can be referred to using its index in the dialog box template (0 is
the first control in the template, 1 is the second, and so on).

Example See DlgValue (statement).

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText$ (function);
DlgValue (statement); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgValue (statement)

Syntax DlgValue { ControlName$ | ControlIndex}, Value

Description Changes the value of the given control.

Comments The value of any given control is an Integer and depends on its type, according to the
following table:

A runtime error is generated if DlgValue is used with controls other than those listed in
the above table.

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive comparison is used to
locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Control Type Description of Value

Option group The index of the new selected option button within the group (0
is the first option button, 1 is the second, and so on).

List box The index of the new selected item.

Drop list box The index of the new selected item.

Check box 1 if the check box is to be checked; 0 to remove the check.

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

DlgVisible (function) 195

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 195 of 204 Printed: 9/25/96

Example 'This code fragment toggles the value of a check box.
If DlgValue ("MyCheckBox") = 1 Then

DlgValue "MyCheckBox",0
Else

DlgValue "MyCheckBox",1
End If

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgVisible (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgVisible (function)

Syntax DlgVisible(ControlName$ | ControlIndex)

Description Returns True if the specified control is visible; returns False otherwise.

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. Alternatively, by specifying the ControlIndex
parameter, a control can be referred to using its index in the template (0 is the first
control in the template, 1 is the second, and so on).

A runtime error is generated if DlgVisible is called when no user dialog is active.

Example If DlgVisible ("Portrait") Then Beep
If DlgVisible (10) And DlgVisible (12) Then

MsgBox "The 10th and 12th controls are visible."
End If

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText$ (function);
DlgValue (function); DlgValue (statement); DlgVisible (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

DlgVisible (statement)

Syntax DlgVisible { ControlName$ | ControlIndex} [, isOn]

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

196 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 196 of 204 Printed: 9/25/96

Description Hides or shows the specified control.

Comments Hidden controls cannot be seen in the dialog box and cannot receive the focus using
Tab.

The isOn parameter is an Integer specifying the new state of the control. It can be any
of the following values:

1 The control is shown.

0 The control is hidden.

Omitted Toggles the visibility of the control.

Option buttons can be manipulated individually (by specifying an individual option
button) or as a group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive comparison is used to
locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

If you hide the control that currently has the focus, BasicScript will automatically set
focus to the next control in the tab order.

Picture Caching

When the dialog box is first created and before it is shown, BasicScript calls the dialog
function with action set to 1. At this time, no pictures have been loaded into the picture
controls contained in the dialog box template. After control returns from the dialog
function and before the dialog box is shown, BasicScript will load the pictures of all
visible picture controls. Thus, it is possible for the dialog function to hide certain picture
controls, which prevents the associated pictures from being loaded and causes the dialog
box to load faster. When a picture control is made visible for the first time, the
associated picture will then be loaded.

Example 'This example creates a dialog box with two panels. The
'DlgVisible statement is used to show or hide the controls of
'the different panels.
Sub EnableGroup(start%, finish%)

For i = 6 To 13 'Disable all options.
DlgVisible i, False

Next i
For i = start% To finish% 'Enable only the right ones.

DlgVisible i, True
Next i

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

DlgVisible (statement) 197

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 197 of 204 Printed: 9/25/96

End Sub
Function DlgProc(ControlName$, Action%, SuppValue%)

If Action% = 1 Then
DlgValue "WhichOptions",0 'Set to save options.
EnableGroup 6, 8 'Enable the save options.

End If
If Action% = 2 And ControlName$ = "SaveOptions" Then

EnableGroup 6, 8 'Enable the save options.
DlgProc = 1 'Don't close the dialog box.

End If
If Action% = 2 And ControlName$ = "EditingOptions" Then

EnableGroup 9, 13 'Enable the editing options.
DlgProc = 1 'Don't close the dialog box.

End If
End Function
Sub Main()

Begin Dialog OptionsDlg 33, 33, 171, 134, "Options", .DlgProc
'Background (controls 0-5)
GroupBox 8, 40, 152, 84, ""
OptionGroup .WhichOptions

OptionButton 8, 8, 59, 8, "Save Options",.SaveOptions
OptionButton 8, 20, 65, 8, _

"Editing Options",.EditingOptions
OKButton 116, 7, 44, 14
CancelButton 116, 24, 44, 14
'Save options (controls 6-8)
CheckBox 20, 56, 88, 8, "Always create backup",.CheckBox1
CheckBox 20, 68, 65, 8, "Automatic save",.CheckBox2
CheckBox 20, 80, 70, 8, "Allow overwriting",.CheckBox3
'Editing options (controls 9-13)
CheckBox 20, 56, 65, 8, "Overtype mode",.OvertypeMode
CheckBox 20, 68, 69, 8, "Uppercase only",.UppercaseOnly
CheckBox 20, 80, 105, 8, _

"Automatically check syntax",.AutoCheckSyntax
CheckBox 20, 92, 73, 8, _

"Full line selection",.FullLineSelection
CheckBox 20, 104, 102, 8, _

"Typing replaces selection",.TypingReplacesText
End Dialog
Dim OptionsDialog As OptionsDlg
Dialog OptionsDialog

End Sub

See Also DlgControlId (function); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgValue (statement); DlgVisible (statement).

198 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 198 of 204 Printed: 9/25/96

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Do...Loop (statement)

Syntax 1 Do {While | Until} condition statements Loop

Syntax 2 Do
statements

Loop {While | Until} condition

Syntax 3 Do
statements

Loop

Description Repeats a block of BasicScript statements while a condition is True or until a condition
is True.

Comments If the {While | Until } conditional clause is not specified, then the loop repeats the
statements forever (or until BasicScript encounters an Exit Do statement).

The condition parameter specifies any Boolean expression.

Examples Sub Main()
'This first example uses the Do...While statement, which
'performs the iteration, then checks the condition, and repeats
'if the condition is True.

Dim a$(100)
i% = -1
Do

i% = i% + 1
If i% = 0 Then

a(i%) = Dir$("*")
Else

a(i%) = Dir$
End If

Loop While (a(i%) <> "" And i% <= 99)
r% = SelectBox(i% & " files found",,a)

'This second example uses the Do While...Loop, which checks the
'condition and then repeats if the condition is True.

Dim a$(100)
i% = 0
a(i%) = Dir$("*")
Do While a(i%) <> "" And i% <= 99

i% = i% + 1
a(i%) = Dir$

Loop
r% = SelectBox(i% & " files found",,a)

'This third example uses the Do Until...Loop, which does the

DoEvents (function) 199

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 199 of 204 Printed: 9/25/96

'iteration and then checks the condition and repeats if the
'condition is True.

Dim a$(100)
i% = 0
a(i%) = Dir$("*")
Do Until a(i%) = "" Or i% = 100

i% = i% + 1
a(i%) = Dir$

Loop
r% = SelectBox(i% & " files found",,a)

'This last example uses the Do...Until Loop, which performs the
'iteration first, checks the condition, and repeats if the
'condition is True.

Dim a$(100)
i% = -1
Do

i% = i% + 1
If i% = 0 Then

a(i%) = Dir$("*")
Else

a(i%) = Dir$
End If

Loop Until (a(i%) = "" Or i% = 100)
r% = SelectBox(i% & " files found",,a)

End Sub

See Also For...Next (statement); While...Wend (statement).

Platform(s) All.

Platform Notes Windows, Win32: Due to errors in program logic, you can inadvertently create infinite
loops in your code. Under Windows and Win 32, you can break out of infinite loops
using Ctrl+Break.

UNIX: Due to errors in program logic, you can inadvertently create infinite loops in
your code. Under UNIX, you can break out of infinite loops using Ctrl+C.

Macintosh: Due to errors in program logic, you can inadvertently create infinite loops
in your code. On the Macintosh, you can break out of infinite loops using
Command+Period.

OS/2: Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under OS/2, you can break out of infinite loops using Ctrl+C or Ctrl+Break.

DoEvents (function)

Syntax DoEvents[()]

200 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 200 of 204 Printed: 9/25/96

Description Yields control to other applications, returning an Integer 0.

Comments This statement yields control to the operating system, allowing other applications to
process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue
have been processed.

Example See DoEvents (statement).

See Also DoEvents (statement).

Platform(s) All.

Platform Notes Win32: Under Win32, this statement does nothing. Since Win32 systems are
preemptive, use of this statement under these platforms is not necessary.

DoEvents (statement)

Syntax DoEvents

Description Yields control to other applications.

Comments This statement yields control to the operating system, allowing other applications to
process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue
have been processed.

Examples 'This first example shows a script that takes a long time and
'hogs the system. The subroutine explicitly yields to allow
'other applications to execute.
Sub Main()

Open "test.txt" For Output As #1
For i = 1 To 10000

Print #1,"This is a test of the system and stuff."
DoEvents

Next i
Close #1

End Sub
'In this second example, the DoEvents statement is used to wait
'until the queue has been completely flushed.
Sub Main()

AppActivate "Notepad"'Activate Notepad.
SendKeys "This is a test.",False'Send some keys.
DoEvents 'Wait for the keys to play back.

End Sub

See Also DoEvents (function).

DoKeys (statement) 201

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 201 of 204 Printed: 9/25/96

Platform(s) All.

Platform Notes Win32: Under Win32, this statement does nothing. Since Win32 systems are
preemptive, use of this statement under these platforms is not necessary.

DoKeys (statement)

Syntax DoKeys KeyString$ [, time]

Description Simulates the pressing of the specified keys.

Comments The DoKeys statement accepts the following parameters:

Example 'This code fragment plays back the time and date into Notepad.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

id = Shell("Notepad",4)'Run Notepad.
AppActivate "Notepad"
t$ = time$
d$ = date$
DoKeys "The time is: " & t$ & "." & crlf
DoKeys "The date is: " & d$ & "."

End Sub

See Also SendKeys (statement); QueKeys (statement); QueKeyDn (statement); QueKeyUp
(statement).

Platform(s) Windows.

Platform Notes Windows: This statement uses the Windows journalizing mechanism to play
keystrokes into the Windows environment.

Parameter Description

KeyString$ String containing the keys to be sent. The format for
KeyString$ is described under the SendKeys statement.

time Integer specifying the number of milliseconds devoted for the
output of the entire KeyString$ parameter. It must be within the
following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$
parameter contains ten keys, then a key will be output every 1/2
second. If unspecified (or 0), the keys will play back at full
speed.

202 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 202 of 204 Printed: 9/25/96

Double (data type)

Syntax Double

Description A data type used to declare variables capable of holding real numbers with 15–16 digits
of precision.

Comment Double variables are used to hold numbers within the following ranges:

The type-declaration character for Double is #.

Storage

Internally, doubles are 8-byte (64-bit) IEEE values. Thus, when appearing within a
structure, doubles require 8 bytes of storage. When used with binary or random files, 8
bytes of storage are required.

Each Double consists of the following

• A 1-bit sign

• An 11-bit exponent

• A 53-bit significand (mantissa)

See Also Currency (data type); Date (data type); Integer (data type); Long (data type); Object
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement); CDbl (function).

Platform(s) All.

DropListBox (statement)

Syntax DropListBox x, y, width, height, ArrayVariable, .Identifier

Description Creates a drop list box within a dialog box template.

Comments When the dialog box is invoked, the drop list box will be filled with the elements
contained in ArrayVariable. Drop list boxes are similar to combo boxes, with the
following exceptions:

• The list box portion of a drop list box is not opened by default. The user must open
it by clicking the down arrow.

Sign Range

Negative –1.797693134862315E308 <= double <=

–4.94066E-324

Positive 4.94066E-324 <= double <= 1.797693134862315E308

DropListBox (statement) 203

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 203 of 204 Printed: 9/25/96

• The user cannot type into a drop list box. Only items from the list box may be
selected. With combo boxes, the user can type the name of an item from the list
directly or type the name of an item that is not contained within the combo box.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The DropListBox statement requires the following parameters:

Example 'This example allows the user to choose a field name from a drop
'list box.
Sub Main()

Dim FieldNames$(4)
FieldNames$(0) = "Last Name"
FieldNames$(1) = "First Name"
FieldNames$(2) = "Zip Code"
FieldNames$(3) = "State"
FieldNames$(4) = "City"
Begin Dialog FindTemplate 16,32,168,48,"Find"

Text 8,8,37,8,"&Find what:"
DropListBox 48,6,64,80,FieldNames,.WhichField
OKButton 120,7,40,14
CancelButton 120,27,40,14

End Dialog
Dim FindDialog As FindTemplate

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in
dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the
drop list box. If this array has no dimensions, then the drop list
box will be initialized with no elements. A runtime error results
if the specified array contains more than one dimension.

ArrayVariable can specify an array of any fundamental data type
(structures are not allowed). Null and Empty values are treated
as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a
dialog function (such as DlgFocus and DlgEnable). This
parameter also creates an integer variable whose value
corresponds to the index of the drop list box's selection (0 is the
first item, 1 is the second, and so on). This variable can be
accessed using the following syntax:

DialogVariable.Identifier

204 BasicScript Language Reference

Summit Software Confidential
Filename: lrd.fm5 Template: LRprint.FM5
Page: 204 of 204 Printed: 9/25/96

FindDialog.WhichField = 1
Dialog FindDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); GroupBox (statement); ListBox (statement);
OKButton (statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement); PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

204 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 204 of 226 Printed: 9/25/96

EditEnabled (function)

Syntax EditEnabled(name$ | id)

Description Returns True if the given text box is enabled within the active window or dialog box;
returns False otherwise.

Comments The EditEnabled function takes the following parameters:

A runtime error is generated if a text box control with the given name or ID cannot be
found within the active window.

If enabled, the text box can be given the focus using the ActivateControl statement.

Example 'This example adjusts the left margin if this control is enabled.
Sub Main()

Menu "Format.Paragraph"
If EditEnabled ("Left:") Then

SetEditText "Left:","5 pt"
End If

End Sub

See Also EditExists (function); GetEditText$ (function); SetEditText (statement).

Platform(s) Windows.

EditExists (function)

Syntax EditExists(name$ | id)

Description Returns True if the given text box exists within the active window or dialog box; returns
False otherwise.

Parameter Description

name$ String containing the name of the text box.

The name of a text box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a text box.

id Integer specifying the ID of the text box.

Note: The EditEnabled function is used to determine whether a text box is enabled
in another application's dialog box. Use the DlgEnable function in dynamic dialog
boxes.

End (statement) 205

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 205 of 226 Printed: 9/25/96

Comments The EditExists function takes the following parameters:

A runtime error is generated if a text box control with the given name or ID cannot be
found within the active window.

If there is no active window, False will be returned.

Example 'This example adjusts the left margin if this control exists and
'is enabled.
Sub Main()

Menu "Format.Paragraph"
If EditExists ("Left:") Then

If EditEnabled("Left:") Then
SetEditText "Left:","5 pt"

End If
End If

End Sub

See Also EditEnabled (function); GetEditText$ (function); SetEditText (statement).

Platform(s) Windows.

End (statement)

Syntax End

Description Terminates execution of the current script, closing all open files.

Example 'This example uses the End statement to stop execution.
Sub Main()

MsgBox "The next line will terminate the script."
End

End Sub

See Also Close (statement); Stop (statement); Exit For (statement); Exit Do (statement); Exit
Function (statement); Exit Sub (statement).

Parameter Description

name$ String containing the name of the text box.

The name of a text box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a text box.

id Integer specifying the ID of the text box.

Note: The EditExists function is used to determine whether a text box exists in
another application's dialog box. There is no equivalent function for use with
dynamic dialog boxes.

206 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 206 of 226 Printed: 9/25/96

Platform(s) All.

Environ, Environ$ (functions)

Syntax Environ[$](variable$ | VariableNumber)

Description Returns the value of the specified environment variable.

Comments Environ$ returns a String, whereas Environ returns a String variant.

If variable$ is specified, then this function looks for that variable$ in the environment.
If the variable$ name cannot be found, then a zero-length string is returned.

If VariableNumber is specified, then this function looks for the Nth variable within the
environment (the first variable being number 1). If there is no such environment
variable, then a zero-length string is returned. Otherwise, the entire entry from the
environment is returned in the following format:

variable = value

Example 'This example looks for the DOS Comspec variable and displays
'the value in a dialog box.
Sub Main()

Dim a$(1)
a$(1) = Environ$ ("COMSPEC")
MsgBox "The DOS Comspec variable is set to: " & a$(1)

End Sub

See Also Command, Command$ (functions).

Platform(s) All.

EOF (function)

Syntax EOF(filenumber)

Description Returns True if the end-of-file has been reached for the given file; returns False
otherwise.

Comments The filenumber parameter is an Integer used by BasicScript to refer to the open file—
the number passed to the Open statement.

With sequential files, EOF returns True when the end of the file has been reached (i.e.,
the next file read command will result in a runtime error).

With Random or Binary files, EOF returns True after an attempt has been made to read
beyond the end of the file. Thus, EOF will only return True when Get was unable to
read the entire record.

Eqv (operator) 207

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 207 of 226 Printed: 9/25/96

Example 'This example opens the autoexec.bat file and reads lines from
'the file until the end-of-file is reached.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim s$
Open "c:\autoexec.bat" For Input As #1
Do While Not EOF(1)

Input #1,s$
Loop
Close

 MsgBox "The last line was:" & crlf & s$
End Sub

See Also Open (statement); Lof (function).

Platform(s) All.

Eqv (operator)

Syntax result = expression1 Eqv expression2

Description Performs a logical or binary equivalence on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
equivalence is performed as follows:

If either expression is Null , then Null is returned.

Binary Equivalence

If the two expressions are Integer, then a binary equivalence is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to
Long and a binary equivalence is then performed, returning a Long result.

Binary equivalence forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions, according to the following table:

If expression1 is and expression2 is then the result is

True True True

True False False

False True False

False False True

If bit in expression1 is and bit in expression2 is the result is

1 1 1

0 1 0

208 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 208 of 226 Printed: 9/25/96

Example 'This example assigns False to A, performs some equivalent
'operations, and displays a dialog box with the result. Since A
'is equivalent to False, and False is equivalent to 0, and by
'definition, A = 0, then the dialog box will display "A is False."
Sub Main()

a = False
If ((a Eqv False) And (False Eqv 0) And (a = 0)) Then

MsgBox "a is False."
Else

MsgBox "a is True."
End If

End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); Imp (operator); And
(operator).

Platform(s) All.

Erase (statement)

Syntax Erase array1 [,array2]...

Description Erases the elements of the specified arrays.

Comments For dynamic arrays, the elements are erased, and the array is redimensioned to have no
dimensions (and therefore no elements). For fixed arrays, only the elements are erased;
the array dimensions are not changed.

After a dynamic array is erased, the array will contain no elements and no dimensions.
Thus, before the array can be used by your program, the dimensions must be
reestablished using the Redim statement.

Up to 32 parameters can be specified with the Erase statement.

The meaning of erasing an array element depends on the type of the element being
erased:

1 0 0

0 0 1

If bit in expression1 is and bit in expression2 is the result is

Element Type What Erase Does to That Element

Integer Sets the element to 0.

Boolean Sets the element to False.

Long Sets the element to 0.

Erl (function) 209

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 209 of 226 Printed: 9/25/96

Example 'This example puts a value into an array and displays it. Then
'it erases the value and displays it again.
Sub Main()

Dim a$(10) 'Declare an array.
a$(1) = Dir$("*") 'Fill element 1 with a filename.
MsgBox "Array before Erase: " & a$(1) 'Display element 1.
Erase a$ 'Erase all elements in the array.
MsgBox "Array after Erase: " & a$(1) 'Display element 1

'again (should be
'erased).

End Sub

See Also Redim (statement); Arrays (topic).

Platform(s) All.

Erl (function)

Syntax Erl[()]

Description Returns the line number of the most recent error.

Comments The first line of the script is 1, the second line is 2, and so on.

The internal value of Erl is reset to 0 with any of the following statements: Resume,
Exit Sub, Exit Function . Thus, if you want to use this value outside an error handler,
you must assign it to a variable.

Example 'This example generates an error and then determines the line
'on which the error occurred.
Sub Main()

Dim i As Integer

Double Sets the element to 0.0.

Date Sets the element to December 30, 1899.

Single Sets the element to 0.0.

String (variable-length) Frees the string, then sets the element to a zero-length
string.

String (fixed-length) Sets every character of each element to zero (Chr$(0)).

Object Decrements the reference count and sets the element to
Nothing.

Variant Sets the element to Empty.

User-defined type Sets each structure element as a separate variable.

Element Type What Erase Does to That Element

210 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 210 of 226 Printed: 9/25/96

On Error Goto Trap1
i = 32767 'Generate an error--overflow.
i = i + 1
Exit Sub

Trap1:
MsgBox "Error on line: " & Erl
Exit Sub 'Reset the error handler.

End Sub

See Also Error Handling (topic).

Platform(s) All.

Err.Clear (method)

Syntax Err.Clear

Description Clears the properties of the Err object.

Comments After this method has been called, the properties of the Err object will have the
following values:

The properties of the Err object are automatically reset when any of the following
statements are executed:

Resume Exit Function

On Error Exit Sub

Example 'The following script gets input from the user using error
'checking.
Sub Main()

Dim x As Integer
On Error Resume Next
x = InputBox("Type in a number")
If Err.Number <> 0 Then

Err.Clear
x = 0

End If

Property Value

Err.Description ""

Err.HelpContext 0

Err.HelpFile ""

Err.LastDLLError 0

Err.Number 0

Err.Source ""

Err.Description (property) 211

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 211 of 226 Printed: 9/25/96

MsgBox x
End Sub

See Also Error Handling (topic); Err.Description (property); Err.HelpContext (property);
Err.HelpFile (property); Err.LastDLLError (property); Err.Number (property);
Err.Source (property).

Platform(s) All.

Err.Description (property)

Syntax Err.Description [= stringexpression]

Description Sets or retrieves the description of the error.

Comments For errors generated by BasicScript, the Err.Description property is automatically set.

For user-defined errors, you should set this property to be a description of your error. If
you set the Err.Number property to one of BasicScript’s internal error numbers and
you don’t set the Err.Description property, then the Err.Description property is
automatically set when the error is generated (i.e., with Err.Raise).

Example 'The following script gets input from the user using error
'checking. When an error occurs, the Err.Description property
'is displayed to the user and execution continues with a default
'value.
Sub Main()

Dim x As Integer
On Error Resume Next
x = InputBox("Type in a number")
If Err.Number <> 0 Then

MsgBox "The following error occurred: " & Err.Description
x = 0

End If
MsgBox x

End Sub

See Also Error Handling (topic); Err.Clear (method); Err.HelpContext
(property); Err.HelpFile (property); Err.LastDLLError
(property); Err.Number (property); Err.Source (property).

Platform(s) All.

Err.HelpContext (property)

Syntax Err.HelpContext [= contextid]

212 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 212 of 226 Printed: 9/25/96

Description Sets or retrieves the help context ID that identifies the help topic for information on the
error.

Comments The Err.HelpContext property, together with the Err.HelpFile property, contain
sufficient information to display help for the error.

When BasicScript generates an error, the Err.HelpContext property is set to 0 and the
Err.HelpFile property is set to ""; the value of the Err.Number property is sufficient
for displaying help in this case. The exception is with errors generated by an OLE
automation server; both the Err.HelpFile and Err.HelpContext properties are set by
the server to values appropriate for the generated error.

When generating your own user-define errors, you should set the Err.HelpContext
property and the Err.HelpFile property appropriately for your error. If these are not set,
then BasicScript displays its own help at an appropriate place.

Example 'This example defines a replacement for InputBox that deals
'specifically with Integer values. If an error occurs, the
'function generates a user-defined error that can be trapped
'by the caller.
Function InputInteger(Prompt,Optional Title,Optional Def)

On Error Resume Next
Dim x As Integer
x = InputBox(Prompt,Title,Def)
If Err.Number Then

Err.HelpFile = "AZ.HLP"
Err.HelpContext = 2
Err.Description = "Integer value expected"
InputInteger = Null
Err.Raise 3000

End If
InputInteger = x

End Function
Sub Main

Dim x As Integer
Do

On Error Resume Next
x = InputInteger("Enter a number:")
If Err.Number = 3000 then

Msgbox "You didn’t type in a valid number, press ""F1"" _
"to invoke help file."

End If
Loop Until Err.Number <> 3000

End Sub

See Also Error Handling (topic); Err.Clear (method); Err.Description (property); Err.HelpFile
(property); Err.LastDLLError (property); Err.Number (property); Err.Source
(property).

Err.HelpFile (property) 213

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 213 of 226 Printed: 9/25/96

Platform(s) All.

Err.HelpFile (property)

Syntax Err.HelpFile [= filename]

Description Sets or retrieves the name of the help file associated with the error.

Comments The Err.HelpFile property, together with the Err.HelpContents property, contain
sufficient information to display help for the error.

When BasicScript generates an error, the Err.HelpContents property is set to 0 and the
Err.HelpFile property is set to ""; the value of the Err.Number property is sufficient
for displaying help in this case. The exception is with errors generated by an OLE
automation server; both the Err.HelpFile and Err.HelpContext properties are set by
the server to values appropriate for the generated error.

When generating your own user-define errors, you should set the Err.HelpContext
property and the Err.HelpFile property appropriately for your error. If these are not set,
then BasicScript displays its own help at an appropriate place.

Example 'This example defines a replacement for InputBox that deals
'specifically with Integer values. If an error occurs, the
'function generates a user-defined error that can be trapped
'by the caller.
Function InputInteger(Prompt,Optional Title,Optional Def)

On Error Resume Next
Dim x As Integer
x = InputBox(Prompt,Title,Def)
If Err.Number Then

Err.HelpFile = "AZ.HLP"
Err.HelpContext = 2
Err.Description = "Integer value expected"
InputInteger = Null
Err.Raise 3000

End If
InputInteger = x

End Function
Sub Main

Dim x As Integer
Do

On Error Resume Next
x = InputInteger("Enter a number:")
If Err.Number = 3000 Then

Msgbox "You didn’t type in a valid number, press ""F1""_
"to invoke helpfile."

End If

214 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 214 of 226 Printed: 9/25/96

Loop Until Err.Number <> 3000
End Sub

See Also Error Handling (topic); Err.Clear (method); Err.HelpContext (property);
Err.Description (property); Err.LastDLLError (property); Err.Number (property);
Err.Source (property).

Platform(s) All.

Platform Notes Windows, Win32: On these platforms, the Err.HelpFile property can be set to any
valid Windows help file (i.e., a file with a .HLP extension compatible with the
WINHELP help engine).

Err.LastDLLError (property)

Syntax Err.LastDLLError

Description Returns the last error generated by an external call—i.e., a call to a routine declared
with the Declare statement that resides in an external module.

Comments The Err.LastDLLError property is automatically set when calling a routine defined in
an external module. If no error occurs within the external call, then this property will
automatically be set to 0.

The Err.LastDLLError property will always return 0 on platform where this property
is not supported.,

Example 'The following script calls the GetCurrentDirectoryA. If an
'error occurs, this Win32 function sets the Err.LastDLLError
'property which can be checked for.
Declare Sub GetCurrentDirectoryA Lib "kernel32" (ByVal DestLen _

As Integer,ByVal lpDest As String)
Sub Main()

Dim dest As String * 256
Err.Clear
GetCurrentDirectoryA len(dest),dest
If Err.LastDLLError <> 0 Then

MsgBox "Error " & Err.LastDLLError & " occurred."
Else

MsgBox "Current directory is " & dest
End If

End Sub

See Also Error Handling (topic); Err.Clear (method); Err.HelpContext (property);
Err.Description (property); Err.HelpFile (property); Err.Number (property);
Err.Source (property).

Platform(s) Win32, OS/2.

Err.Number (property) 215

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 215 of 226 Printed: 9/25/96

Platform Notes Win32: On this platform, this property is set by DLL routines that set the last error
using the Win32 function SetLastError() . BasicScript uses the Win32 function
GetLastError() to retrieve the value of this property. The value 0 is returned when
calling DLL routines that do not set an error.

Err.Number (property)

Syntax Err.Number [= errornumber]

Description Returns or sets the number of the error.

Comments The Err.Number property is set automatically when an error occurs. This property can
be used within an error trap to determine which error occurred.

You can set the Err.Number property to any Long value.

The Number property is the default property of the Err object. This allows you to use
older style syntax such as those shown below:

Err = 6

If Err = 6 Then MsgBox "Overflow"

The Err function can only be used while within an error trap.

The internal value of the Err.Number property is reset to 0 with any of the following
statements: Resume, Exit Sub, Exit Function . Thus, if you want to use this value
outside an error handler, you must assign it to a variable.

Setting Err.Number to –1 has the side effect of resetting the error state. This allows
you to perform error trapping within an error handler. The ability to reset the error
handler while within an error trap is not standard Basic. Normally, the error handler is
reset only with the Resume, Exit Sub, Exit Function , End Function, or End Sub
statements.

Example 'This example forces error 10, with a subsequent transfer to
'the TestError label. TestError tests the error and, if not
'error 55, resets Err to 999 (user-defined error) and returns
'to the Main subroutine.
Sub Main()

On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err () & " - " & _

Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred!"

216 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 216 of 226 Printed: 9/25/96

Err = 999
End If
Resume Next

End Sub

See Also Error Handling (topic).

Platform(s) All.

Err.Raise (method)

Syntax Err.Raise number [,[source] [,[description] [,[helpfile] [, helpcontext]]]]

Description Generates a runtime error, setting the specified properties of the Err object.

Comments The Err.Raise method has the following named parameters:

If some arguments are omitted, then the current property values of the Err object are
used.

Named Parameter Description

number A Long value indicating the error number to be generated.
This parameter is required.

Error predefined by BasicScript are in the range between 0
and 1000.

source An optional String expression specifying the source of the
error—i.e., the object or module that generated the error.

If omitted, then BasicScript uses the name of the currently
executing script.

description An optional String expression describing the error.

If omitted and number maps to a predefined BasicScript error
number, then the corresponding predefined description is
used. Otherwise, the error "Application-defined or
object-define error" is used.

helpfile An optional String expression specifying the name of the
help file containing context-sensitive help for this error.

If omitted and number maps to a predefined BasicScript error
number, then the default help file is assumed.

helpcontext An optional Long value specifying the topic within helpfile
containing context-sensitive help for this error.

Err.Source (property) 217

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 217 of 226 Printed: 9/25/96

This method can be used in place of the Error statement for generating errors. Using the
Err.Raise method gives you the opportunity to set the desired properties of the Err
object in one statement.

Example 'The following example uses the Err.Raise method to generate
'a user-defined error.
Sub Main()

Dim x As Variant
On Error Goto TRAP
x = InputBox("Enter a number:")
If Not IsNumber(x) Then

Err.Raise 3000,,"Invalid number specified","WIDGET.HLP",30
End If
MsgBox x
Exit Sub

TRAP:
MsgBox Err.Description

End Sub

See Also Error (statement); Error Handling (topic); Err.Clear (method); Err.HelpContext
(property); Err.Description (property); Err.HelpFile (property); Err.Number
(property); Err.Source (property).

Platform(s) All.

Err.Source (property)

Syntax Err.Source [= stringexpression]

Description Sets or retrieves the source of a runtime error.

Comments For OLE automation errors generated by the OLE server, the Err.Source property is set
to the name of the object that generated the error. For all other errors generated by
BasicScript, the Err.Source property is automatically set to be the name of the script
that generated the error.

For user-defined errors, the Err.Source property can be set to any valid String
expression indicating the source of the error. If the Err.Source property is not explicitly
set for user-defined errors, the BasicScript sets the value to be the name of the script in
which the error was generated.

Example 'The following script generates an error, setting the source
'to the specific location where the error was generated.
Function InputInteger(Prompt,Optional Title,Optional Def)

On Error Resume Next
Dim x As Integer
x = InputBox(Prompt,Title,Def)
If Err.Number Then

218 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 218 of 226 Printed: 9/25/96

Err.Source = "InputInteger"
Err.Description = "Integer value expected"
InputInteger = Null
Err.Raise 3000

End If
InputInteger = x

End Function
Sub Main

On Error Resume Next
x = InputInteger("Enter a number:")
If Err.Number Then MsgBox Err.Source & ":" & Err.Description

End Sub

See Also Error Handling (topic); Err.Clear (method); Err.HelpContext (property);
Err.Description (property); Err.HelpFile (property); Err.Number (property);
Err.LastDLLError (property).

Platform(s) All.

Error (statement)

Syntax Error errornumber

Description Simulates the occurrence of the given runtime error.

Comments The errornumber parameter is any Integer containing either a built-in error number or a
user-defined error number. The Err.Number property can be used within the error trap
handler to determine the value of the error.

The Error statement is provided for backward compatibility. Use the Err.Raise method
instead. When using the Error statement to generate an error, the Err object's
properties are set to the following default values:

A runtime error is generated if errornumber is less than 0.

Example 'This example forces error 10, with a subsequent transfer to
'the TestError label. TestError tests the error and, if not

Property Default Value

Number This property is set to errornumber as specified in the Error
statement.

Source Name of the currently executing script.

Description Text of the error. If errornumber does not specify a known
BasicScript error, then Description is set to an empty string.

HelpFile Name of the BasicScript help file.

HelpContext Context ID corresponding to errornumber.

Error Handling (topic) 219

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 219 of 226 Printed: 9/25/96

'error 55, resets Err to 999 (user-defined error) and returns
'to the Main subroutine.
Sub Main()

On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err & " - " & Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred."
Err = 999

End If
Resume Next

End Sub

See Also Error Handling (topic).

Platform(s) All.

Error Handling (topic)

Error Handlers

BasicScript supports nested error handlers. When an error occurs within a subroutine,
BasicScript checks for an On Error handler within the currently executing subroutine
or function. An error handler is defined as follows:

Sub foo()

On Error Goto catch

'Do something here.

Exit Sub

catch:

'Handle error here.

End Sub

Error handlers have a life local to the procedure in which they are defined. The error is
reset when any of the following conditions occurs:

• An On Error or Resume statement is encountered.

• When Err.Number is set to -1.

• When the Err.Clear method is called.

• When an Exit Sub, Exit Function , End Function, End Sub is encountered.

220 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 220 of 226 Printed: 9/25/96

Cascading Errors

If a runtime error occurs and no On Error handler is defined within the currently
executing procedure, then BasicScript returns to the calling procedure and executes the
error handler there. This process repeats until a procedure is found that contains an error
handler or until there are no more procedures. If an error is not trapped or if an error
occurs within the error handler, then BasicScript displays an error message, halting
execution of the script.

Once an error handler has control, it should address the condition that caused the error
and resume execution with the Resume statement. This statement resets the error
handler, transferring execution to an appropriate place within the current procedure. The
error is reset if the procedure exits without first executing Resume.

Visual Basic Compatibility

Where possible, BasicScript has the same error numbers and error messages as Visual
Basic. This is useful for porting scripts between environments.

Handling errors in BasicScript involves querying the error number or error text using
the Error$ function or Err.Description property. Since this is the only way to handle
errors in BasicScript, compatibility with Visual Basic's error numbers and messages is
essential.

BasicScript errors fall into three categories:

1. Visual Basic-compatible errors: These errors, numbered between 0 and 799, are
numbered and named according to the errors supported by Visual Basic.

2. BasicScript errors: These errors, numbered from 800 to 999, are unique to
BasicScript.

3. User-defined errors: These errors, equal to or greater than 1,000, are available for
use by extensions or by the script itself.

You can intercept trappable errors using BasicScript's On Error construct. Almost all
errors in BasicScript are trappable except for various system errors.

Error, Error$ (functions)

Syntax Error[$][(errornumber)]

Description Returns a String containing the text corresponding to the given error number or the
most recent error.

Comments Error$ returns a String, whereas Error returns a String variant.

Exit Do (statement) 221

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 221 of 226 Printed: 9/25/96

The errornumber parameter is an Integer containing the number of the error message to
retrieve. If this parameter is omitted, then the function returns the text corresponding to
the most recent runtime error (i.e., the same as returned by the Err.Description
property). If no runtime error has occurred, then a zero-length string is returned.

If the Error statement was used to generate a user-defined runtime error, then this
function will return a zero-length string ("").

Example 'This example forces error 10, with a subsequent transfer to
'the TestError label. TestError tests the error and, if not
'error 55, resets Err to 999 (user-defined error) and returns
'to the Main subroutine.
Sub Main()

On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err() & " - " _

& Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred."
Err = 999

End If
Resume Next

End Sub

See Also Error Handling (topic).

Platform(s) All.

Exit Do (statement)

Syntax Exit Do

Description Causes execution to continue on the statement following the Loop clause.

Comments This statement can only appear within a Do...Loop statement.

Example 'This example will load an array with directory entries unless
'there are more than ten entries--in which case, the Exit Do
'terminates the loop.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim a$(5)
Do
 i% = i% + 1

222 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 222 of 226 Printed: 9/25/96

If i% = 1 Then
a(i%) = Dir$("*")

Else
 a(i%) = Dir$
End If
If i% >= 10 Then Exit Do

Loop While (a(i%) <> "")
If i% = 10 Then

MsgBox i% & " entries processed!"
Else

MsgBox "Less than " & i% & " entries processed!"
End If

End Sub

See Also Stop (statement); Exit For (statement); Exit Function (statement); Exit Sub
(statement); End (statement); Do...Loop (statement).

Platform(s) All.

Exit For (statement)

Syntax Exit For

Description Causes execution to exit the innermost For loop, continuing execution on the line
following the Next statement.

Comments This statement can only appear within a For...Next block.

Example 'This example will fill an array with directory entries until a
'null entry is encountered or 100 entries have been processed--
'at which time, the loop is terminated by an Exit For statement.
'The dialog box displays a count of files found and then some
'entries from the array.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim a$(100)
For i = 1 To 100

If i = 1 Then
a$(i) = Dir$("*")

Else
a$(i) = Dir$

End If
If (a$(i) = "") Or (i >= 100) Then Exit For

Next i
message = "There are " & i & " files found." & crlf
MsgBox message & a$(1) & crlf & a$(2) & crlf & a$(3) & crlf &

a$(10)
End Sub

Exit Function (statement) 223

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 223 of 226 Printed: 9/25/96

See Also Stop (statement); Exit Do (statement); Exit Function (statement); Exit Sub
(statement); End (statement); For...Next (statement).

Platform(s) All.

Exit Function (statement)

Syntax Exit Function

Description Causes execution to exit the current function, continuing execution on the statement
following the call to this function.

Comments This statement can only appear within a function.

Example 'This function displays a message and then terminates with Exit
'Function.
Function Test_Exit() As Integer

MsgBox "Testing function exit, returning to Main()."
Test_Exit = 0
Exit Function
MsgBox "This line should never execute."

End Function
Sub Main()

a% = Test_Exit()
MsgBox "This is the last line of Main()."

End Sub

See Also Stop (statement); Exit For (statement); Exit Do (statement); Exit Sub (statement); End
(statement); Function...End Function (statement).

Platform(s) All.

Exit Sub (statement)

Syntax Exit Sub

Description Causes execution to exit the current subroutine, continuing execution on the statement
following the call to this subroutine.

Comments This statement can appear anywhere within a subroutine. It cannot appear within a
function.

Example 'This example displays a dialog box and then exits. The last
'line should never execute because of the Exit Sub statement.
Sub Main()

MsgBox "Terminating Main()."
Exit Sub

224 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 224 of 226 Printed: 9/25/96

MsgBox "Still here in Main()."
End Sub

See Also Stop (statement); Exit For (statement); Exit Do (statement); Exit Function
(statement); End (function); Sub...End Sub (statement).

Platform(s) All.

Exp (function)

Syntax Exp(number)

Description Returns the value of e raised to the power of number.

Comments The number parameter is a Double within the following range:
0 <= number <= 709.782712893.

A runtime error is generated if number is out of the range specified above.

The value of e is 2.71828.

Example 'This example assigns a to e raised to the 12.4 power and
'displays it in a dialog box.
Sub Main()

a# = Exp(12.40)
MsgBox "e to the 12.4 power is: " & a#

End Sub

See Also Log (function).

Platform(s) All.

Expression Evaluation (topic)

BasicScript allows expressions to involve data of different types. When this occurs, the
two arguments are converted to be of the same type by promoting the less precise
operand to the same type as the more precise operand. For example, BasicScript will
promote the value of i% to a Double in the following expression:

result# = i% * d#

In some cases, the data type to which each operand is promoted is different than that of
the most precise operand. This is dependent on the operator and the data types of the
two operands and is noted in the description of each operator.

If an operation is performed between a numeric expression and a String expression,
then the String expression is usually converted to be of the same type as the numeric
expression. For example, the following expression converts the String expression to an
Integer before performing the multiplication:

Expression Evaluation (topic) 225

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 225 of 226 Printed: 9/25/96

result = 10 * "2" 'Result is equal to 20.

There are exceptions to this rule, as noted in the description of the individual operators.

Type Coercion

BasicScript performs numeric type conversion automatically. Automatic conversions
sometimes result in overflow errors, as shown in the following example:

d# = 45354

i% = d#

In this example, an overflow error is generated because the value contained in d# is
larger than the maximum size of an Integer.

Rounding

When floating-point values (Single or Double) are converted to integer values (Integer
or Long), the fractional part of the floating-point number is lost, rounding to the nearest
integer value. BasicScript uses Baker's rounding:

• If the fractional part is larger than .5, the number is rounded up.

• If the fractional part is smaller than .5, the number is rounded down.

• If the fractional part is equal to .5, then the number is rounded up if it is odd and
down if it is even.

The following table shows sample values before and after rounding:

Default Properties

When an OLE object variable or an Object variant is used with numerical operators
such as addition or subtraction, then the default property of that object is automatically
retrieved. For example, consider the following:

Dim Excel As Object

Set Excel = GetObject(,"Excel.Application")

MsgBox "This application is " & Excel

The above example displays "This application is Microsoft Excel" in a dialog box.
When the variable Excel is used within the expression, the default property is
automatically retrieved, which, in this case, is the string "Microsoft Excel." Considering
that the default property of the Excel object is .Value, then the following two statements
are equivalent:

Before Rounding After Rounding to Whole Number

2.1 2

4.6 5

2.5 2

3.5 4

226 BasicScript Language Reference

Summit Software Confidential
Filename: lre.fm5 Template: LRprint.FM5
Page: 226 of 226 Printed: 9/25/96

MsgBox "This application is " & Excel

MsgBox "This application is " & Excel.Value

226 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 226 of 299 Printed: 9/25/96

FileAttr (function)

Syntax FileAttr(filenumber, returntype)

Description Returns an Integer specifying the file mode (if returntype is 1) or the operating system
file handle (if returntype is 2).

Comments The FileAttr function takes the following named parameters:

Example 'This example opens a file for input, reads the file attributes,
'and determines the file mode for which it was opened. The
'result is displayed in a dialog box.
Sub Main()

Open "c:\autoexec.bat" For Input As #1
a% = FileAttr (1,1)
Select Case a%

Case 1
MsgBox "Opened for input."

Case 2
MsgBox "Opened for output."

Case 4
MsgBox "Opened for random."

Case 8
MsgBox "Opened for append."

Case 32
MsgBox "Opened for binary."

Case Else
MsgBox "Unknown file mode."

End Select
a% = FileAttr (1,2)

Named Parameter Description

filenumber Integer value used by BasicScript to refer to the open file—the
number passed to the Open statement.

returntype Integer specifying the type of value to be returned. If
returntype is 1, then one of the following values is returned:

1 Input

2 Output

4 Random

6 Append

32 Binary

If returntype is 2, then the operating system file handle is
returned. On most systems, this is a special Integer value
identifying the file.

FileCopy (statement) 227

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 227 of 299 Printed: 9/25/96

MsgBox "File handle is: " & a%
Close

End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileExists (function);
Open (statement); SetAttr (statement).

Platform(s) All.

FileCopy (statement)

Syntax FileCopy source, destination

Description Copies a source file to a destination file.

Comments The FileCopy function takes the following named parameters:

The file will be copied and renamed if the source and destination filenames are not the
same.

Some platforms do not support drive letters and may not support dots to indicate current
and parent directories.

Example 'This example copies the autoexec.bat file to "autoexec.sav",
'then opens the copied file and tries to copy it again--which
'generates an error.
Sub Main()

On Error Goto ErrHandler
FileCopy "c:\autoexec.bat", "c:\autoexec.sav"
Open "c:\autoexec.sav" For Input As # 1
FileCopy "c:\autoexec.sav", "c:\autoexec.sv2"
Close
Exit Sub

ErrHandler:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "An unspecified file copy error has occurred."
End If
Resume Next

Named Parameter Description

source String containing the name of a single file to copy.

The source parameter cannot contain wildcards (? or *) but may
contain path information.

destination String containing a single, unique destination file, which may
contain a drive and path specification.

228 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 228 of 299 Printed: 9/25/96

End Sub

See Also Kill (statement); Name (statement).

Platform(s) All.

FileDateTime (function)

Syntax FileDateTime(pathname)

Description Returns a Date variant representing the date and time of the last modification of a file.

Comments This function retrieves the date and time of the last modification of the file specified by
pathname (wildcards are not allowed). A runtime error results if the file does not exist.
The value returned can be used with the date/time functions (i.e., Year, Month , Day,
Weekday, Minute , Second, Hour) to extract the individual elements.

Some operating systems (such as Win32) store the file creation date, last modification
date, and the date the file was last written to. The FileDateTime function only returns
the last modification date.

Example 'This example gets the file date/time of the autoexec.bat file
'and displays it in a dialog box.
Sub Main()

If FileExists("c:\autoexec.bat") Then
a# = FileDateTime ("c:\autoexec.bat")
MsgBox "The date/time information for the file is: " _

& Year(a#) & "-" & Month(a#) & "-" & Day(a#)
Else

MsgBox "The file does not exist."
End If

End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr (function);
FileExists (function).

Platform(s) All.

FileDirs (statement)

Syntax FileDirs array() [, dirspec$]

Description Fills a String or Variant array with directory names from disk.

FileExists (function) 229

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 229 of 299 Printed: 9/25/96

Comments The FileDirs statement takes the following parameters:

Example 'This example fills an array with directory entries and displays
'the first one.
Sub Main()

Dim a$()
FileDirs a$,"c:*.*"
MsgBox "The first directory is: " & a$(0)

End Sub

See Also FileList (statement); Dir , Dir$ (functions); CurDir , CurDir$ (functions); ChDir
(statement).

Platform(s) All.

FileExists (function)

Syntax FileExists(filename$)

Description Returns True if filename$ exists; returns False otherwise.

Comments This function determines whether a given filename$ is valid.

Parameter Description

array() Either a zero- or a one-dimensioned array of strings or variants.
The array can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly
hold the new number of elements. If there are no elements, then
the array will be redimensioned to contain no dimensions. You
can use the LBound, UBound, and ArrayDims functions to
determine the number and size of the new array's dimensions.

If the array is fixed, each array element is first erased, then the
new elements are placed into the array. If there are fewer
elements than will fit in the array, then the remaining elements
are initialized to zero-length strings (for String arrays) or
Empty (for Variant arrays). A runtime error results if the array
is too small to hold the new elements.

dirspec$ String containing the file search mask, such as:
t*.

c:*.*

If this parameter is omitted or an empty string, then * is used,
which fills the array with all the subdirectory names within the
current directory.

230 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 230 of 299 Printed: 9/25/96

This function will return False if filename$ specifies a subdirectory.

Example 'This example checks to see whether there is an autoexec.bat
'file in the root directory of the C drive, then displays either
'its date and time of creation or the fact that it does not exist.
Sub Main()

If FileExists ("c:\autoexec.bat") Then
Msgbox "This file exists!"

Else
MsgBox "File does not exist."

End If
End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr (function);
FileParse$ (function).

Platform(s) All.

FileLen (function)

Syntax FileLen(pathname)

Description Returns a Long representing the length of pathname in bytes.

Comments This function is used in place of the LOF function to retrieve the length of a file without
first opening the file. A runtime error results if the file does not exist.

Example 'This example checks to see whether there is a c:\autoexec.bat
'file and, if there is, displays the length of the file.
Sub Main()

If (FileExists("c:\autoexec.bat") _
And (FileLen ("c:\autoexec.bat") <> 0)) Then

b% = FileLen ("c:\autoexec.bat")
MsgBox "The length of autoexec.bat is: " & b%

Else
MsgBox "File does not exist."

End If
End Sub

See Also GetAttr (function); FileType (function); FileAttr (function); FileParse$ (function);
FileExists (function); Loc (function).

Platform(s) All.

Note: On some file systems, the directories "." and ".." will be returned.

FileList (statement) 231

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 231 of 299 Printed: 9/25/96

FileList (statement)

Syntax FileList array() [,[filespec$] [,[include_attr] [, exclude_attr]]]

Description Fills a String or Variant array with filenames from disk.

Comments The FileList function takes the following parameters:

The FileList function returns different files as specified by the include_attr and
exclude_attr and whether these parameter have been specified. The following table
shows these differences:If neither the include_attr or exclude_attr have been specified,
then the following defaults are assumed:

If include_attr is specified and exclude_attr is missing, then FileList excludes all files
not specified by include_attr. If include_attr is missing, its value is assumed to be zero.

Parameter Description

array() Either a zero- or a one-dimensioned array of strings or variants.
The array can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly
hold the new number of elements. If there are no elements, then
the array will be redimensioned to contain no dimensions. You
can use the LBound, UBound, and ArrayDims functions to
determine the number and size of the new array's dimensions

f the array is fixed, each array element is first erased, then the
new elements are placed into the array. If there are fewer
elements than will fit in the array, then the remaining elements
are initialized to zero-length strings (for String arrays) or
Empty (for Variant arrays). A runtime error results if the array
is too small to hold the new elements.

filespec$ String specifying which filenames are to be included in the list.

The filespec$ parameter can include wildcards, such as * and ?.
If this parameter is omitted, then * is used.

include_attr Integer specifying attributes of files you want included in the
list. It can be any combination of the attributes listed below.

exclude_attr Integer specifying attributes of files you want excluded from
the list. It can be any combination of the attributes listed below.

Parameter Default

exclude_attr ebHidden Or ebDirectory Or ebSystem Or ebVolume

include_attr ebNone Or ebArchive Or ebReadOnly

232 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 232 of 299 Printed: 9/25/96

Wildcards

The * character matches any sequence of zero or more characters, whereas the ?
character matches any single character. Multiple * 's and ?'s can appear within the
expression to form complete searching patterns. The following table shows some
examples:

File Attributes

These numbers can be any combination of the following:

Example 'This example fills an array a with the directory of the current
'drive for all files that have normal or no attributes and
'excludes those with system attributes. The dialog box displays
'four filenames from the array.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

This pattern Matches these files Doesn't match these files

*S.*TXT SAMPLE. TXT

GOOSE.TXT

SAMS.TXT

SAMPLE

SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT

ACATS.TXT

C*T CAT

CAP.TXT

CAT.DOC

C?T CAT

CUT

CAT.TXT

CAPIT

CT

* (All files)

Constant Value Includes

ebNormal 0 Read-only, archive, subdir, none

ebReadOnly 1 Read-only files

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebDirectory 16 Subdirectories

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes

FileParse$ (function) 233

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 233 of 299 Printed: 9/25/96

Dim a$()
FileList a$,"*.*", (ebNormal + ebNone), ebSystem
If ArrayDims(a$) > 0 Then

 MsgBox a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4)
Else

MsgBox "No files found."
End If

End Sub

See Also FileDirs (statement); Dir , Dir$ (functions).

Platform(s) All.

 Platform Notes Windows: For compatibility with DOS wildcard matching, BasicScript special-cases
the pattern "*.*" to indicate all files, not just files with a periods in their names.

UNIX: On UNIX platforms, the hidden file attribute corresponds to files without the
read or write attributes.

FileParse$ (function)

Syntax FileParse$(filename$[, operation])

Description Returns a String containing a portion of filename$ such as the path, drive, or file
extension.

Comments The filename$ parameter can specify any valid filename (it does not have to exist). For
example:

..\test.dat

c:\sheets\test.dat

test.dat

A runtime error is generated if filename$ is a zero-length string.

The optional operation parameter is an Integer specifying which portion of the
filename$ to extract. It can be any of the following values.

Value Meaning Example

0 Full name c:\sheets\test.dat

1 Drive c

2 Path c:\sheets

3 Name test.dat

4 Root test

5 Extension dat

234 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 234 of 299 Printed: 9/25/96

If operation is not specified, then the full name is returned. A runtime error will result if
operation is not one of the above values.

A runtime error results if filename$ is empty.

On systems that do not support drive letters, operation 1 will return a zero-length string.

Example 'This example parses the file string "c:\testsub\autoexec.bat"
'into its component parts and displays them in a dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim a$(6)
For i = 1 To 5

a$(i) = FileParse$ ("c:\testsub\autoexec.bat",i - 1)
Next i
MsgBox a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4) &

crlf & a$(5)
End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr (function);
FileExists (function).

Platform(s) All.

Platform Notes Windows, Win32, OS/2: The path separator is different on different platforms. Under
Windows, OS/2, and Win32, the backslash and forward slash can be used
interchangeably. For example, "c:\test.dat" is the same as "c:/test.dat".

UNIX: Under UNIX systems, the backslash and colon are valid filename characters.

Macintosh: On the Macintosh, all characters are valid within filenames except colons,
which are seen as path separators.

NetWare: Under NetWare, operation 1 returns the volume name (up to 14 characters).

FileType (function)

Syntax FileType(filename$)

Description Returns the type of the specified file.

Comments One of the following Integer constants is returned:

If one of the above values is not returned, then the file type is unknown.

Constant Value Description

ebDos 1 DOS executable file(exe files only; com files are not
recognized).

ebWindows 2 Windows executable file

Fix (function) 235

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 235 of 299 Printed: 9/25/96

Example 'This example looks at c:\windows\winfile.exe and determines
'whether it is a DOS or a Windows file. The result is displayed
'in a dialog box.
Sub Main()

a = FileType ("c:\windows\winfile.exe")
If a = ebDos Then

MsgBox "This is a DOS file."
Else

MsgBox "This is a Windows file of type '" & a & "'"
End If

End Sub

See Also FileLen (function); GetAttr (function); FileAttr (function); FileExists (function).

Platform(s) Windows.

Platform Notes Windows: Only files with a ".exe" extension can be used with this function. Files with a
".com" or ".bat" extension will return 3 (unknown).

Fix (function)

Syntax Fix(number)

Description Returns the integer part of number.

Comments This function returns the integer part of the given value by removing the fractional part.
The sign is preserved.

The Fix function returns the same type as number, with the following exceptions:

• If number is Empty, then an Integer variant of value 0 is returned.

• If number is a String, then a Double variant is returned.

• If number contains no valid data, then a Null variant is returned.

Example 'This example returns the fixed part of a number and assigns it
'to b, then displays the result in a dialog box.
Sub Main()

a# = -19923.45
b% = Fix (a#)
MsgBox "The fixed portion of -19923.45 is: " & b%

End Sub

See Also Int (function); CInt (function).

Platform(s) All.

236 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 236 of 299 Printed: 9/25/96

For Each...Next (statement)

Syntax For Each member in group
[statements]
[Exit For]
[statements]

Next [member]

Description Repeats a block of statements for each element in a collection or array.

Comments The For Each...Next statement takes the following parameters:

BasicScript supports iteration through the elements of OLE collections or arrays, unless
the arrays contain user-defined types or fixed-length strings. The iteration variable is a
copy of the collection or array element in the sense thata change to the value of member
within the loop has no effect on the collection or array.

The For Each...Next statement traverses array elements in the same order the elements
are stored in memory. For example, the array elements contained in the array defined by
the statement

Dim a(1 To 2,3 To 4)

are traversed in the following order: (1,3), (1,4), (2,3), (2,4). The order in which the
elements are traversed should not be relevant to the correct operation of the script.

The For Each...Next statement continues executing until there are no more elements in
group or until an Exit For statement is encountered.

For Each...Next statements can be nested. In such a case, the Next [member] statement
applies to the innermost For Each...Next or For...Next statement. Each member
variable of nested For Each...Next statements must be unique.

A Next statement appearing by itself (with no member variable) matches the innermost
For Each...Next or For...Next loop.

Example ’The following subroutine iterates through the elements
’of an array using For Each...Next.
Sub Main()

Dim a(3 To 10) As Single
Dim i As Variant

Parameter Description

member Name of the variable used for each iteration of the loop. If
group is an array, then member must be a Variant variable. If
group is a collection, then member must be an Object variable,
an explicit OLE automation object, or a Variant .

group Name of a collection or array.

statements Any number of BasicScript statements.

For Each...Next (statement) 237

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 237 of 299 Printed: 9/25/96

Dim s As String
For i = 3 To 10

a(i) = Rnd()
Next i
For Each i In a

i = i + 1
Next i
s = ""
For Each i In a

If s <> "" Then s = s & ","
s = s & i

Next i
MsgBox s

End Sub
’The following subroutine displays the names of each worksheet
’in an Excel workbook.
Sub Main()

Dim Excel As Object
Dim Sheets As Object
Set Excel = CreateObject("Excel.Application")
Excel.Visible = 1
Excel.Workbooks.Add
Set Sheets = Excel.Worksheets
For Each a In Sheets

MsgBox a.Name
Next a

End Sub

See Also Do...Loop (statement); While...Wend (statement); For...Next (statement).

Platform(s) All.

Platform Notes Windows, Win32: Due to errors in program logic, you can inadvertently create infinite
loops in your code. Under Windows and Win32, you can break out of infinite loops
using Ctrl+Break.

UNIX: Due to errors in program logic, you can inadvertently create infinite loops in
your code. Under UNIX, you can break out of infinite loops using Ctrl+C.

Macintosh: Due to errors in program logic, you can inadvertently create infinite loops
in your code. On the Macintosh, you can break out of infinite loops using
Command+Period.

OS/2: Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under OS/2, you can break out of infinite loops using Ctrl+C or Ctrl+Break.

238 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 238 of 299 Printed: 9/25/96

For...Next (statement)

Syntax For counter = start To end [Step increment]
[statements]
[Exit For]
[statements]

Next [counter [, nextcounter]...]

Description Repeats a block of statements a specified number of times, incrementing a loop counter
by a given increment each time through the loop.

Comments The For statement takes the following parameters:

The For...Next statement continues executing until an Exit For statement is
encountered when counter is greater than end.

For...Next statements can be nested. In such a case, the Next [counter] statement
applies to the innermost For...Next.

The Next clause can be optimized for nested next loops by separating each counter with
a comma. The ordering of the counters must be consistent with the nesting order
(innermost counter appearing before outermost counter). The following example shows
two equivalent For statements:

For i = 1 To 10 For i = 1 To 10

For j = 1 To 10 For j = 1 To 10

Next j Next j,i

Next i

A Next clause appearing by itself (with no counter variable) matches the innermost For
loop.

Parameter Description

counter Name of a numeric variable. Variables of the following types
can be used: Integer, Long, Single, Double, Variant .

start Initial value for counter. The first time through the loop,
counter is assigned this value.

end Final value for counter. The statements will continue executing
until counter is equal to end.

increment Amount added to counter each time through the loop. If end is
greater than start, then increment must be positive. If end is less
than start, then increment must be negative.

If increment is not specified, then 1 is assumed. The expression
given as increment is evaluated only once. Changing the step
during execution of the loop will have no effect.

statements Any number of BasicScript statements.

Format, Format$ (functions) 239

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 239 of 299 Printed: 9/25/96

The counter variable can be changed within the loop but will have no effect on the
number of times the loop will execute.

Example 'This example constructs a truth table for the OR statement
'using nested For...Next loops.
Sub Main()

Dim m As String
For x = -1 To 0

For y = -1 To 0
z = x Or y
m = m & Format(Abs(x),"0") & " Or "
m = m & Format(Abs(y),"0") & " = "
m = m & Format(Z,"True/False") & Basic.Eoln$

Next y
Next x
MsgBox m

End Sub

See Also Do...Loop (statement); While...Wend (statement); For...Each (statement).

Platform(s) All.

Platform Notes Windows, Win32: Due to errors in program logic, you can inadvertently create infinite
loops in your code. Under Windows and Win32, you can break out of infinite loops
using Ctrl+Break.

UNIX: Due to errors in program logic, you can inadvertently create infinite loops in
your code. Under UNIX, you can break out of infinite loops using Ctrl+C.

Macintosh: Due to errors in program logic, you can inadvertently create infinite loops
in your code. On the Macintosh, you can break out of infinite loops using
Command+Period.

OS/2: Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under OS/2, you can break out of infinite loops using Ctrl+C or Ctrl+Break.

Format, Format$ (functions)

Syntax Format[$](expression [, [format] [, [firstdayofweek] [, firstweekofyear]]])

Description Returns a String formatted to user specification.

Comments Format$ returns a String, whereas Format returns a String variant.

240 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 240 of 299 Printed: 9/25/96

The Format$/Format functions take the following named parameters:

If format is omitted and the expression is numeric, then these functions perform the
same function as the Str$ or Str statements, except that they do not preserve a leading
space for positive values.

If expression is Null , then a zero-length string is returned.

The maximum length of the string returned by Format or Format$ functions is 255.

The firstdayofweek parameter, if specified, can be any of the following constants:

The firstdayofyear parameter, if specified, can be any of the following constants:

Named Parameter Description

expression String or numeric expression to be formatted.

BasicScript will only examine the first 255 characters of
expression.

format Format expression that can be either one of the built-in
BasicScript formats or a user-defined format consisting of
characters that specify how the expression should be displayed.

String, numeric, and date/time formats cannot be mixed in a
single format expression.

firstdayofweek Indicates the first day of the week. If omitted, then sunday is
assumed (i.e., the constant ebSunday described below).

firstweekofyear Indicates the first week of the year. If omitted, then the first
week of the year is considered to be that containing January 1
(i.e., the constant ebFirstJan1 as described bellow).

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

ebFirstJan1 1 The first week of the year is that in which January 1
occurs (the default).

Format, Format$ (functions) 241

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 241 of 299 Printed: 9/25/96

Built-In Formats

To format numeric expressions, you can specify one of the built-in formats. There are
two categories of built-in formats: one deals with numeric expressions and the other
with date/time values.The following tables list the built-in numeric and date/time format
strings, followed by an explanation of what each does.

ebFirstFourDays 2 The first week of the year is that containing at least
four days in the year.

ebFirstFullWeek 3 The first week of the year is the first full week of the
year.

Numeric Formats

Format Description

General Number Displays the numeric expression as is, with no additional
formatting.

Currency Displays the numeric expression as currency, with
thousands separator if necessary.

The built-in Currency format allows the specification of an
optional user-defined format specification used only for
zero values:

Currency; zero-format-string

Where zero-format-string is a user-defined format used
specifically for zero values.

Fixed Displays at least one digit to the left of the decimal
separator and two digits to the right.

Standard Displays the numeric expression with thousands separator
if necessary. Displays at least one digit to the left of the
decimal separator and two digits to the right.

Percent Displays the numeric expression multiplied by 100. A
percent sign (%) will appear at the right of the formatted
output. Two digits are displayed to the right of the decimal
separator.

Scientific Displays the number using scientific notation. One digit
appears before the decimal separator and two after.

Yes/No Displays No if the numeric expression is 0. Displays Yes
for all other values.

Constant Value Description

242 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 242 of 299 Printed: 9/25/96

User-Defined Formats

In addition to the built-in formats, you can specify a user-defined format by using
characters that have special meaning when used in a format expression. The following
tables list the characters you can use for numeric, string, and date/time formats and
explain their functions.

True/False Displays False if the numeric expression is 0. Displays
True for all other values.

On/Off Displays Off if the numeric expression is 0. Displays On
for all other values.

Date/Time Formats

Format Description

General date Displays the date and time. If there is no fractional part in
the numeric expression, then only the date is displayed. If
there is no integral part in the numeric expression, then
only the time is displayed. Output is in the following form:
1/1/95 01:00:00 AM.

Medium date Displays a medium date—prints out only the abbreviated
name of the month.

Short date Displays a short date.

Long time Displays the long time. The default is: h:mm:ss.

Medium time Displays the time using a 12-hour clock. Hours and
minutes are displayed, and the AM/PM designator is at the
end.

Short time Displays the time using a 24-hour clock. Hours and
minutes are displayed.

Numeric Formats

Character Meaning

Empty string Displays the numeric expression as is, with no additional
formatting.

Numeric Formats (Continued)

Format Description

Format, Format$ (functions) 243

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 243 of 299 Printed: 9/25/96

0 This is a digit placeholder.

Displays a number or a 0. If a number exists in the numeric
expression in the position where the 0 appears, the number
will be displayed. Otherwise, a 0 will be displayed. If there
are more 0s in the format string than there are digits, the
leading and trailing 0s are displayed without modification.

This is a digit placeholder.

Displays a number or nothing. If a number exists in the
numeric expression in the position where the number sign
appears, the number will be displayed. Otherwise, nothing
will be displayed. Leading and trailing 0s are not displayed.

. This is the decimal placeholder.

Designates the number of digits to the left of the decimal
and the number of digits to the right. The character used in
the formatted string depends on the decimal placeholder, as
specified by your locale.

% This is the percentage operator.

The numeric expression is multiplied by 100, and the
percent character is inserted in the same position as it
appears in the user-defined format string.

, This is the thousands separator.

The common use for the thousands separator is to separate
thousands from hundreds. To specify this use, the
thousands separator must be surrounded by digit
placeholders. Commas appearing before any digit
placeholders are specified are just displayed. Adjacent
commas with no digit placeholders specified between them
and the decimal mean that the number should be divided by
1,000 for each adjacent comma in the format string. A
comma immediately to the left of the decimal has the same
function. The actual thousands separator character used
depends on the character specified by your locale.

Numeric Formats (Continued)

Character Meaning

244 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 244 of 299 Printed: 9/25/96

E- E+ e- e+ These are the scientific notation operators, which display
the number in scientific notation. At least one digit
placeholder must exist to the left of E-, E+, e-, or e+. Any
digit placeholders displayed to the left of E-, E+, e-, or e+
determine the number of digits displayed in the exponent.
Using E+ or e+ places a + in front of positive exponents
and a – in front of negative exponents. Using E- or e-
places a – in front of negative exponents and nothing in
front of positive exponents.

: This is the time separator.

Separates hours, minutes, and seconds when time values
are being formatted. The actual character used depends on
the character specified by your locale.

/ This is the date separator.

Separates months, days, and years when date values are
being formatted. The actual character used depends on the
character specified by your locale.

- + $ () space These are the literal characters you can display.

To display any other character, you should precede it with a
backslash or enclose it in quotes.

\ This designates the next character as a displayed character.

To display characters, precede them with a backslash. To
display a backslash, use two backslashes. Double quotation
marks can also be used to display characters. Numeric
formatting characters, date/time formatting characters, and
string formatting characters cannot be displayed without a
preceding backslash.

"ABC" Displays the text between the quotation marks, but not the
quotation marks. To designate a double quotation mark
within a format string, use two adjacent double quotation
marks.

* This will display the next character as the fill character.

Any empty space in a field will be filled with the specified
fill character.

Numeric Formats (Continued)

Character Meaning

Format, Format$ (functions) 245

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 245 of 299 Printed: 9/25/96

Numeric formats can contain one to three parts. Each part is separated by a semicolon.
If you specify one format, it applies to all values. If you specify two formats, the first
applies to positive values and the second to negative values. If you specify three
formats, the first applies to positive values, the second to negative values, and the third
to 0s. If you include semicolons with no format between them, the format for positive
values is used.

String Formats

Character Meaning

@ This is a character placeholder. It displays a character if
one exists in the expression in the same position; otherwise,
it displays a space. Placeholders are filled from right to left
unless the format string specifies left to right.

& This is a character placeholder. It displays a character if
one exists in the expression in the same position; otherwise,
it displays nothing. Placeholders are filled from right to left
unless the format string specifies left to right.

< This character forces lowercase. It displays all characters in
the expression in lowercase.

> This character forces uppercase. It displays all characters in
the expression in uppercase.

! This character forces placeholders to be filled from left to
right. The default is right to left.

Date/Time Formats

Character Meaning

c Displays the date as ddddd and the time as ttttt. Only the
date is displayed if no fractional part exists in the numeric
expression. Only the time is displayed if no integral portion
exists in the numeric expression.

d Displays the day without a leading 0 (1–31).

dd Displays the day with a leading 0 (01–31).

ddd Displays the day of the week abbreviated (Sun–Sat).

dddd Displays the day of the week (Sunday–Saturday).

ddddd Displays the date as a short date.

246 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 246 of 299 Printed: 9/25/96

dddddd Displays the date as a long date.

w Displays the number of the day of the week (1–7). Sunday
is 1; Saturday is 7.

ww Displays the week of the year (1–53).

m Displays the month without a leading 0 (1–12). If m
immediately follows h or hh, m is treated as minutes (0–
59).

mm Displays the month with a leading 0 (01–12). If mm
immediately follows h or hh, mm is treated as minutes with
a leading 0 (00–59).

mmm Displays the month abbreviated (Jan–Dec).

mmmm Displays the month (January–December).

q Displays the quarter of the year (1–4).

yy Displays the year, not the century (00–99).

yyyy Displays the year (1000–9999).

h Displays the hour without a leading 0 (0–24).

hh Displays the hour with a leading 0 (00–24).

n Displays the minute without a leading 0 (0–59).

nn Displays the minute with a leading 0 (00–59).

s Displays the second without a leading 0 (0–59).

ss Displays the second with a leading 0 (00–59).

ttttt Displays the time. A leading 0 is displayed if specified by
your locale.

AM/PM Displays the time using a 12-hour clock. Displays an
uppercase AM for time values before 12 noon. Displays an
uppercase PM for time values after 12 noon and before 12
midnight.

Date/Time Formats (Continued)

Character Meaning

Format, Format$ (functions) 247

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 247 of 299 Printed: 9/25/96

Example Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a# = 1199.234
message = "Some general formats for '" & a# & "' are:"
message = message & Format$(a#,"General Number") & crlf
message = message & Format$ (a#,"Currency") & crlf
message = message & Format$ (a#,"Standard") & crlf
message = message & Format$ (a#,"Fixed") & crlf
message = message & Format$ (a#,"Percent") & crlf
message = message & Format$ (a#,"Scientific") & crlf
message = message & Format$ (True,"Yes/No") & crlf
message = message & Format$ (True,"True/False") & crlf
message = message & Format$ (True,"On/Off") & crlf
message = message & Format$ (a#,"0,0.00") & crlf
message = message & Format$ (a#,"##,###,###.###") & crlf
MsgBox message
da$ = Date$
message = "Some date formats for '" & da$ & "' are:"
message = message & Format$ (da$,"General Date") & crlf
message = message & Format$ (da$,"Long Date") & crlf
message = message & Format$ (da$,"Medium Date") & crlf
message = message & Format$ (da$,"Short Date") & crlf
MsgBox message
ti$ = Time$
message = "Some time formats for '" & ti$ & "' are:"
message = message & Format$ (ti$,"Long Time") & crlf
message = message & Format$ (ti$,"Medium Time") & crlf
message = message & Format$ (ti$,"Short Time") & crlf
MsgBox message

End Sub

See Also Str, Str$ (functions); CStr (function).

am/pm Displays the time using a 12-hour clock. Displays a
lowercase am or pm at the end.

A/P Displays the time using a 12-hour clock. Displays an
uppercase A or P at the end.

a/p Displays the time using a 12-hour clock. Displays a
lowercase a or p at the end.

AMPM Displays the time using a 12-hour clock. Displays the
string s1159 for values before 12 noon and s2359 for values
after 12 noon and before 12 midnight.

Date/Time Formats (Continued)

Character Meaning

248 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 248 of 299 Printed: 9/25/96

Platform(s) All.

Platform Notes Windows, Win32: Under Windows and Win32, default date/time formats are read from
the [Intl] section of the win.ini file.

FreeFile (function)

Syntax FreeFile [([rangenumber])]

Description Returns an Integer containing the next available file number.

Comments This function returns the next available file number within the specified range. If
rangenumber is 0, then a number between 1 and 255 is returned; if 1, then a number
between 256 and 511 is returned. If rangenumber is not specified, then a number
between 1 and 255 is returned.

The function returns 0 if there is no available file number in the specified range.

The number returned is suitable for use in the Open statement.

Example 'This example assigns A to the next free file number and
'displays it in a dialog box.
Sub Main()

a = FreeFile
MsgBox "The next free file number is: " & a

End Sub

See Also FileAttr (function); Open (statement).

Platform(s) All.

Function...End Function (statement)

Syntax [Private | Public] [Static] Function name[(arglist)] [As ReturnType]
[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are
allowed):
[Optional] [ByVal | ByRef] parameter [()] [As type]

Description Creates a user-defined function.

Comments The Function statement has the following parts:

Part Description

Private Indicates that the function being defined cannot be called from
other scripts.

Function...End Function (statement) 249

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 249 of 299 Printed: 9/25/96

Public Indicates that the function being defined can be called from
other scripts. If both the Private and Public keywords are
missing, then Public is assumed.

Static Recognized by the compiler but currently has no effect.

name Name of the function, which must follow BasicScript naming
conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character
(_). Punctuation and type-declaration characters are not
allowed. The exclamation point (!) can appear within the
name as long as it is not the last character, in which case it
is interpreted as a type-declaration character.

3. Must not exceed 80 characters in length.

Additionally, the name parameter can end with an optional
type-declaration character specifying the type of data returned
by the function (i.e., any of the following characters: % , & , !, #,
@).

Optional Keyword indicating that the parameter is optional. All optional
parameters must be of type Variant . Furthermore, all
parameters that follow the first optional parameter must also be
optional.

If this keyword is omitted, then the parameter is required.

Note: You can use the IsMissing function to determine whether
an optional parameter was actually passed by the caller.

ByVal Keyword indicating that parameter is passed by value.

ByRef Keyword indicating that parameter is passed by reference. If
neither the ByVal nor the ByRef keyword is given, then ByRef
is assumed.

parameter Name of the parameter, which must follow the same naming
conventions as those used by variables. This name can include a
type-declaration character, appearing in place of As type.

type Type of the parameter (Integer, String, and so on). Arrays are
indicated with parentheses. For example, an array of integers
would be declared as follows:

Function Test(a() As Integer)

End Function

Part Description

250 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 250 of 299 Printed: 9/25/96

A function returns to the caller when either of the following statements is encountered:
End Function
Exit Function

Functions can be recursive.

Returning Values from Functions

To assign a return value, an expression must be assigned to the name of the function, as
shown below:

Function TimesTwo(a As Integer) As Integer

TimesTwo = a * 2

End Function

If no assignment is encountered before the function exits, then one of the following
values is returned:

The type of the return value is determined by the As ReturnType clause on the Function
statement itself. As an alternative, a type-declaration character can be added to the
Function name. For example, the following two definitions of Test both return String
values:

Function Test() As String

Test = "Hello, world"

End Function

Function Test$()

Test = "Hello, world"

End Function

Functions in BasicScript cannot return user-defined types or dialogs.

ReturnType Type of data returned by the function. If the return type is not
given, then Variant is assumed. The ReturnType can only be
specified if the function name (i.e., the name parameter) does
not contain an explicit type-declaration character.

Value Data Type Returned by the Function

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean

Part Description

Function...End Function (statement) 251

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 251 of 299 Printed: 9/25/96

Passing Parameters to Functions

Parameters are passed to a function either by value or by reference, depending on the
declaration of that parameter in arglist. If the parameter is declared using the ByRef
keyword, then any modifications to that passed parameter within the function change
the value of that variable in the caller. If the parameter is declared using the ByVal
keyword, then the value of that variable cannot be changed in the called function. If
neither the ByRef or ByVal keywords are specified, then the parameter is passed by
reference.

You can override passing a parameter by reference by enclosing that parameter within
parentheses. For instance, the following example passes the variable j by reference,
regardless of how the third parameter is declared in the arglist of UserFunction:

i = UserFunction(10,12,(j))

Optional Parameters

BasicScript allows you to skip parameters when calling functions, as shown in the
following example:

Function Test(a%,b%,c%) As Variant

End Function

Sub Main

a = Test(1,,4) 'Parameter 2 was skipped.

End Sub

You can skip any parameter, with the following restrictions:

1. The call cannot end with a comma. For instance, using the above example, the
following is not valid:

a = Test(1,,)

2. The call must contain the minimum number of parameters as required by the called
function. For instance, using the above example, the following are invalid:

a = Test(,1) 'Only passes two out of three required

'parameters.

a = Test(1,2) 'Only passes two out of three required

'parameters.

When you skip a parameter in this manner, BasicScript creates a temporary variable and
passes this variable instead. The value of this temporary variable depends on the data
type of the corresponding parameter in the argument list of the called function, as
described in the following table:

Value Data Type

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

252 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 252 of 299 Printed: 9/25/96

Within the called function, you will be unable to determine whether a parameter was
skipped unless the parameter was declared as a variant in the argument list of the
function. In this case, you can use the IsMissing function to determine whether the
parameter was skipped:

Function Test(a,b,c)

If IsMissing(a) Or IsMissing(b) Then Exit Sub

End Function

Example Function Factorial(n%) As Integer
'This function calculates N! (N-factoral).
f% = 1
For i = n To 2 Step -1

f = f * i
Next i
Factorial = f

End Function
Sub Main()

'This example calls user-defined function Factoral and
'displays the result in a dialog box.
a% = 0
prompt$ = "Enter an integer number greater than 2."
Do While a% < 2

a% = Val(InputBox$(prompt$,"Compute Factorial"))
Loop
b# = Factorial(a%)
MsgBox "The factoral of " & a% & " is: " & b#

End Sub

See Also Sub...End Sub (statement)

Platform(s) All.

Fv (function)

Syntax Fv(rate, nper, pmt, pv, due)

Description Calculates the future value of an annuity based on periodic fixed payments and a
constant rate of interest.

Error Variant

December 30, 1899 Date

False Boolean

Value Data Type

Fv (function) 253

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 253 of 299 Printed: 9/25/96

Comments An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages and
monthly savings plans.

The Fv function requires the following named parameters:

The rate and nper values must be expressed in the same units. If rate is expressed as a
percentage per month, then nper must also be expressed in months. If rate is an annual
rate, then the nper value must also be given in years.

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example 'This example calculates the future value of 100 dollars paid
'periodically for a period of 10 years (120 months) at a rate of
'10% per year (or .10/12 per month) with payments made on the
'first of the month. The value is displayed in a dialog box.
'Note that payments are negative values.
Sub Main()

a# = Fv((.10/12),120,-100.00,0,1)
MsgBox "Future value is: " & Format(a#,"Currency")

End Sub

See Also IRR (function); MIRR (function); Npv (function); Pv (function).

Platform(s) All.

Named Parameter Description

rate Double representing the interest rate per period. Make sure that
annual rates are normalized for monthly periods (divided by
12).

nper Double representing the total number of payments (periods) in
the annuity.

pmt Double representing the amount of each payment per period.
Payments are entered as negative values, whereas receipts are
entered as positive values.

pv Double representing the present value of your annuity. In the
case of a loan, the present value would be the amount of the
loan, whereas in the case of a retirement annuity, the present
value would be the amount of the fund.

due Integer indicating when payments are due for each payment
period. A 0 specifies payment at the end of each period,
whereas a 1 indicates payment at the start of each period.

254 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 254 of 299 Printed: 9/25/96

Get (statement)

Syntax Get [#] filenumber, [recordnumber], variable

Description Retrieves data from a random or binary file and stores that data into the specified
variable.

Comments The Get statement accepts the following parameters:

With random files, a runtime error will occur if the length of the data being read exceeds
the reclen parameter specified with the Open statement. If the length of the data being
read is less than the record length, the file pointer is advanced to the start of the next
record. With binary files, the data elements being read are contiguousthe file pointer
is never advanced.

Variable Types

The type of the variable parameter determines how data will be read from the file. It can
be any of the following types:

Parameter Description

filenumber Integer used by BasicScript to identify the file. This is the same
number passed to the Open statement.

recordnumber Long specifying which record is to be read from the file.

For binary files, this number represents the first byte to be read
starting with the beginning of the file (the first byte is 1). For
random files, this number represents the record number starting
with the beginning of the file (the first record is 1). This value
ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is
read from the file (if no records have been read yet, then the first
record in the file is read). When this parameter is omitted, the
commas must still appear, as in the following example:

Get #1,,recvar

If recordnumber is specified, it overrides any previous change
in file position specified with the Seek statement.

variable Variable into which data will be read. The type of the variable
determines how the data is read from the file, as described
below.

Variable Type File Storage Description

Integer 2 bytes are read from the file.

Long 4 bytes are read from the file.

Get (statement) 255

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 255 of 299 Printed: 9/25/96

String (variable-length) In binary files, variable-length strings are read by first
determining the specified string variable's length and then
reading that many bytes from the file. For example, to
read a string of eight characters:

s$=String$(8,"")

Get #1,,s$

In random files, variable-length strings are read by first
reading a 2-byte length and then reading that many
characters from the file.

String (fixed-length) Fixed-length strings are read by reading a fixed number of
characters from the file equal to the string's declared
length.

Double 8 bytes are read from the file (IEEE format).

Single 4 bytes are read from the file (IEEE format).

Date 8 bytes are read from the file (IEEE double format).

Boolean 2 bytes are read from the file. Nonzero values are True,
and zero values are False.

Variant A 2-byte VarType is read form the file, which determines
the format of the data that follows. Once the VarType is
known, the data is read individually, as described above.
With user-defined errors, after the 2-byte VarType, a
2-byte unsigned integer is read and assigned as the value
of the user-defined error, followed by 2 additional bytes of
information about the error.

The exception is with strings, which are always preceded
by a 2-byte string length.

User-defined types Each member of a user-defined data type is read
individually.

In binary files, variable-length strings within user-defined
types are read by first reading a 2-byte length followed by
the string's content. This storage is different from
variable-length strings outside of user-defined types.

When reading user-defined types, the record length must
be greater than or equal to the combined size of each
element within the data type.

Arrays Arrays cannot be read from a file using the Get statement.

Variable Type File Storage Description

256 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 256 of 299 Printed: 9/25/96

Example 'This example opens a file for random write, then writes ten
'records into the file with the values 10...50. Then the file is
'closed and reopened in random mode for read, and the records
'are read with the Get statement. The result is displayed in a
'message box.
Sub Main()

Open "test.dat" For Random Access Write As #1
For x = 1 to 10

y% = x * 10
Put #1,x,y

Next x
Close
Open "test.dat" For Random Access Read As #1
For y = 1 to 5

Get #1,y,x%
message = message & "Record " & y & ": " & x% & Basic.Eoln$

Next y
MsgBox message
Close

End Sub

See Also Open (statement); Put (statement); Input# (statement); Line Input# (statement);
Input , Input$, InputB , InputB$ (functions).

Platform(s) All.

GetAllSettings (function)

Syntax GetAllSettings(appname [, section])

Description Returns all of the keys within the specified section, or all of the sections within the
specified application from the system registry.

Comments The GetAllSettings function takes the following named parameters:

Object Object variables cannot be read from a file using the Get
statement.

Variable Type File Storage Description

Named Parameter Description

appname A String expression specifying the name of the application
from which settings or keys will be returned.

section A String expression specifying the name of the section from
which keys will be returned. If omitted, then all of the section
names within appname will be returned.

GetAttr (function) 257

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 257 of 299 Printed: 9/25/96

The GetAllSettings function returns a Variant containing an array of strings.

Example Sub Main()
Dim NewAppSettings() As Variant
SaveSetting appname := "NewApp", section := "Startup", _

key := "Height", setting := 200
SaveSetting appname := "NewApp", section := "Startup _

", key := "Width", setting := 320
GetAllSettings appname := "NewApp", _

section := "Startup", resultarray := NewAppSettings
For i = LBound(NewAppSettings) To UBound(NewAppSettings)

NewAppSettings(i) = NewAppSettings(i) & "=" & _
GetSetting("NewApp", "Startup", NewAppSettings(i))

Next i
r = SelectBox("Registry Settings","", NewAppSettings)

End Sub

See Also GetSetting (function); DeleteSetting (statement); SaveSetting (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Win32: Under Win32, this statement operates on the system registry. All settings are
read from the following entry in the system registry:

HKEY_CURRENT_USER\Software\BasicScript Program Settings\appname\section

Windows, OS/2: Settings are stored in INI files. The name of the INI file is specified by
appname. If appname is omitted, then this command operates on the WIN.INI file. For
example, to enumerate all of the keys within the intl section of the WIN.INI file, you
could use the following statements:

Dim a As Variant

a = GetAllSettings (,"intl")

GetAttr (function)

Syntax GetAttr(pathname)

Description Returns an Integer containing the attributes of the specified file.

Comments The attribute value returned is the sum of the attributes set for the file. The value of each
attribute is as follows:

Constant Value Includes

ebNormal 0 Read-only files, archive files, subdirectories, and files
with no attributes

ebReadOnly 1 Read-only files

ebHidden 2 Hidden files

258 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 258 of 299 Printed: 9/25/96

To deterimine whether a particular attribute is set, you can And the values shown above
with the value returned by GetAttr . If the result is True, the attribute is set, as shown
below:

Dim w As Integer

w = GetAttr ("sample.txt")

If w And ebReadOnly Then MsgBox "This file is read-only."

Example 'This example tests to see whether the file test.dat exists. If
'it does not, then it creates the file. The file attributes are
'then retrieved with the GetAttr function, and the result is
'displayed.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

If Not FileExists("test.dat") Then
Open "test.dat" For Random Access Write As #1
Close

End If
y% = GetAttr ("test.dat")
If y% And ebNone Then _

message = message & "No archive bit is set." & crlf
If y% And ebReadOnly Then _

message = message & "The read-only bit is set." & crlf
If y% And ebHidden Then _

message = message & "The hidden bit is set." & crlf
If y% And ebSystem Then _

message = message & "The system bit is set." & crlf
If y% And ebVolume Then _

message = message & "The volume bit is set." & crlf
If y% And ebDirectory Then _

message = message & "The directory bit is set." & crlf
If y% And ebArchive Then _

message = message & "The archive bit is set."
MsgBox message
Kill "test.dat"

End Sub

See Also SetAttr (statement); FileAttr (function).

Platform(s) All.

ebSystem 4 System files

ebVolume 9 Volume label

ebDirectory 16 Subdirectories

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes

Constant Value Includes

GetCheckBox (function) 259

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 259 of 299 Printed: 9/25/96

Platform Notes Windows: Under Windows, these attributes are the same as those used by DOS.

UNIX: On UNIX platforms, the hidden file attribute corresponds to files without the
read or write attributes.

GetCheckBox (function)

Syntax GetCheckBox(name$ | id)

Description Returns an Integer representing the state of the specified check box.

Comments This function is used to determine the state of a check box, given its name or ID. The
returned value will be one of the following:

The GetCheckBox function takes the following parameters:

Example 'This example toggles the Match Case check box in the Find
'dialog box.
Sub Main()

Menu "Search.Find"
If GetCheckBox ("Match Case") = 0 Then

SetCheckBox "Match Case",1
Else

SetCheckBox "Match Case",0
End If

End Sub

See Also CheckBoxExists (function); CheckBoxEnabled (function); SetCheckBox (statement);
DlgValue (function).

Platform(s) Windows.

Returned Value Description

0 Check box contains no check.

1 Check box contains a check.

2 Check box is grayed.

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.

Note: The GetCheckBox function is used to retrieve the state of a check box in
another application's dialog box. Use the DlgValue function to retrieve the state of a
check box in a dynamic dialog box.

260 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 260 of 299 Printed: 9/25/96

GetComboBoxItem$ (function)

Syntax GetComboBoxItem$(name$ | id [, ItemNumber])

Description Returns a String containing the text of an item within a combo box.

Comments The GetComboBoxItem$ function takes the following parameters:

The combo box must exist within the current window or dialog box; otherwise, a
runtime error is generated.

A zero-length string will be returned if the combo box does not contain textual items.

Example 'This example retrieves the last item from a combo box.
Sub Main()

last% = GetComboBoxItemCount("Directories:")
s$ = GetComboBoxItem$ ("Directories:",last% - 1) 'Number is

'0-based.
MsgBox "The last item in the combo box is " & s$

End Sub

See Also ComboBoxEnabled (function); ComboBoxExists (function);
GetComboBoxItemCount (function); SelectComboBoxItem (statement).

Platform(s) Windows.

Parameter Description

name$ String specifying the name of the combo box containing the
item to be returned.

The name of a combo box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a combo box. A runtime error is
generated if a combo box with that name cannot be found within
the active window.

id Integer specifying the ID of the combo box containing the item
to be returned.

ItemNumber Integer containing the line number of the desired combo box
item to be returned. If omitted, then the currently selected item in
the combo box is returned.

Note: The GetComboBoxItem$ function is used to retrieve the current item of a
combo box in another application's dialog box. Use the DlgText function to retrieve
the current item of a combo box in a dynamic dialog box.

GetComboBoxItemCount (function) 261

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 261 of 299 Printed: 9/25/96

GetComboBoxItemCount (function)

Syntax GetComboBoxItemCount(name$ | id)

Description Returns an Integer containing the number of items in the specified combo box.

Comments The GetComboBoxItemCount function takes the following parameters:

A runtime error is generated if the specified combo box does not exist within the current
window or dialog box.

Example 'This example copies all the items out of a combo box and into
'an array.
Sub Main()

Dim MyList$()
last% = GetComboBoxItemCount ("Directories:")
ReDim MyList$(0 To last - 1)
For i = 0 To last - 1

MyList$(i) = GetComboBoxItem$("Directories:",i)
Next i

End Sub

See Also ComboBoxEnabled (function); ComboBoxExists (function); GetComboBoxItem$
(function); SelectComboBoxItem (statement).

Platform(s) Windows.

GetEditText$ (function)

Syntax GetEditText$(name$ | id)

Description Returns a String containing the content of the specified text box control.

Parameter Description

name$ String containing the name of the combo box.

The name of a combo box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a combo box. A runtime error is
generated if a combo box with that name cannot be found within
the active window.

id Integer specifying the ID of the combo box.

Note: The GetComboBoxItemCount function is used to determine the number of
items in a combo box in another application's dialog box. There is no equivalent
function for use with dynamic dialog boxes.

262 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 262 of 299 Printed: 9/25/96

Comments The GetEditText$ function takes the following parameters:

A runtime error is generated if a text box control with the given name or ID cannot be
found within the active window.

Example 'This example retrieves the filename and prepends it with the
'current directory.
Sub Main()

s$ = GetEditText$ ("Filename:")'Retrieve edit control content.
s$ = CurDir$ & Basic.PathSeparator & s$'Prepend current dir.
SetEditText "Filename:",s$'Put it back.

End Sub

See Also EditEnabled (function); EditExists (function); SetEditText (statement).

Platform(s) Windows.

GetListBoxItem$ (function)

Syntax GetListBoxItem$(name$ | id,[item])

Description Returns a String containing the specified item in a list box.

Comments The GetListBoxItem$ function takes the following parameters:

Parameter Description

name$ String containing the name of the text box whose content will be
returned.

The name of a text box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a text box. A runtime error is generated
if a text box with that name cannot be found within the active
window.

id Integer specifying the ID of the text box whose content will be
returned.

Note: The GetEditText$ function is used to retrieve the content of a text box in
another application's dialog box. Use the DlgText$ function to retrieve the content of
a text box in a dynamic dialog box.

Parameter Description

name$ String specifying the name of the list box containing the item to
be returned.

GetListBoxItemCount (function) 263

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 263 of 299 Printed: 9/25/96

A runtime error is generated if the specified list box cannot be found within the active
window.

Example 'This example sees whether my name appears as an item in the
'"Users" list box.
Sub Main()

last% = GetListBoxItemCount("Users")
IsThere = False
For i = 0 To last% - 1'Number is zero-based.

If GetListBoxItem$ ("Users",i) = Net.User$ Then _
isThere = True

Next i
If IsThere Then MsgBox "I am a member!",ebOKOnly

End Sub

See Also GetListBoxItemCount (function); ListBoxEnabled (function); ListBoxExists
(function); SelectListBoxItem (statement).

Platform(s) Windows.

GetListBoxItemCount (function)

Syntax GetListBoxItemCount(name$ | id)

Description Returns an Integer containing the number of items in a specified list box.

The name of a list box is determined by scanning the window list
looking for a text control with the given name that is
immediately followed by a list box. A runtime error is generated
if a list box with that name cannot be found within the active
window.

id Integer specifying the ID of the list box containing the item to
be returned.

item Integer containing the line number of the desired list box item to
be returned. This number must be between 1 and the number of
items in the list box.

If omitted, then the currently selected item in the list box is
returned.

Note: The GetListBoxItem$ function is used to retrieve an item from a list box in
another application's dialog box. There is no equivalent function for use with
dynamic dialog boxes.

Parameter Description

264 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 264 of 299 Printed: 9/25/96

Comments The GetListBoxItemCount function takes the following parameters:

A runtime error is generated if the specified list box cannot be found within the active
window.

Example See GetListBoxItem$ (function).

See Also GetListBoxItem$ (function); ListBoxEnabled (function); ListBoxExists (function);
SelectListBoxItem (statement).

Platform(s) Windows.

GetObject (function)

Syntax GetObject(pathname [, class])

Description Returns the object specified by pathname or returns a previously instantiated object of
the given class.

Comments This function is used to retrieve an existing OLE Automation object, either one that
comes from a file or one that has previously been instantiated.

The pathname argument specifies the full pathname of the file containing the object to
be activated. The application associated with the file is determined by OLE at runtime.
For example, suppose that a file called c:\docs\resume.doc was created by a word
processor called wordproc.exe. The following statement would invoke wordproc.exe,
load the file called c:\docs\resume.doc, and assign that object to a variable:

Dim doc As Object

Set doc = GetObject ("c:\docs\resume.doc")

To activate a part of an object, add an exclamation point to the filename followed by a
string representing the part of the object that you want to activate. For example, to
activate the first three pages of the document in the previous example:

Parameter Description

name$ String containing the name of the list box.

The name of a list box is determined by scanning the window list
looking for a text control with the given name that is
immediately followed by a list box. A runtime error is generated
if a list box with that name cannot be found within the active
window.

id Integer specifying the ID of the list box.

Note: The GetListBoxItemCount function is used to retrieve the number of items in
a list box in another application's dialog box. There is no equivalent function for use
with dynamic dialog boxes.

GetOption (function) 265

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 265 of 299 Printed: 9/25/96

Dim doc As Object

Set doc = GetObject ("c:\docs\resume.doc!P1-P3")

The GetObject function behaves differently depending on whether the first named
parameter is omitted. The following table summarizes the different behaviors of
GetObject:

Examples 'This first example instantiates the existing copy of Excel.
Dim Excel As Object
Set Excel = GetObject (,"Excel.Application")
'This second example loads the OLE server associated with a
'document.
Dim MyObject As Object
Set MyObject = GetObject ("c:\documents\resume.doc",)

See Also CreateObject (function); Object (data type).

Platform(s) Windows, Win32, Macintosh.

GetOption (function)

Syntax GetOption(name$ | id)

Description Returns True if the option is set; returns False otherwise.

Comments The GetOption function takes the following parameters:

pathname class GetObject Returns

Not specified Specified A reference to an existing instance of the
specified object. A runtime error results if the
object is not already loaded.

" " Specified A reference to a new object (as specified by
class). A runtime error occurs if an object of
the specified class cannot be found.

This is the same as CreateObject.

Specified Not specified The default object from pathname. The
application to activate is determined by OLE
based on the given filename.

Specified Specified The object given class from the file given by
pathname. A runtime error occurs if an object
of the given class cannot be found in the given
file.

Parameter Description

name$ String containing the name of the option button.

266 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 266 of 299 Printed: 9/25/96

The option button must exist within the current window or dialog box.

A runtime error will be generated if the specified option button does not exist.

Example 'This example figures out which option is set in the Desktop
'dialog box of the Control Panel.
Sub Main()

id = Shell("control",7)'Run the Control Panel.
WinActivate "Control Panel"'Activate the Control Panel window.
Menu "Settings.Desktop"'Select Desktop dialog box.
WinActivate "Control Panel|Desktop"'Activate it.
If GetOption ("Tile") Then'Retrieve which option is set.

MsgBox "Your wallpaper is tiled."
Else

MsgBox "Your wallpaper is centered."
End If

End Sub

See Also OptionEnabled (function); OptionExists (function); SetOption (statement).

Platform(s) Windows.

GetSetting (function)

Syntax GetSetting([appname], section, key[, default])

Description Retrieves an specific setting from the system registry.

Comments The GetSetting function has the following named parameters:

id Integer containing the ID of the option button. The id must be
used when the name of the option button is not known in
advance.

Note: The GetOption function is used to retrieve the state of an option button in
another application's dialog box. Use the DlgValue function to retrieve the state of
an option button in a dynamic dialog box.

Parameter Description

Named Parameter Description

appname A String expression specifying the name of the application
from which the setting will be read.

section A String expression specifying the name of the section
within appname to be read.

Global (statement) 267

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 267 of 299 Printed: 9/25/96

Example Sub Main()
SaveSetting appname := "NewApp", section := "Startup", _

key := "Height", setting := 200
SaveSetting appname := "NewApp", section := "Startup", _

key := "Width", setting := 320
MsgBox GetSetting(appname := "NewApp", section := "Startup", _

key := "Height", default := "50")
DeleteSetting "NewApp"' Delete the NewApp key

End Sub

See Also GetAllSettings (function); DeleteSetting (statement); SaveSetting (statement).

Platform(s) Win32, Windows, OS/2.

Platform Notes Win32: Under Win32, this statement operates on the system registry. All settings are
read from the following entry in the system registry:

HKEY_CURRENT_USER\Software\BasicScript Program
Settings\ appname\ section\ key

On this platform, the appname parameter is not optional.

Windows, OS/2: Settings are stored in INI files. The name of the INI file is specified by
appname. If appname is omitted, then this command operates on the WIN.INI file. For
example, to read the sLanguage setting from the intl section of the WIN.INI file, you
could use the following statement:

s$ = GetSetting (,"intl","sLanguage")

Global (statement)

Description See Public (statement).

Platform(s) All.

GoSub (statement)

Syntax GoSub label

key A String expression specifying the name of the key within
section to be read.

default An optional String expression specifying the default value to
be returned if the desired key does not exist in the system
registry. If omitted, then an empty string is returned if the key
doesn’t exist.

Named Parameter Description

268 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 268 of 299 Printed: 9/25/96

Description Causes execution to continue at the specified label.

Comments Execution can later be returned to the statement following the GoSub by using the
Return statement.

The label parameter must be a label within the current function or subroutine. GoSub
outside the context of the current function or subroutine is not allowed.

Example 'This example gets a name from the user and then branches to a
'subroutine to check the input. If the user clicks Cancel or
'enters a blank name, the program terminates; otherwise, the
'name is set to MICHAEL, and a message is displayed.
Sub Main()

uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
GoSub CheckName
MsgBox "Hello, " & uname$
Exit Sub

CheckName:
If (uname$ = "") Then

GoSub BlankName
ElseIf uname$ = "MICHAEL" Then

GoSub RightName
Else

GoSub OtherName
End If
Return

BlankName:
MsgBox "No name? Clicked Cancel? I'm shutting down."
Exit Sub

RightName:
Return

OtherName:
MsgBox "I am renaming you MICHAEL!"
uname$ = "MICHAEL"
Return

End Sub

See Also Goto (statement); Return (statement).

Platform(s) All.

Goto (statement)

Syntax Goto label

Description Transfers execution to the line containing the specified label.

Comments The compiler will produce an error if label does not exist.

Goto (statement) 269

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 269 of 299 Printed: 9/25/96

The label must appear within the same subroutine or function as the Goto.

Labels are identifiers that follow these rules:

1. Must begin with a letter.

2. May contain letters, digits, and the underscore character.

3. Must not exceed 80 characters in length.

4. Must be followed by a colon (:).

Labels are not case-sensitive.

Example 'This example gets a name from the user and then branches to a
'statement, depending on the input name. If the name is not
'MICHAEL, it is reset to MICHAEL unless it is null or the user
'clicks Cancel--in which case, the program displays a message
'and terminates.
Sub Main()

uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
If uname$ = "MICHAEL" Then

Goto RightName
Else

Goto WrongName
End If

WrongName:
If (uname$ = "") Then

MsgBox "No name? Clicked Cancel? I'm shutting down."
Else

MsgBox "I am renaming you MICHAEL!"
uname$ = "MICHAEL"
Goto RightName

End If
Exit Sub

RightName:
MsgBox "Hello, MICHAEL!"

End Sub

See Also GoSub (statement); Call (statement).

Platform(s) All.

Platform Notes Windows, Win32: To break out of an infinite loop, press Ctrl+Break.

UNIX: To break out of an infinite loop, press Ctrl+C.

Macintosh: To break out of an infinite loop, press Ctrl+Period.

OS/2: To break out of an infinite loop, press Ctrl+C or Ctrl+Break.

270 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 270 of 299 Printed: 9/25/96

GroupBox (statement)

Syntax GroupBox x, y, width, height, title$ [, .Identifier]

Description Defines a group box within a dialog box template.

Comments This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The group box control is used for static display onlythe user cannot interact with a
group box control.

Separator lines can be created using group box controls. This is accomplished by
creating a group box that is wider than the width of the dialog box and extends below
the bottom of the dialog boxi.e., three sides of the group box are not visible.

If title$ is a zero-length string, then the group box is drawn as a solid rectangle with no
title.

The GroupBox statement requires the following parameters:

Example 'This example shows the GroupBox statement being used both for
'grouping and as a separator line.
Sub Main()

Begin Dialog OptionsTemplate 16,32,128,84,"Options"
GroupBox 4,4,116,40,"Window Options"
CheckBox 12,16,60,8,"Show &Toolbar",.ShowToolbar
CheckBox 12,28,68,8,"Show &Status Bar",.ShowStatusBar
GroupBox -12,52,152,48," ",.SeparatorLine
OKButton 16,64,40,14,.OK
CancelButton 68,64,40,14,.Cancel

End Dialog
Dim OptionsDialog As OptionsTemplate
Dialog OptionsDialog

End Sub

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in
dialog units.

title$ String containing the label of the group box. If title$ is a
zero-length string, then no title will appear.

.Identifier Optional parameter that specifies the name by which this control
can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable). If omitted, then the first two words
of title$ are used.

HelpButton (statement) 271

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 271 of 299 Printed: 9/25/96

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); ListBox (statement);
OKButton (statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement); PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, OS/2, Macintosh, UNIX.

HelpButton (statement)

Syntax HelpButton x, y, width, height, HelpFileName$, HelpContext, [, .Identifier]

Description Defines a help button within a dialog template.

Comments This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The HelpButton statement takes the following parameters:

When the user selects a help button, the associated help file is located at the indicated
topic. Selecting a help button does not remove the dialog. Similarly, no actions are sent
to the dialog procedure when a help button is selected.

When a help button is present within a dialog, it can be automatically selected by
pressing the help key (F1 on most platforms).

Example Sub Main()
Begin Dialog HelpDialogTemplate ,,180,96,"Untitled"

OKButton 132,8,40,14
CancelButton 132,28,40,14
HelpButton 132,48,40,14,"", 10
Text 16,12,88,12,"Please click ""Help"".",.Text1

End Dialog

Parameter Description

x,y Integer position of the control (in dialog units) relative to the
upper left corner of the dialog box.

width,height Integer dimensions of the control in dialog units.

HelpFileName$ String expression specifying the name of the help file to be
invoked when the button is selected.

HelpContext Long expression specifying the ID of the topic within
HelpFileName$ containing context-sensitive help.

.Identifier Name by which this control can be referenced by statements
in a dialog function (such as DlgFocus and DlgEnable).

272 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 272 of 299 Printed: 9/25/96

Dim HelpDialog As
HelpDialogTemplat

e

Dialog HelpDialog End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionButton (statement);
OptionGroup (statement); Picture (statement); PushButton (statement); Text
(statement); Begin Dialog (statement); PictureButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Hex, Hex$ (functions)

Syntax Hex[$](number)

Description Returns a String containing the hexadecimal equivalent of number.

Comments Hex$ returns a String, whereas Hex returns a String variant.

The returned string contains only the number of hexadecimal digits necessary to
represent the number, up to a maximum of eight.

The number parameter can be any type but is rounded to the nearest whole number
before converting to hex. If the passed number is an integer, then a maximum of four
digits are returned; otherwise, up to eight digits can be returned.

The number parameter can be any expression convertible to a number. If number is
Null , then Null is returned. Empty is treated as 0.

Example 'This example inputs a number and displays it in decimal and
'hex until the input number is 0 or an invalid input.
Sub Main()

Do
xs$ = InputBox$("Enter a number to convert:","Hex Convert")
x = Val(xs$)
If x <> 0 Then

MsgBox "Dec: " & x & " Hex: " & Hex$(x)
Else

MsgBox "Goodbye."
End If

Loop While x <> 0
End Sub

See Also Oct, Oct$ (functions).

Platform(s) All.

HLine (statement) 273

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 273 of 299 Printed: 9/25/96

HLine (statement)

Syntax HLine [lines]

Description Scrolls the window with the focus left or right by the specified number of lines.

Comments The lines parameter is an Integer specifying the number of lines to scroll. If this
parameter is omitted, then the window is scrolled right by one line.

Example 'This example scrolls the Notepad window to the left by three
'"amounts." Each "amount" is equivalent to clicking the right
'arrow of the horizontal scroll bar once.
Sub Main()

AppActivate "Notepad"
HLine 3 'Move 3 lines in.

End Sub

See Also HPage (statement); HScroll (statement).

Platform(s) Windows, Win32.

Hour (function)

Syntax Hour(time)

Description Returns the hour of the day encoded in the specified time parameter.

Comments The value returned is as an Integer between 0 and 23 inclusive.

The time parameter is any expression that converts to a Date.

Example 'This example takes the current time; extracts the hour, minute,
'and second; and displays them as the current time.
Sub Main()

xt# = TimeValue(Time$())
xh# = Hour (xt#)
xm# = Minute(xt#)
xs# = Second(xt#)
MsgBox "The current time is: " & xh# & ":" & xm# & ":" & xs#

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year
(function); Weekday (function); DatePart (function).

Platform(s) All.

274 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 274 of 299 Printed: 9/25/96

HPage (statement)

Syntax HPage [pages]

Description Scrolls the window with the focus left or right by the specified number of pages.

Comments The pages parameter is an Integer specifying the number of pages to scroll. If this
parameter is omitted, then the window is scrolled right by one page.

Example 'This example scrolls the Notepad window to the left by three
'"amounts." Each "amount" is equivalent to clicking within the
'horizontal scroll bar on the right side of the thumb mark.
Sub Main()

AppActivate "Notepad"
HPage 3 'Move 3 pages down.

End Sub

See Also HLine (statement); HScroll (statement).

Platform(s) Windows, Win32.

HScroll (statement)

Syntax HScroll percentage

Description Sets the thumb mark on the horizontal scroll bar attached to the current window.

Comments The position is given as a percentage of the total range associated with that scroll bar.
For example, if the percentage parameter is 50, then the thumb mark is positioned in the
middle of the scroll bar.

Example 'This example centers the thumb mark on the horizontal scroll
'bar of the Notepad window.
Sub Main()

AppActivate "Notepad"
HScroll 50 'Jump to the middle of the document.

End Sub

See Also HLine (statement); HPage (statement).

Platform(s) Windows, Win32.

HWND (object)

Syntax Dim name As HWND

Description A data type used to hold window objects.

HWND.Value (property) 275

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 275 of 299 Printed: 9/25/96

Comments This data type is used to hold references to physical windows in the operating
environment. The following commands operate on HWND objects:

The above language elements support both string and HWND window specifications.

Example 'This example activates the "Main" MDI window within Program
'Manager.
Sub Main()

Dim ProgramManager As HWND
Dim ProgramManagerMain As HWND
Set ProgramManager = WinFind("Program Manager")
If ProgramManager Is Not Nothing Then

WinActivate ProgramManager
WinMaximize ProgramManager
Set ProgramManagerMain = WinFind("Program Manager|Main")
If ProgramManagerMain Is Not Nothing Then

WinActivate ProgramManagerMain
WinRestore ProgramManagerMain

Else
MsgBox "Your Program Manager doesn't have a Main group."

End If
Else

MsgBox "Program Manager is not running."
End If

End Sub

See Also HWND.Value (property); WinFind (function); WinActivate (statement).

Platform(s) Windows, Win32.

HWND.Value (property)

Syntax window.Value

Description The default property of an HWND object that returns a Variant containing a HANDLE
to the physical window of an HWND object variable.

Comments The Value property is used to retrieve the operating environment–specific value of a
given HWND object. The size of this value depends on the operating environment in
which the script is executing and thus should always be placed into a Variant variable.

This property is read-only.

WinActivate WinClose WinFind WinList

WinMaximize WinMinimize WinMove WinRestore

WinSize

276 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 276 of 299 Printed: 9/25/96

Example 'This example displays a dialog box containing the class name of
'Program Manager's Main window. It does so using the .Value
'property, passing it directly to a Windows external routine.
Declare Sub GetClassName Lib "user" (ByVal Win%,ByVal
ClsName$,ByVal ClsNameLen%)
Sub Main()

Dim ProgramManager As HWND
Set ProgramManager = WinFind("Program Manager")
ClassName$ = Space(40)
GetClassName ProgramManager.Value ,ClassName$,Len(ClassName$)
MsgBox "The program classname is: " & ClassName$

End Sub

See Also HWND (object).

Platform(s) Windows, Win32.

Platform Notes Under Windows, this value is an Integer. Under Win32, this value is a Long.

If...Then...Else (statement)

Syntax 1 If condition Then statements [Else else_statements]

Syntax 2 If condition Then
[statements]

[ElseIf else_condition Then
[elseif_statements]]

[Else
[else_statements]]

End If

Description Conditionally executes a statement or group of statements.

Comments The single-line conditional statement (syntax 1) has the following parameters:

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description

condition Any expression evaluating to a Boolean value.

statements One or more statements separated with colons. This group
of statements is executed when condition is True.

else_statements One or more statements separated with colons. This group
of statements is executed when condition is False.

Parameter Description

condition Any expression evaluating to a Boolean value.

If...Then...Else (statement) 277

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 277 of 299 Printed: 9/25/96

There can be as many ElseIf conditions as required.

Example 'This example inputs a name from the user and checks to see
'whether it is MICHAEL or MIKE using three forms of the
'If...Then...Else statement. It then branches to a statement
'that displays a welcome message depending on the user's name.
Sub Main()

uname$ = UCase$(InputBox$("Enter your name:","Enter Name"))
If uname$ = "MICHAEL" Then GoSub MikeName
If uname$ = "MIKE" Then

GoSub MikeName
Exit Sub

End If
If uname$ = "" Then

MsgBox "Since you don't have a name, I'll call you MIKE!"
uname$ = "MIKE"
GoSub MikeName

ElseIf uname$ = "MICHAEL" Then
GoSub MikeName

Else
GoSub OtherName

End If
Exit Sub

MikeName:
MsgBox "Hello, MICHAEL!"
Return

OtherName:
MsgBox "Hello, " & uname$ & "!"
Return

End Sub

See Also Choose (function); Switch (function); IIf (function); Select...Case (statement).

Platform(s) All.

statements One or more statements to be executed when condition is
True.

else_condition Any expression evaluating to a Boolean value. The
else_condition is evaluated if condition is False.

elseif_statements One or more statements to be executed when condition is
False and else_condition is True.

else_statments One or more statements to be executed when both
condition and else_condition are False.

Parameter Description

278 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 278 of 299 Printed: 9/25/96

IIf (function)

Syntax IIf(expression, truepart, falsepart)

Description Returns truepart if condition is True; otherwise, returns falsepart.

Comments Both expressions are calculated before IIf returns.

The IIf function is shorthand for the following construct:
If condition Then

variable = truepart
Else

variable = falsepart
End If

Example Sub Main()
s$ = "Car"
MsgBox IIf (s$ = "Car","Nice Car","Nice Automobile")

End Sub

See Also Choose (function); Switch (function); If...Then...Else (statement); Select...Case
(statement).

Platform(s) All.

IMEStatus (function)

Syntax IMEStatus[()]

Description Returns the current status of the input method editor.

Comments The IMEStatus function returns one of the following constants for Japanese locales:

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.

ebIMEDisabled 3 IME disabled.

ebIMEHiragana 4 Hiragana double-byte character.

ebIMEKatakanaDbl 5 Katakana double-byte characters.

ebIMEKatakanaSng 6 Katakana single-byte characters.

ebIMEAlphaDbl 7 Alphanumeric double-byte characters.

ebIMEAlphaSng 8 Alphanumeric single-byte characters.

IMEStatus (function) 279

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 279 of 299 Printed: 9/25/96

For Chinese locales, one of the following constants are returned:

For Korean locales, this function returns a value with the first 5 bits having the
following meaning:

This function always returns 0 if no input method editor is installed.

Example 'This example retrieves the IMEStatus and displays the results.
Sub Main()

a = IMEStatus()
Select case a

Case 0
MsgBox "IME not installed."

Case 1
MsgBox "IME on."

Case 2
Msgbox "IME off."

End Select
End Sub

See Also Constants (topic).

Platform(s) Windows, Win32, OS/2, Macintosh, UNIX.

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.

Bit If not set (or 0) If set (or 1)

Bit 0 IME not installed IME installed

Bit 1 IME disabled IME enabled

Bit 2 English mode Hangeul mode

Bit 3 Banja mode (single-byte) Junja mode (double-byte)

Bit 4 Normal mode Hanja conversion mode

Note: You can test for the different bits using the And operator as follows:
a = IMEStatus()
If a And 1 Then ... 'Test for bit 0

If a And 2 Then ... 'Test for bit 1

If a And 4 Then ... 'Test for bit 2

If a And 8 Then ... 'Test for bit 3

If a And 16 Then ... ’Test for bit 4

280 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 280 of 299 Printed: 9/25/96

Imp (operator)

Syntax result = expression1 Imp expression2

Description Performs a logical or binary implication on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
implication is performed as follows:

Binary Implication

If the two expressions are Integer, then a binary implication is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to
Long and a binary implication is then performed, returning a Long result.

Binary implication forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions, according to the following table:

Example 'This example compares the result of two expressions to
'determine whether one implies the other.
Sub Main()

a = 10 : b = 20 : c = 30 : d = 40
If (a < b) Imp (c < d) Then

MsgBox "a less than b implies that c is less than d."
Else

MsgBox "a less than b does not imply that c is less than d."

If expression1 is and expression2 is then the result is

True True True

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

Null Null Null

If bit in expression1 is and bit in expression2 is the result is

1 1 1

0 1 1

1 0 0

0 0 1

Inline (statement) 281

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 281 of 299 Printed: 9/25/96

End If
If (a < b) Imp (c > d) Then

MsgBox "a less than b implies that c is greater than d."
Else

MsgBox "a less than b does not imply that c greater than d."
End If

End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); Eqv (operator); And
(operator).

Platform(s) All.

Inline (statement)

Syntax Inline name [parameters]
anytext

End Inline

Description Allows execution or interpretation of a block of text.

Comments The Inline statement takes the following parameters:

Example Sub Main()
Inline MacScript

-- AppleScript comment.
Beep
Display Dialog "AppleScript" buttons "OK"

End Inline
End Sub

See Also MacScript (statement).

Platform(s) All.

Parameter Description

name Identifier specifying the type of inline statement

parameters Comma-separated list of parameters.

anytext Text to be executed by the Inline statement. This text must
be in a format appropriate for execution by the Inline
statement.

The end of the text is assumed to be the first occurrence of
the words End Inline appearing on a line.

282 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 282 of 299 Printed: 9/25/96

Input# (statement)

Syntax Input [#] filenumber%, variable[, variable]...

Description Reads data from the file referenced by filenumber into the given variables.

Comments Each variable must be type-matched to the data in the file. For example, a String
variable must be matched to a string in the file.

The following parsing rules are observed while reading each variable in the variable list:

1. Leading white space is ignored (spaces and tabs).

2. When reading String variables, if the first character on the line is a quotation mark,
then characters are read up to the next quotation mark or the end of the line,
whichever comes first. Blank lines are read as empty strings. If the first character
read is not a quotation mark, then characters are read up to the first comma or the
end of the line, whichever comes first. String delimiters (quotes, comma,
end-of-line) are not included in the returned string. Spaces are trimmed from the
end of unquoted strings.

3. When reading numeric variables, scanning of the number stops when the first
non-numeric character (such as a comma, a letter, or any other unexpected
character) is encountered. Numeric errors are ignored while reading numbers from
a file. The resultant number is automatically converted to the same type as the
variable into which the value will be placed. If there is an error in conversion, then
0 is stored into the variable.

After reading the number, input is skipped up to the next delimiter—a comma, an
end-of-line, or an end-of-file.

Numbers must adhere to any of the following syntaxes:
[-|+] digits[. digits][E[-|+] digits][!|#|%|&|@]

&Hhexdigits[!|#|%|&]

&[O] octaldigits[!|#|%|&|@]

4. When reading Boolean variables, the first character must be #; otherwise, a runtime
error occurs. If the first character is #, then input is scanned up to the next delimiter
(a comma, an end-of-line, or an end-of-file). If the input matches #FALSE#, then
False is stored in the Boolean; otherwise, True is stored.

5. When reading Date variables, the first character must be #; otherwise, a runtime
error occurs. If the first character is #, then the input is scanned up to the next
delimiter (a comma, an end-of-line, or an end-of-file). If the input ends in a # and
the text between the #'s can be correctly interpreted as a date, then the date is
stored; otherwise, December 31, 1899, is stored.

Normally, dates that follow the universal date format are input from sequential files.
These dates use this syntax:

Input# (statement) 283

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 283 of 299 Printed: 9/25/96

#YYYY-MM-DD HH:MM:SS#

where YYYY is a year between 100 and 9999, MM is a month between 1 and 12, DD
is a day between 1 and 31, HH is an hour between 0 and 23, MM is a minute
between 0 and 59, and SS is a second between 0 and 59.

6. When reading Variant variables, if the data begins with a quotation mark, then a
string is read consisting of the characters between the opening quotation mark and
the closing quotation mark, end-of-line, or end-of-file.

If the input does not begin with a quotation mark, then input is scanned up to the
next comma, end-of-line, or end-of-file and a determination is made as to what data
is being represented. If the data cannot be represented as a number, Date, Error ,
Boolean, or Null , then it is read as a string.

The following table describes how special data is interpreted as variants:

Blank line Read as an Empty variant.

#NULL # Read as a Null variant.

TRUE# Read as a Boolean variant.

#FALSE# Read as a Boolean variant.

ERROR code# Read as a user-defined error.

date# Read as a Date variant.

"text" Read as a String variant.

7. If an error occurs in interpretation of the data as a particular type, then that data is
read as a String variant.

8. When reading numbers into variants, the optional type-declaration character
determines the VarType of the resulting variant. If no type-declaration character is
specified, then BasicScript will read the number according to the following rules:

• Rule 1: If the number contains a decimal point or an exponent, then the number is
read as Currency. If there is an error converting to Currency, then the number is
treated as a Double.

• Rule 2: If the number does not contain a decimal point or an exponent, then the
number is stored in the smallest of the following data types that most accurately
represents that value: Integer, Long, Currency, Double.

9. End-of-line is interpreted as either a single line feed, a single carriage return, or a
carriage-return/line-feed pair. Thus, text files from any platform can be interpreted
using this command.

The filenumber parameter is a number that is used by BasicScript to refer to the
open filethe number passed to the Open statement.

284 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 284 of 299 Printed: 9/25/96

The filenumber must reference a file opened in Input mode. It is good practice to
use the Write statement to write date elements to files read with the Input
statement to ensure that the variable list is consistent between the input and output
routines.

10. Null characters are ignored.

Example 'This example creates a file called test.dat and writes a series
'of variables into it. Then the variables are read using the
'Input# function.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Open "test.dat" For Output As #1
Write #1,2112,"David","McCue","123-45-6789"
Close
Open "test.dat" For Input As #1
Input # 1,x%,st1$,st2$,st3$
message = "Employee " & x% & " Information" & crlf & crlf
message = message & "First Name: " & st1$ & crlf
message = message & "Last Name: "& st2$ & crlf
message = message & "Social Security Number: " & sy3$
MsgBox message
Close
Kill "test.dat"

End Sub

See Also Open (statement); Get (statement); Line Input# (statement); Input , Input$, Input B,
InputB$ (functions).

Platform(s) All.

Input, Input$, InputB, InputB$ (functions)

Syntax Input[$](numchars,[#] filenumber)
InputB[$](numbytes,[#] filenumber)

Description Returns a specified number of characters or bytes read from a given sequential file.

Comments The Input$ and InputB$ functions return a String, whereas Input and InputB return a
String variant.

The following parameters are required:

Parameter Description

numchars Integer containing the number of characters to be read
from the file.

numbytes Integer containing the number of bytes to be read from the
file.

InputBox, InputBox$ (functions) 285

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 285 of 299 Printed: 9/25/96

The Input and Input$ functions read all characters, including spaces and end-of-lines.
Null characters are ignored.

The InputB and InputB$ functions are used to read byte data from a file.

Example 'This example opens the autoexec.bat file and displays it in a
'dialog box.
Const crlf = Chr$(13) & Chr$(10)
Sub Main()

x& = FileLen("c:\autoexec.bat")
If x& > 0 Then

Open "c:\autoexec.bat" For Input As #1
Else

MsgBox "File not found or empty."
Exit Sub

End If
If x& > 80 Then

ins = Input(80,#1)
Else

ins = Input(x,#1)
End If
Close
MsgBox "File length: " & x& & crlf & ins

End Sub

See Also Open (statement); Get (statement); Input# (statement); Line Input# (statement).

Platform(s) All.

InputBox, InputBox$ (functions)

Syntax InputBox[$](prompt [, [title] [, [default] [,[xpos],[ypos]
[, helpfile, context]]]])

Description Displays a dialog box with a text box into which the user can type.

Comments The content of the text box is returned as a String (in the case of InputBox$) or as a
String variant (in the case of InputBox). A zero-length string is returned if the user
selects Cancel.

filenumber Integer referencing a file opened in either Input or Binary
mode. This is the same number passed to the Open
statement.

Parameter Description

286 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 286 of 299 Printed: 9/25/96

The InputBox /InputBox$ functions take the following named parameters:

You can type a maximum of 255 characters into InputBox .

If both the helpfile and context parameters are specified, then a Help button is added in
addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

When Cancel is selected, an empty string is returned. An empty string is also returned
when the user selects the OK button with no text in the input box. Thus, it is not possible
to determine the difference between these two situations. If you need to determine the
difference, you should create a user-defined dialog or use the AskBox function.

Example Sub Main()
s$ = InputBox$ ("File to copy:","Copy","sample.txt")

End Sub

See Also MsgBox (statement); AskBox, AskBox$ (functions); AskPassword, AskPassword$
(function); OpenFileName$ (function); SaveFileName$ (function); SelectBox
(function); AnswerBox (function).

Platform(s) Windows, Win32, OS/2, Macintosh, UNIX.

Named Parameter Description

prompt Text to be displayed above the text box. The prompt
parameter can contain multiple lines, each separated with
an end-of-line (a carriage return, line feed, or
carriage-return/line-feed pair). A runtime error is generated
if prompt is Null .

title Caption of the dialog box. If this parameter is omitted, then
no title appears as the dialog box's caption. A runtime error
is generated if title is Null .

default Default response. This string is initially displayed in the
text box. A runtime error is generated if default is Null .

xpos, ypos Integer coordinates, given in twips (twentieths of a point),
specifying the upper left corner of the dialog box relative to
the upper left corner of the screen. If the position is
omitted, then the dialog box is positioned on or near the
application executing the script.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also
be specified.

context Number specifying the ID of the topic within helpfile for
this dialog's help. If this parameter is specified, then
helpfile must also be specified.

InStr, InstrB (functions) 287

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 287 of 299 Printed: 9/25/96

InStr, InstrB (functions)

Syntax InStr([start,] search, find [, compare])
InStrB([start,] search, find [, compare])

Description Returns the first character position of string find within string search.

Comments The InStr function takes the following parameters:

If the string is found, then its character position within search is returned, with 1 being
the character position of the first character.

The InStr and InStrB functions observe the following additional rules:

• If either search or find is Null , then Null is returned.

• If the compare parameter is specified, then start must also be specified. In other
words, if there are three parameters, then it is assumed that these parameters
correspond to start, search, and find.

• A runtime error is generated if start is Null .

• A runtime error is generated if compare is not 0 or 1.

• If search is Empty, then 0 is returned.

Parameter Description

start Integer specifying the character position (for Instr) or byte
position (for InstrB) where searching begins. The start
parameter must be between 1 and 32767.

If this parameter is omitted, then the search starts at the
beginning (start = 1).

search Text to search. This can be any expression convertible to a
String.

find Text for which to search. This can be any expression
convertible to a String.

compare Integer controlling how string comparisons are performed.
It can be any of the following values:

0 String comparisons are case-sensitive.

1 String comparisons are case-insensitive.

Any other value produces a runtime error.

If this parameter is omitted, then string comparisons use
the current Option Compare setting. If no Option
Compare statement has been encountered, then Binary is
used (i.e., string comparisons are case-sensitive).

288 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 288 of 299 Printed: 9/25/96

• If find is Empty, then start is returned. If start is greater than the length of search,
then 0 is returned.

• A runtime error is generated if start is less than or equal to zero.

The InStr and InStrB functions operate on character and byte data respectively. The
Instr function interprets the start parameter as a character, performs a textual
comparisons, and returns a character position. The InStrB function, on the other hand,
interprets the start parameter as a byte position, performs binary comparisons, and
returns a byte position.

On SBCS platforms, the InStr and InStrB functions are identical.

Example 'This example checks to see whether one string is in another
'and, if it is, then it copies the string to a variable and
'displays the result.
Sub Main()

a$ = "This string contains the name Stuart."
x% = InStr (a$,"Stuart",1)
If x% <> 0 Then

b$ = Mid$(a$,x%,6)
MsgBox b$ & " was found."
Exit Sub

Else
MsgBox "Stuart not found."

End If
End Sub

See Also Mid , Mid$, MidB , MidB$ (functions); Option Compare (statement); Item$
(function); Word$ (function); Line$ (function).

Platform(s) All.

Int (function)

Syntax Int(number)

Description Returns the integer part of number.

Comments This function returns the integer part of a given value by returning the first integer less
than the number. The sign is preserved.

The Int function returns the same type as number, with the following exceptions:

• If number is Empty, then an Integer variant of value 0 is returned.

• If number is a String, then a Double variant is returned.

• If number is Null , then a Null variant is returned.

Example 'This example extracts the integer part of a number.

Integer (data type) 289

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 289 of 299 Printed: 9/25/96

Sub Main()
a# = -1234.5224
b% = Int (a#)
MsgBox "The integer part of -1234.5224 is: " & b%

End Sub

See Also Fix (function); CInt (function).

Platform(s) All.

Integer (data type)

Syntax Integer

Description A data type used to declare whole numbers with up to four digits of precision.

Comments Integer variables are used to hold numbers within the following range:
–32768 <= integer <= 32767

Internally, integers are 2-byte short values. Thus, when appearing within a structure,
integers require 2 bytes of storage. When used with binary or random files, 2 bytes of
storage are required.

When passed to external routines, Integer values are sign-extended to the size of an
integer on that platform (either 16 or 32 bits) before pushing onto the stack.

The type-declaration character for Integer is %.

See Also Currency (data type); Date (data type); Double (data type); Long (data type); Object
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement); CInt (function).

Platform(s) All.

IPmt (function)

Syntax IPmt(rate, per, nper, pv, fv, due)

Description Returns the interest payment for a given period of an annuity based on periodic, fixed
payments and a fixed interest rate.

Comments An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages,
monthly savings plans, and retirement plans.

290 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 290 of 299 Printed: 9/25/96

The following table describes the named parameters:

The rate and nper parameters must be in expressed in the same units. If rate is
expressed in percentage paid per month, then nper must also be expressed in months. If
rate is an annual rate, then the period given in nper should also be in years or the annual
rate should be divided by 12 to obtain a monthly rate.

If the function returns a negative value, it represents interest you are paying out,
whereas a positive value represents interest paid to you.

Example 'This example calculates the amount of interest paid on a
'$1,000.00 loan financed over 36 months with an annual interest
'rate of 10%. Payments are due at the beginning of the month.
'The interest paid during the first 10 months is displayed in a
'table.

Named Parameter Description

rate Double representing the interest rate per period. If the
payment periods are monthly, be sure to divide the annual
interest rate by 12 to get the monthly rate.

per Double representing the payment period for which you are
calculating the interest payment. If you want to know the
interest paid or received during period 20 of an annuity, this
value would be 20.

nper Double representing the total number of payments in the
annuity. This is usually expressed in months, and you
should be sure that the interest rate given above is for the
same period that you enter here.

pv Double representing the present value of your annuity. In
the case of a loan, the present value would be the amount of
the loan because that is the amount of cash you have in the
present. In the case of a retirement plan, this value would
be the current value of the fund because you have a set
amount of principal in the plan.

fv Double representing the future value of your annuity. In the
case of a loan, the future value would be zero because you
will have paid it off. In the case of a savings plan, the future
value would be the balance of the account after all
payments are made.

due Integer indicating when payments are due. If this
parameter is 0, then payments are due at the end of each
period (usually, the end of the month). If this value is 1,
then payments are due at the start of each period (the
beginning of the month).

IRR (function) 291

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 291 of 299 Printed: 9/25/96

Const crlf = Chr$(13) + Chr$(10)
Sub Main()

For x = 1 to 10
ipm# = IPmt ((.10/12),x,36,1000,0,1)
message = message & Format(x,"00") & " : " _

& Format(ipm#," 0,0.00") & crlf
Next x
MsgBox message

End Sub

See Also NPer (function); Pmt (function); PPmt (function); Rate (function).

Platform(s) All.

IRR (function)

Syntax IRR(valuearray(), guess)

Description Returns the internal rate of return for a series of periodic payments and receipts.

Comments The internal rate of return is the equivalent rate of interest for an investment consisting
of a series of positive and/or negative cash flows over a period of regular intervals. It is
usually used to project the rate of return on a business investment that requires a capital
investment up front and a series of investments and returns on investment over time.

The IRR function requires the following named parameters:

The value of IRR is found by iteration. It starts with the value of guess and cycles
through the calculation adjusting guess until the result is accurate within 0.00001
percent. After 20 tries, if a result cannot be found, IRR fails, and the user must pick a
better guess.

Example 'This example illustrates the purchase of a lemonade stand for
'$800 and a series of incomes from the sale of lemonade over 12
'months. The projected incomes for this example are generated
'in two For...Next Loops, and then the internal rate of return

Named Parameter Description

valuearray() Array of Double numbers that represent payments and
receipts. Positive values are payments, and negative values
are receipts.

There must be at least one positive and one negative value
to indicate the initial investment (negative value) and the
amount earned by the investment (positive value).

guess Double containing your guess as to the value that the IRR
function will return. The most common guess is .1 (10
percent).

292 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 292 of 299 Printed: 9/25/96

'is calculated and displayed. (Not a bad investment!)
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim valu#(12)
valu(1) = -800 'Initial investment
message = valu#(1) & ", "
'Calculate the second through fifth months' sales.
For x = 2 To 5

valu(x) = 100 + (x * 2)
message = message & valu(x) & ", "

Next x
'Calcluate the sixth through twelfth months' sales.
For x = 6 To 12

valu(x) = 100 + (x * 10)
message = message & valu(x) & ", "

Next x
'Calcluate the equivalent investment return rate.
retrn# = IRR(valu,.1)
message = "The values: " & crlf & message & crlf & crlf
MsgBox message & "Return rate: " & Format(retrn#,"Percent")

End Sub

See Also Fv (function); MIRR (function); Npv (function); Pv (function).

Platform(s) All.

Is (operator)

Syntax object Is [object | Nothing]

Description Returns True if the two operands refer to the same object; returns False otherwise.

Comments This operator is used to determine whether two object variables refer to the same object.
Both operands must be object variables of the same type (i.e., the same data object type
or both of type Object).

The Nothing constant can be used to determine whether an object variable is
uninitialized:

If MyObject Is Nothing Then MsgBox "MyObject is
uninitialized."

Uninitialized object variables reference no object.

Example 'This function inserts the date into a Microsoft Word document.
Sub InsertDate(ByVal WinWord As Object)

If WinWord Is Nothing Then
MsgBox "Object variant is not set."

Else

IsDate (function) 293

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 293 of 299 Printed: 9/25/96

WinWord.Insert Date$
End If

End Sub
Sub Main()

Dim WinWord As Object
On Error Resume Next
WinWord = CreateObject("word.basic")
InsertDate WinWord

End Sub

See Also Operator Precedence (topic); Like (operator).

Platform(s) All.

Platform Notes Windows, Win32, Macintosh: When comparing OLE Automation objects, the Is
operator will only return True if the operands reference the same OLE Automation
object. This is different from data objects. For example, the following use of Is (using
the object class called excel.application) returns True:

Dim a As Object

Dim b As Object

a = CreateObject("excel.application")

b = a

If a Is b Then Beep

The following use of Is will return False, even though the actual objects may be the
same:

Dim a As Object

Dim b As Object

a = CreateObject("excel.application")

b = GetObject(,"excel.application")

If a Is b Then Beep

The Is operator may return False in the above case because, even though a and b
reference the same object, they may be treated as different objects by OLE 2.0 (this is
dependent on the OLE 2.0 server application).

IsDate (function)

Syntax IsDate(expression)

Description Returns True if expression can be legally converted to a date; returns False otherwise.

Example Sub Main()
Dim a As Variant

Retry:
a = InputBox("Enter a date.", "Enter Date")
If IsDate (a) Then

294 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 294 of 299 Printed: 9/25/96

MsgBox Format(a,"long date")
Else

Msgbox "Not quite, please try again!"
Goto Retry

End If
End Sub

See Also Variant (data type); IsEmpty (function); IsError (function); IsObject (function);
VarType (function); IsNull (function).

Platform(s) All.

IsEmpty (function)

Syntax IsEmpty(expression)

Description Returns True if expression is a Variant variable that has never been initialized; returns
False otherwise.

Comments The IsEmpty function is the same as the following:
(VarType(expression) = ebEmpty)

Example Sub Main()
Dim a As Variant
If IsEmpty (a) Then

a = 1.0# 'Give uninitialized data a Double value 0.0.
MsgBox "The variable has been initialized to: " & a

Else
MsgBox "The variable was already initialized!"

End If
End Sub

See Also Variant (data type); IsDate (function); IsError (function); IsObject (function);
VarType (function); IsNull (function).

Platform(s) All.

IsError (function)

Syntax IsError(expression)

Description Returns True if expression is a user-defined error value; returns False otherwise.

Example 'This example creates a function that divides two numbers. If
'there is an error dividing the numbers, then a variant of type
'"error" is returned. Otherwise, the function returns the result
'of the division. The IsError function is used to determine

IsMissing (function) 295

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 295 of 299 Printed: 9/25/96

'whether the function encountered an error.
Function Div(ByVal a,ByVal b) As Variant

If b = 0 Then
Div = CVErr(2112)'Return a special error value.

Else
Div = a / b 'Return the division.

End If
End Function
Sub Main()

Dim a As Variant
a = Div(10,12)
If IsError (a) Then

MsgBox "The following error occurred: " & CStr(a)
Else

MsgBox "The result is: " & a
End If

End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsObject (function);
VarType (function); IsNull (function).

Platform(s) All.

IsMissing (function)

Syntax IsMissing(argname)

Description Returns True if argname was passed to the current subroutine or function; returns False
if omitted.

Comments The IsMissing function is used with variant variables passed as optional parameters
(using the Optional keyword) to the current subroutine or function. For nonvariant
variables or variables that were not declared with the Optional keyword, IsMissing will
always return True.

Example 'The following function runs an application and optionally
'minimizes it. If the optional isMinimize parameter is not
'specified by the caller, then the application is not minimized.
Sub Test(AppName As String,Optional isMinimize As Variant)

app = Shell(AppName)
If Not IsMissing (isMinimize) Then

AppMinimize app
Else

AppMaximize app
End If

End Sub
Sub Main

Test "Notepad"'Maximize this application

296 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 296 of 299 Printed: 9/25/96

Test "Notepad",True'Mimimize this application
End Sub

See Also Declare (statement); Sub...End Sub (statement); Function...End Function
(statement).

Platform(s) All.

IsNull (function)

Syntax IsNull(expression)

Description Returns True if expression is a Variant variable that contains no valid data; returns
False otherwise.

Comments The IsNull function is the same as the following:
(VarType(expression) = ebNull)

Example Sub Main()
Dim a As Variant'Initialized as Empty
If IsNull (a) Then MsgBox "The variable contains no valid

data."
a = Empty * Null
If IsNull (a) Then MsgBox "Null propagated through the

expression."
End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsError (function);
IsObject (function); VarType (function).

Platform(s) All.

IsNumeric (function)

Syntax IsNumeric(expression)

Description Returns True if expression can be converted to a number; returns False otherwise.

Comments If passed a number or a variant containing a number, then IsNumeric always returns
True.

If a String or String variant is passed, then IsNumeric will return True only if the
string can be converted to a number. The following syntaxes are recognized as valid
numbers:

&Hhexdigits[&|%|!|#|@]

&[O] octaldigits[&|%|!|#|@]

[-|+] digits[.[digits]][E[-|+] digits][!|%|&|#|@]

IsObject (function) 297

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 297 of 299 Printed: 9/25/96

If an Object variant is passed, then the default property of that object is retrieved and
one of the above rules is applied.

IsNumeric returns False if expression is a Date.

Example Sub Main()
Dim s$ As String
s$ = InputBox("Enter a number.","Enter Number")
If IsNumeric (s$) Then

MsgBox "You did good!"
Else

MsgBox "You didn't do so good!"
End If

End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsError (function);
IsObject (function); VarType (function); IsNull (function).

Platform(s) All.

IsObject (function)

Syntax IsObject(expression)

Description Returns True if expression is a Variant variable containing an Object; returns False
otherwise.

Example 'This example will attempt to find a running copy of Excel and
'create an Excel object that can be referenced as any other
'object in BasicScript.
Sub Main()

Dim v As Variant
On Error Resume Next
Set v = GetObject(,"Excel.Application")
If IsObject (v) Then

MsgBox"The default object value is: " & v = v.Value'Access
value property of the object.

Else
MsgBox "Excel not loaded."

End If
End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsError (function);
VarType (function); IsNull (function).

Platform(s) All.

298 BasicScript Language Reference

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 298 of 299 Printed: 9/25/96

Item$ (function)

Syntax Item$(text$, first [,[last] [, delimiters$]])

Description Returns all the items between first and last within the specified formatted text list.

Comments The Item$ function takes the following parameters:

The Item$ function treats embedded null characters as regular characters.

An empty string is returned if first is less than 1. If last is less than first, the values are
swapped.

Example 'This example creates two delimited lists and extracts a range
'from each, then displays the result in a dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15"
list1$ = Item$ (ilist$,5,12)
list2$ = Item$ (slist$,2,9,"/")
MsgBox "The returned lists are: " & crlf & list1$ & crlf &

list2$
End Sub

See Also ItemCount (function); Line$ (function); LineCount (function); Word$ (function);
WordCount (function).

Parameter Description

text$ String containing the text from which a range of items is
returned.

first Integer containing the index of the first item to be
returned. If first is greater than the number of items in
text$, then a zero-length string is returned.

last Integer containing the index of the last item to be returned.
All of the items between first and last are returned. If last is
greater than the number of items in text$, then all items
from first to the end of text are returned.

If last is missing, then only the item specified by first is
returned. An "Invalid use of Null" error is returned if this
parameter is Null .

delimiters$ String containing different item delimiters.

By default, items are separated by commas and
end-of-lines. This can be changed by specifying different
delimiters in the delimiters$ parameter.

ItemCount (function) 299

Summit Software Confidential
Filename: lrf-i.fm5 Template: LRprint.FM5
Page: 299 of 299 Printed: 9/25/96

Platform(s) All.

ItemCount (function)

Syntax ItemCount(text$ [, delimiters$])

Description Returns an Integer containing the number of items in the specified delimited text.

Comments Items are substrings of a delimited text string. Items, by default, are separated by
commas and/or end-of-lines. This can be changed by specifying different delimiters in
the delimiters$ parameter. For example, to parse items using a backslash:

n = ItemCount(text$,"\")

The ItemCount function treats embedded null characters as regular characters.

Example 'This example creates two delimited lists and then counts the
'number of items in each. The counts are displayed in a dialog
'box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19"
l1% = ItemCount (ilist$)
l2% = ItemCount (slist$,"/")
message = "The first lists contains: " & l1% & " items." & crlf
message = message & "The second list contains: " _

& l2% & " items."
MsgBox message

End Sub

See Also Item$ (function); Line$ (function); LineCount (function); Word$ (function);
WordCount (function).

Platform(s) All.

300 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 300 of 321 Printed: 9/25/96

Keywords (topic)

A keyword is any word or symbol recognized by BasicScript as part of the language. All
of the following are keywords:

Access Alias And Any

Append As Base Begin

Binary Boolean ByRef ByVal

Call CancelButton Case CDecl

CheckBox Chr ChrB ChrW

Close ComboBox Compare Const

CStrings Currency Date Declare

Default DefBool DefCur DefDate

DefDbl DefInt DefLng DefObj

DefSng DefStr DefVar Dialog

Dim Do Double DropListBox

Else ElseIf End Eqv

Error Exit Explicit For

Function Get Global GoSub

Goto GroupBox HelpButton If

Imp Inline Input Input

InputB Integer Is Len

Let Lib Like Line

ListBox Lock Long Loop

LSet Mid MidB Mod

Name New Next Not

Nothing Object Off OKButton

On Open Option Optional

Kill (statement) 301

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 301 of 321 Printed: 9/25/96

Restrictions

All keywords are reserved by BasicScript, in that you cannot create a variable, function,
constant, or subroutine with the same name as a keyword. However, you are free to use
all keywords as the names of structure members.

For all other keywords in BasicScript (such as MsgBox, Str, and so on), the following
restrictions apply:

• You can create a subroutine or function with the same name as a keyword.

• You can create a variable with the same name as a keyword as long as the variable
is first explicitly declared with a Dim, Private, or Public statement.

Platform(s) All.

Kill (statement)

Syntax Kill pathname
Kill pathname [, filetype]
Kill filetype

Description Deletes all files matching pathname.

OptionButton OptionGroup Or Output

ParamArray Pascal Picture PictureButton

Preserve Print Private Public

PushButton Put Random Read

ReDim Rem Resume Return

RSet Seek Select Set

Shared Single Spc Static

StdCall Step Stop String

Sub System Tab Text

TextBox Then Time To

Type Unlock Until Variant

WEnd While Width Write

Xor

302 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 302 of 321 Printed: 9/25/96

Comments The Kill statement accepts the following named parameters:

The pathname argument can include wildcards, such as * and ?. The * character
matches any sequence of zero or more characters, whereas the ? character matches any
single character. Multiple *'s and ?'s can appear within the expression to form complex
searching patterns. The following table shows some examples.

Example 'This example looks to see whether file test1.dat exists. If it
'does not, then it creates both test1.dat and test2.dat. The
'existence of the files is tested again; if they exist, a
'message is generated, and then they are deleted. The final test
'looks to see whether they are still there and displays the
'result.
Sub Main()

If Not FileExists("test1.dat") Then
Open "test1.dat" For Output As #1
Open "test2.dat" For Output As #2

Named Parameter Description

pathname Specifies the file to delete. If filetype is specified, then this
parameter must specify a path. Otherwise, this parameter can
include both a path and a file specification containing
wildcards.

filetype Specifies the type of file on a Macintosh. If pathname is also
specified, it indicates the directory from which files will be
removed. Otherwise, files are removed from the current
directory.

File types are specified using the MacID function.

This Pattern Matches These Files Doesn't Match These Files

*S.*TXT SAMPLE. TXT

GOOSE.TXT

SAMS.TXT

SAMPLE

SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT

ACATS.TXT

C*T CAT

CAP.TXT

CAT.DOC

C?T CAT

CUT

CAT.TXT

CAPIT

CT

* (All files)

LBound (function) 303

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 303 of 321 Printed: 9/25/96

Close
End If
If FileExists ("test1.dat") Then

MsgBox "File test1.dat exists."
Kill "test?.dat"

End If
If FileExists ("test1.dat") Then

MsgBox "File test1.dat still exists."
Else

MsgBox "test?.dat sucessfully deleted."
End If

End Sub

See Also Name (statement).

Platform(s) All.

Platform Notes Windows: For compatibility with DOS wildcard matching, BasicScript special-cases
the pattern "*.*" to indicate all files, not just files with a periods in their names.

This function behaves the same as the "del" command in DOS.

Macintosh: The Macintosh does not support wildcard characters such as * and ?. These
are valid filename characters. Instead of wildcards, the Macintosh uses the MacID
function to specify a collection of files of the same type. The syntax for this function is:

Kill MacID(text$)

The text$ parameter is a four-character string containing a file type, a resource type, an
application signature, or an Apple event. A runtime error occurs if the MacID function
is used on platforms other than the Macintosh.

LBound (function)

Syntax LBound(ArrayVariable() [, dimension])

Description Returns an Integer containing the lower bound of the specified dimension of the
specified array variable.

Comments The dimension parameter is an integer specifying the desired dimension. If this
parameter is not specified, then the lower bound of the first dimension is returned.

The LBound function can be used to find the lower bound of a dimension of an array
returned by an OLE Automation method or property:

LBound (object.property [, dimension])
LBound (object.method [, dimension])

Examples Sub Main()
'This example dimensions two arrays and displays their lower
'bounds.

304 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 304 of 321 Printed: 9/25/96

Dim a(5 To 12)
Dim b(2 To 100, 9 To 20)
lba = LBound (a)
lbb = LBound (b,2)
MsgBox "The lower bound of a is: " & lba _

& " The lower bound of b is: " & lbb
'This example uses LBound and UBound to dimension a dynamic
'array to hold a copy of an array redimmed by the FileList
'statement.
Dim fl$()
FileList fl$,"*.*"
count = UBound(fl$)
If ArrayDims(a) Then

Redim nl$(LBound (fl$) To UBound(fl$))
For x = 1 To count

nl$(x) = fl$(x)
Next x
MsgBox "The last element of the new array is: " & nl$(count)

End If
End Sub

See Also UBound (function); ArrayDims (function); Arrays (topic).

Platform(s) All.

LCase, LCase$ (functions)

Syntax LCase[$](string)

Description Returns the lowercase equivalent of the specified string.

Comments LCase$ returns a String, whereas LCase returns a String variant.

Null is returned if string is Null .

Example 'This example shows the LCase function used to change uppercase
'names to lowercase with an uppercase first letter.
Sub Main()

lname$ = "WILLIAMS"
fl$ = Left$(lname$,1)
rest$ = Mid$(lname$,2,Len(lname$))
lname$ = fl$ & LCase$ (rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also UCase, UCase$ (functions).

Platform(s) All.

Left, Left$, LeftB, LeftB$ (functions) 305

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 305 of 321 Printed: 9/25/96

Left, Left$, LeftB, LeftB$ (functions)

Syntax Left[$](string, length)
LeftB[$](string, length)

Description Returns the leftmost length characters (for Left and Left$) or bytes (for LeftB and
LeftB$) from a given string.

Comments Left$ returns a String, whereas Left returns a String variant.

The length parameter is an Integer value specifying the number of characters to return.
If length is 0, then a zero-length string is returned. If length is greater than or equal to
the number of characters in the specified string, then the entire string is returned.

The LeftB and LeftB$ functions are used to return a sequence of bytes from a string
containing byte data. In this case, length specifies the number of bytes to return. If
length is greater than the number of bytes in string, then the entire string is returned.

Null is returned if string is Null .

Example 'This example shows the Left$ function used to change uppercase
'names to lowercase with an uppercase first letter.
Sub Main()

lname$ = "WILLIAMS"
fl$ = Left$ (lname$,1)
rest$ = Mid$(lname$,2,Len(lname$))
lname$ = fl$ & LCase$(rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also Right, Right$, RightB, RightB$ (functions).

Platform(s) All.

Len, LenB (functions)

Syntax Len(expression)
LenB(expression)

Description Returns the number of characters (for Len) or bytes (for LenB) in String expression or
the number of bytes required to store the specified variable.

Comments If expression evaluates to a String, then Len returns the number of characters in a given
string or 0 if the string is empty. When used with a Variant variable, the length of the
variant when converted to a String is returned. If expression is a Null , then Len returns
a Null variant.

The LenB function is used to return the number of bytes in a given string. On SBCS
systems, the LenB and Len functions are identical.

306 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 306 of 321 Printed: 9/25/96

If used with a non-String or non-Variant variable, these functions returns the number
of bytes occupied by that data element.

When used with user-defined data types, these functions return the combined size of
each member within the structure. Since variable-length strings are stored elsewhere,
the size of each variable-length string within a structure is 2 bytes.

The following table describes the sizes of the individual data elements when appearing
within a structure:

The Len and LenB functions always returns 0 with object variables or any data object
variable.

Examples Const crlf = Chr$(13) + Chr$(10)
Sub Main()

'This example shows the Len function used in a routine to
'change uppercase names to lowercase with an uppercase first
'letter.
lname$ = "WILLIAMS"
fl$ = Left$(lname$,1)
ln% = Len (lname$)
rest$ = Mid$(lname$,2,ln%)

Data Element Size

Integer 2 bytes.

Long 4 bytes.

Float 4 bytes.

Double 8 bytes.

Currency 8 bytes.

String (variable-length) 2 bytes

String (fixed-length) The length of the string as it appears in the string's
declaration in characters for Len and bytes for LenB.

Objects 0 bytes. Both data object variables and variables of
type Object are always returned as 0 size.

User-defined type Combined size of each structure member.

Variable-length strings within structures require 2
bytes of storage.

Arrays within structures are fixed in their dimensions.
The elements for fixed arrays are stored within the
structure and therefore require the number of bytes for
each array element multiplied by the size of each array
dimension:

element_size* dimension1* dimension2...

Let (statement) 307

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 307 of 321 Printed: 9/25/96

lname$ = fl$ & LCase$(rest$)
MsgBox "The converted name is: " & lname$
'This example returns a table of lengths for standard numeric
'types.
Dim lns(4)
a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22
lns(1) = Len (a%)
lns(2) = Len (b&)
lns(3) = Len (c!)
lns(4) = Len (d#)
message = "Lengths of standard types:" & crlf
message = message & "Integer: " & lns(1) & crlf
message = message & "Long: " & lns(2) & crlf
message = message & "Single: " & lns(3) & crlf
message = message & "Double: " & lns(4) & crlf
MsgBox message

End Sub

See Also InStr, InStrB (functions).

Platform(s) All.

Let (statement)

Syntax [Let] variable = expression

Description Assigns the result of an expression to a variable.

Comments The use of the word Let is supported for compatibility with other implementations of
BasicScript. Normally, this word is dropped.

When assigning expressions to variables, internal type conversions are performed
automatically between any two numeric quantities. Thus, you can freely assign numeric
quantities without regard to type conversions. However, it is possible for an overflow
error to occur when converting from larger to smaller types. This happens when the
larger type contains a numeric quantity that cannot be represented by the smaller type.
For example, the following code will produce a runtime error:

Dim amount As Long

Dim quantity As Integer

amount = 400123 'Assign a value out of range for int.

quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

Example Sub Main()
Let a$ = "This is a string."
Let b% = 100
Let c# = 1213.3443

308 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 308 of 321 Printed: 9/25/96

End Sub

See Also = (operator); Expression Evaluation (topic).

Platform(s) All.

Like (operator)

Syntax expression Like pattern

Description Compares two strings and returns True if the expression matches the given pattern;
returns False otherwise.

Comments Case sensitivity is controlled by the Option Compare setting.

The pattern expression can contain special characters that allow more flexible matching:

A range specifies a grouping of characters. To specify a match of any of a group of
characters, use the syntax [ABCDE] . To specify a range of characters, use the syntax
[A-Z] . Special characters must appear within brackets, such as []*?# .

If expression or pattern is not a string, then both expression and pattern are converted to
String variants and compared, returning a Boolean variant. If either variant is Null , then
Null is returned.

The following table shows some examples:

Example 'This example demonstrates various uses of the Like function.
Sub Main()

Character Evaluates To

? Matches a single character.

* Matches one or more characters.

Matches any digit.

[range] Matches if the character in question is within the specified
range.

[! range] Matches if the character in question is not within the specified
range.

expression True If pattern Is False If pattern Is

"EBW" "E*W", "E*" "E*B"

"BasicScript" "B*[r-t]icScript" "B[r-t]ic"

"Version" "V[e]?s*n" "V[r]?s*N"

"2.0" "#.#","#?#" "###","#?[!0-9]"

"[ABC]" "[[]*]" "[ABC]","[*]"

Line Input# (statement) 309

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 309 of 321 Printed: 9/25/96

a$ = "This is a string variable of 123456 characters"
b$ = "123.45"
If a$ Like "[A-Z][g-i]*" Then _

MsgBox "The first comparison is True."
If b$ Like "##3.##" Then _

MsgBox "The second comparison is True."
If a$ Like "*variable*" Then _

MsgBox "The third comparison is True."
End Sub

See Also Operator Precedence (topic); Is (operator); Option Compare (statement).

Platform(s) All.

Line Input# (statement)

Syntax Line Input [#] filenumber, variable

Description Reads an entire line into the given variable.

Comments The filenumber parameter is a number that is used by BasicScript to refer to the open
filethe number passed to the Open statement. The filenumber must reference a file
opened in Input mode.

The file is read up to the next end-of-line, but the end-of-line character(s) is (are) not
returned in the string. The file pointer is positioned after the terminating end-of-line.

The variable parameter is any string or variant variable reference. This statement will
automatically declare the variable if the specified variable has not yet been used or
dimensioned.

This statement recognizes either a single line feed or a carriage-return/line-feed pair as
the end-of-line delimiter.

A runtime error is generated if you attempt to read beyond the end of the file.

Example 'This example reads five lines of the autoexec.bat file and
'displays them in a dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Open "c:\autoexec.bat" For Input As #1
For x = 1 To 5

Line Input #1,lin$
message = message & lin$ & crlf

Next x
MsgBox "The first 5 lines of your autoexec.bat are:" & crlf &

Msg
End Sub

310 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 310 of 321 Printed: 9/25/96

See Also Open (statement); Get (statement); Input# (statement); Input , Input$, InputB ,
InputB$ (functions).

Platform(s) All.

Line Numbers (topic)

Line numbers are not supported by BasicScript.

As an alternative to line numbers, you can use meaningful labels as targets for absolute
jumps, as shown below:

Sub Main()

Dim i As Integer

On Error Goto MyErrorTrap

i = 0

LoopTop:

i = i + 1

If i < 10 Then Goto LoopTop

MyErrorTrap:

MsgBox "An error occurred."

End Sub

Line$ (function)

Syntax Line$(text$, first[, last])

Description Returns a String containing a single line or a group of lines between first and last.

Comments Lines are delimited by carriage return, line feed, or carriage-return/line-feed pairs.
Embedded null characters are treated as regular characters.

The Line$ function takes the following parameters:

Example 'This example reads five lines of the autoexec.bat file,

Parameter Description

text$ String containing the text from which the lines will be
extracted.

first Integer representing the index of the first line to return. If last
is omitted, then this line will be returned. If first is greater
than the number of lines in text$, then a zero-length string is
returned.

last Integer representing the index of the last line to return

LineCount (function) 311

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 311 of 321 Printed: 9/25/96

'extracts the third and fourth lines with the Line$ function,
'and displays them in a dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Open "c:\autoexec.bat" For Input As #1
For x = 1 To 5

Line Input #1,lin$
txt = txt & lin$ & crlf

Next x
lines$ = Line$ (txt,3,4)
MsgBox lines$

End Sub

See Also Item$ (function); ItemCount (function); LineCount (function); Word$ (function);
WordCount (function).

Platform(s) All.

LineCount (function)

Syntax LineCount(text$)

Description Returns an Integer representing the number of lines in text$.

Comments Lines are delimited by carriage return, line feed, or both. Embedded null characters are
treated as regular characters.

Example 'This example reads the first ten lines of your autoexec.bat
'file, uses the LineCount function to determine the number of
'lines, and then displays them in a message box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

x = 1
Open "c:\autoexec.bat" For Input As #1
While (x < 10) And Not EOF(1)

Line Input #1,lin$
txt = txt & lin$ & crlf
x = x + 1

Wend
lines! = LineCount (txt)
MsgBox "The number of lines in txt is: " _

& lines! & crlf & crlf & txt
End Sub

See Also Item$ (function); ItemCount (function); Line$ (function); Word$ (function);
WordCount (function).

Platform(s) All.

312 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 312 of 321 Printed: 9/25/96

ListBox (statement)

Syntax ListBox x, y, width, height, ArrayVariable, .Identifier

Description Creates a list box within a dialog box template.

Comments When the dialog box is invoked, the list box will be filled with the elements contained in
ArrayVariable.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The ListBox statement requires the following parameters:

Example 'This example creates a dialog box with two list boxes, one
'containing files and the other containing directories.
Sub Main()

Dim files() As String
Dim dirs() As String
Begin Dialog ListBoxTemplate 16,32,184,96,"Sample"

Text 8,4,24,8,"&Files:"
ListBox 8,16,60,72,files$,.Files
Text 76,4,21,8,"&Dirs:"

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog
box.

width, height Integer coordinates specifying the dimensions of the control
in dialog units.

ArrayVariable Specifies a single-dimensioned array of strings used to
initialize the elements of the list box. If this array has no
dimensions, then the list box will be initialized with no
elements. A runtime error results if the specified array
contains more than one dimension.

ArrayVariable can specify an array of any fundamental data
type (structures are not allowed). Null and Empty values are
treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements
in a dialog function (such as DlgFocus and DlgEnable). This
parameter also creates an integer variable whose value
corresponds to the index of the list box's selection (0 is the
first item, 1 is the second, and so on). This variable can be
accessed using the following syntax:

DialogVariable. Identifier

ListBoxEnabled (function) 313

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 313 of 321 Printed: 9/25/96

ListBox 76,16,56,72,dirs$,.Dirs
OKButton 140,4,40,14
CancelButton 140,24,40,14

End Dialog
FileList files
FileDirs dirs
Dim ListBoxDialog As ListBoxTemplate
rc% = Dialog(ListBoxDialog)

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
OKButton (statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement); PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

ListBoxEnabled (function)

Syntax ListBoxEnabled(name$ | id)

Description Returns True if the given list box is enabled within the active window or dialog box;
returns False otherwise.

Comments This function is used to determine whether a list box is enabled within the current
window or dialog box. If there is no active window, False will be returned.

The ListBoxEnabled function takes the following parameters:

Example 'This example checks to see whether the list box is enabled
'before setting the focus to it.
Sub Main()

Parameter Description

name$ String containing the name of the list box.

The name of a list box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a list box. A runtime error is
generated if a list box with that name cannot be found within
the active window.

id Integer specifying the ID of the list box.

Note: The ListBoxEnabled function is used to determine whether a list box is
enabled in another application's dialog box. Use the DlgEnable function in dynamic
dialog boxes.

314 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 314 of 321 Printed: 9/25/96

If ListBoxEnabled ("Files:") Then ActivateControl "Files:"
End Sub

See Also GetListBoxItem$ (function); GetListBoxItemCount (function); ListBoxExists
(function); SelectListBoxItem (statement).

Platform(s) Windows.

ListBoxExists (function)

Syntax ListBoxExists(name$ | id)

Description Returns True if the given list box exists within the active window or dialog box; returns
False otherwise.

Comments This function is used to determine whether a list box exists within the current window or
dialog box. If there is no active window, False will be returned.

The ListBoxExists function takes the following parameters:

Example 'This example checks to see whether the list box exists and is
'enabled before setting the focus to it.
Sub Main()

If ListBoxExists ("Files:") Then
If ListBoxEnabled("Files:") Then

ActivateControl "Files:"
End If

End If
End Sub

See Also GetListBoxItem$ (function); GetListBoxItemCount (function); ListBoxEnabled
(function); SelectListBoxItem (statement).

Parameter Description

name$ String containing the name of the list box.

The name of a list box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a list box. A runtime error is
generated if a list box with that name cannot be found within
the active window.

id Integer specifying the ID of the list box.

Note: The ListBoxExists function is used to determine whether a list box exists in
another application's dialog box. There is no equivalent function for use with
dynamic dialog boxes.

Literals (topic) 315

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 315 of 321 Printed: 9/25/96

Platform(s) Windows.

Literals (topic)

Literals are values of a specific type. The following table shows the different types of
literals supported by BasicScript:

Constant Folding

BasicScript supports constant folding where constant expressions are calculated by the
compiler at compile time. For example, the expression

i% = 10 + 12

Literal Description

10 Integer whose value is 10.

43265 Long whose value is 43,265.

5# Double whose value is 5.0. A number's type can be explicitly
set using any of the following type-declaration characters:

% Integer

& Long

Double

! Single

5.5 Double whose value is 5.5. Any number with decimal point is
considered a double.

5.4E100 Double expressed in scientific notation.

&HFF Integer expressed in hexadecimal.

&O47 Integer expressed in octal.

&HFF# Double expressed in hexadecimal.

"hello" String of five characters: hello.

"""hello""" String of seven characters: "hello". Quotation marks can be
embedded within strings by using two consecutive quotation
marks.

#1/1/1994# Date value whose internal representation is 34335.0. Any valid
date can appear with #'s. Date literals are interpreted at
execution time using the locale settings of the host environment.
To ensure that date literals are correctly interpreted for all
locales, use the international date format:

YYYY-MM-DD HH:MM:SS#

316 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 316 of 321 Printed: 9/25/96

is the same as:
i% = 22

Similarly, with strings, the expression
s$ = "Hello," + " there" + Chr(46)

is the same as:
s$ = "Hello, there."

Loc (function)

Syntax Loc(filenumber)

Description Returns a Long representing the position of the file pointer in the given file.

Comments The filenumber parameter is an Integer used by BasicScript to refer to the number
passed by the Open statement to BasicScript.

The Loc function returns different values depending on the mode in which the file was
opened:

Example 'This example reads five lines of the autoexec.bat file,
'determines the current location of the file pointer, and
'displays it in a dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Open "c:\autoexec.bat" For Input As #1
For x = 1 To 5

If Not EOF(1) Then Line Input #1,lin$
Next x
lc% = Loc (1)
Close
MsgBox "The file location is: " & lc%

End Sub

See Also Seek (function); Seek (statement); FileLen (function).

Platform(s) All.

File Mode Returns

Input Current byte position divided by 128

Output Current byte position divided by 128

Append Current byte position divided by 128

Binary Position of the last byte read or written

Random Number of the last record read or written

Lock, Unlock (statements) 317

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 317 of 321 Printed: 9/25/96

Lock, Unlock (statements)

Syntax Lock [#] filenumber [,{ record | [start] To end}]
Unlock [#] filenumber [,{ record | [start] To end}]

Description Locks or unlocks a section of the specified file, granting or denying other processes
access to that section of the file.

Comments The Lock statement locks a section of the specified file, preventing other processes from
accessing that section of the file until the Unlock statement is issued. The Unlock
statement unlocks a section of the specified file, allowing other processes access to that
section of the file.

The Lock and Unlock statements require the following parameters:

For sequential files, the record, start, and end parameters are ignored. The entire file is
locked or unlocked.

The section of the file is specified using one of the following:

The lock range must be the same as that used to subsequently unlock the file range, and
all locked ranges must be unlocked before the file is closed. Ranges within files are not
unlocked automatically by BasicScript when your script terminates, which can cause
file access problems for other processes. It is a good idea to group the Lock and Unlock

Parameter Description

filenumber Integer used by BasicScript to refer to the open file—the
number passed to the Open statement.

record Long specifying which record to lock or unlock.

start Long specifying the first record within a range to be locked or
unlocked.

end Long specifying the last record within a range to be locked or
unlocked.

Syntax Description

No parameters Locks or unlocks the entire file (no record specification is
given).

record Locks or unlocks the specified record number (for Random
files) or byte (for Binary files).

To end Locks or unlocks from the beginning of the file to the specified
record (for Random files) or byte (for Binary files).

start To end Locks or unlocks the specified range of records (for Random
files) or bytes (for Binary files).

318 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 318 of 321 Printed: 9/25/96

statements close together in the code, both for readability and so subsequent readers can
see that the lock and unlock are performed on the same range. This practice also reduces
errors in file locks.

Example 'This example creates a file named test.dat and fills it with
'ten string variable records. These are displayed in a dialog
'box. The file is then reopened for read/write, and each record
'is locked, modified, rewritten, and unlocked. The new records
'are then displayed in a dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a$ = "This is record number: "
b$ = "0"
rec$ = ""
message = ""
Open "test.dat" For Random Access Write Shared As #1
For x = 1 To 10

rec$ = a$ & x
Lock # 1,x
Put #1,,rec$
Unlock # 1,x
message = message & rec$ & crlf

Next x
Close
MsgBox "The records are:" & crlf & message
message = ""
Open "test.dat" For Random Access Read Write Shared As #1
For x = 1 To 10

rec$ = Mid$(rec$,1,23) & (11 - x)
Lock # 1,x
Put #1,x,rec$
Unlock # 1,x
message = message & rec$ & crlf

Next x
MsgBox "The records are: " & crlf & message
Close
Kill "test.dat"

End Sub

See Also Open (statement).

Platform(s) All.

Platform Notes Macintosh: On the Macintosh, file locking will only succeed on volumes that are
shared (i.e., file sharing is on).

UNIX: Under all versions of UNIX, file locking is ignored.

Lof (function) 319

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 319 of 321 Printed: 9/25/96

Lof (function)

Syntax Lof(filenumber)

Description Returns a Long representing the number of bytes in the given file.

Comments The filenumber parameter is an Integer used by BasicScript to refer to the open
filethe number passed to the Open statement.

The file must currently be open.

Example 'This example creates a test file, writes ten records into it,
'then finds the length of the file and displays it in a message
'box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a$ = "This is record number: "
Open "test.dat" For Random Access Write Shared As #1
For x = 1 To 10

rec$ = a$ & x
put #1,,rec$
message = message & rec$ & crlf

Next x
Close
Open "test.dat" For Random Access Read Write Shared As #1
r% = Lof (1)
Close
MsgBox "The length of test.dat is: " & r%

End Sub

See Also Loc (function); Open (statement); FileLen (function).

Platform(s) All.

Log (function)

Syntax Log(number)

Description Returns a Double representing the natural logarithm of a given number.

Comments The value of number must be a Double greater than 0.

The value of e is 2.71828.

Example 'This example calculates the natural log of 100 and displays it
'in a message box.
Sub Main()

x# = Log (100)
MsgBox "The natural logarithm of 100 is: " & x#

320 BasicScript Language Reference

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 320 of 321 Printed: 9/25/96

End Sub

See Also Exp (function).

Platform(s) All.

Long (data type)

Syntax Long

Description Long variables are used to hold numbers (with up to ten digits of precision) within the
following range:
–2,147,483,648 <= Long <= 2,147,483,647

Internally, longs are 4-byte values. Thus, when appearing within a structure, longs
require 4 bytes of storage. When used with binary or random files, 4 bytes of storage are
required.

The type-declaration character for Long is &.

See Also Currency (data type); Date (data type); Double (data type); Integer (data type);
Object (data type); Single (data type); String (data type); Variant (data type); Boolean
(data type); DefType (statement); CLng (function).

Platform(s) All.

LSet (statement)

Syntax 1 LSet dest = source

Syntax 2 LSet dest_variable = source_variable

Description Left-aligns the source string in the destination string or copies one user-defined type to
another.

Comments Syntax 1

The LSet statement copies the source string source into the destination string dest. The
dest parameter must be the name of either a String or Variant variable. The source
parameter is any expression convertible to a string.

If source is shorter in length than dest, then the string is left-aligned within dest, and the
remaining characters are padded with spaces. If source$ is longer in length than dest,
then source is truncated, copying only the leftmost number of characters that will fit in
dest.

LTrim, LTrim$ (functions) 321

Summit Software Confidential
Filename: lrk-l.fm5 Template: LRprint.FM5
Page: 321 of 321 Printed: 9/25/96

The destvariable parameter specifies a String or Variant variable. If destvariable is a
Variant containing Empty, then no characters are copied. If destvariable is not
convertible to a String, then a runtime error occurs. A runtime error results if
destvariable is Null .

Syntax 2

The source structure is copied byte for byte into the destination structure. This is useful
for copying structures of different types. Only the number of bytes of the smaller of the
two structures is copied. Neither the source structure nor the destination structure can
contain strings.

Example 'This example replaces a 40-character string of asterisks (*)
'with an RSet and LSet string and then displays the result.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim message, tmpstr$
tmpstr$ = String$(40, "*")
message = "Here are two strings that have been right-" + crlf
message = message & "and left-justified in " & _

"a 40-character string."
message = message & crlf & crlf
RSet tmpstr$ = "Right->"
message = message & tmpstr$ & crlf
LSet tmpstr$ = "<-Left"
message = message & tmpstr$ & crlf
MsgBox message

End Sub

See Also RSet (statement).

Platform(s) All.

LTrim, LTrim$ (functions)

See Trim , Trim$, LTrim , LTrim$, RTrim , RTrim$ (functions).

322 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 322 of 339 Printed: 9/25/96

MacID (function)

Syntax MacID(constant)

Description Returns a value representing a collection of same-type files on the Macintosh.

Comments Since this platform does not support wildcards (i.e., * or ?), this function is the only way
to specify a group of files. This function can only be used with the following statements:

Kill Dir$ Shell AppActivate

The constant parameter is a four-character string containing a file type, a resource type,
an application signature, or an Apple event. A runtime error occurs if the MacID
function is used on platforms other than the Macintosh.

Example 'This example retrieves the names of all the text files.
Sub Main()

s$ = Dir$(MacID ("TEXT"))'Get the first text file.
While s$ <> ""

MsgBox s$ 'Display it.
s$ = Dir$ 'Get the next text file in the list.

Wend
'Delete all the text files.
Kill MacID ("TEXT")

End Sub

See Also Kill (statement); Dir , Dir$ (functions); Shell (function); AppActivate (statement).

Platform(s) Macintosh.

MacScript (statement)

Syntax MacScript script

Description Executes the specified AppleScript script.

Comments When using the MacScript statement, you can separate multiple lines by embedding
carriage returns:

MacScript "Beep" + Chr(13) + "Display Dialog ""Hello"""

If embedding carriage returns proves cumbersome, you can use the Inline statement.
The following Inline statement is equivalent to the above example:

Inline MacScript

Beep

Display Dialog "Hello"

End Inline

Example Sub Main()

Main (statement) 323

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 323 of 339 Printed: 9/25/96

MacScript "display dialog ""AppleScript"""
End Sub

See Also Inline (statement).

Platform(s) Macintosh..

Main (statement)

Syntax Sub Main()
End Sub

Description Defines the subroutine where execution begins.

Example Sub Main()
MsgBox "This is the Main() subroutine and entry point."

End Sub

Platform(s) All.

Mci (function)

Syntax Mci(command$, result$ [, error$])

Description Executes an Mci command, returning an Integer indicating whether the command was
successful.

Comments The Mci function takes the following parameters:

The Mci function returns 0 if successul. Otherwise, an non-zero Integer is returned
indicating the error.

Examples 'This first example plays a wave file. The wave file is played
'to completion before execution can continue.
Sub Main()

Parameter Description

command$ String containing the command to be executed.

result$ String variable into which the result is placed. If the command
doesn't return anything, then a zero-length string is returned.

To ignore the returned string, pass a zero-length string:
r% = Mci("open chimes.wav type
waveaudio","")

error$ Optional String variable into which an error string will be
placed. A zero-length string will be returned if the function is
successful.

324 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 324 of 339 Printed: 9/25/96

Dim result As String
Dim ErrorMessage As String
Dim Filename As String
Dim rc As Integer
'Establish name of file in the Windows directory.
Filename = FileParse$(System.WindowsDirectory$ + "\" _

+ "chimes.wav")
'Open the file and driver.
rc = Mci ("open " & Filename & _

" type waveaudio alias CoolSound","",ErrorMessage)
If (rc) Then

'Error occurred--display error message to user.
MsgBox ErrorMessage
Exit Sub

End If
rc = Mci ("play CoolSound wait","","") 'Wait for sound to

'finish.
rc = Mci ("close CoolSound","","") 'Close driver and file.

End Sub

'This next example shows how to query an Mci device and play an
'MIDI file in the background.
Sub Main()

Dim result As String
Dim ErrMsg As String
Dim Filename As String
Dim rc As Integer
'Check to see whether MIDI device can play for us.
rc = Mci ("capability sequencer can play",result,ErrorMessage)
'Check for error.
If rc Then

MsgBox ErrorMessage
Exit Sub

End If
'Can it play?
If result <> "true" Then

MsgBox "MIDI device is not capable of playing."
Exit Sub

End If
'Assemble a filename from the Windows directory.
Filename = FileParse$(System.WindowsDirectory$ & "\" _

& "canyon.mid")
'Open the driver and file.
rc = Mci ("open " & Filename & _

" type sequencer alias song",result$,ErrMsg)
If rc Then

MsgBox ErrMsg
Exit Sub

Menu (statement) 325

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 325 of 339 Printed: 9/25/96

End If
rc = Mci ("play song","","")'Play in the background.
MsgBox "Press OK to stop the music.",ebOKOnly
rc = Mci ("close song","","")

End Sub

See Also Beep (statement).

Platform(s) Windows, Win32.

Platform Notes Windows: The Mci function accepts any Mci command as defined in the Multimedia
Programmers Reference in the Windows 3.1 SDK.

Menu (statement)

Syntax Menu MenuItem$

Description Issues the specified menu command from the active window of the active application.

Comments The MenuItem$ parameter specifies the complete menu item name, with each menu
level being separated by a period. For example, the "Open" command on the "File"
menu is represented by "File.Open". Cascading menu items may have multiple periods,
one for each pop-up menu, such as "File.Layout.Vertical". Menu items can also be
specified using numeric index values. For example, to select the third menu item from
the File menu, use "File.#3". To select the fourth item from the third menu, use "#3.#4".

Items from an application's system menu can be selected by beginning the menu item
specification with a period, such as ".Restore" or ".Minimize".

A runtime error will result if the menu item specification does not specify a menu item.
For example, "File" specifies a menu pop-up rather than a menu item, and "File.Blah
Blah" is not a valid menu item.

When comparing menu item names, this statement removes periods (.), spaces, and the
ampersand. Furthermore, all characters after a backspace or tab are removed. Thus, the
menu item "&Open...\aCtrl+F12" translates simply to "Open".

A runtime error is generated if the menu item cannot be found or is not enabled at the
time that this statement is encountered.

Examples Sub Main()
Menu "File.Open"
Menu "Format.Character.Bold"
Menu ".Restore"'Command from system menu
Menu "File.#2"

End Sub

See Also MenuItemChecked (function); MenuItemEnabled (function); MenuItemExists
(function).

326 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 326 of 339 Printed: 9/25/96

Platform(s) Windows.

MenuItemChecked (function)

Syntax MenuItemChecked(MenuItemName$)

Description Returns True if the given menu item exists and is checked; returns False otherwise.

Comments The MenuItemName$ parameter specifies a complete menu item or menu item pop-up
following the same format as that used by the Menu statement.

Example 'This example turns the ruler off if it is on.
Sub Main()

If MenuItemChecked ("View.Ruler") Then Menu "View.Ruler"
End Sub

See Also Menu (statement); MenuItemEnabled (function); MenuItemExists (function).

Platform(s) Windows.

MenuItemEnabled (function)

Syntax MenuItemEnabled(MenuItemName$)

Description Returns True if the given menu item exists and is enabled; returns False otherwise.

Comments The MenuItemName$ parameter specifies a complete menu item or menu item pop-up
following the same format as that used by the Menu statement.

Example 'This example only pastes if there is something in the Clipboard.
Sub Main()

If MenuItemEnabled ("Edit.Paste") Then
Menu "Edit.Paste"

Else
MsgBox "There is nothing in the Clipboard.",ebOKOnly

End If
End Sub

See Also Menu (statement); MenuItemChecked (function); MenuItemExists (function).

Platform(s) Windows.

MenuItemExists (function)

Syntax MenuItemExists(MenuItemName$)

Mid, Mid$, MidB, MidB$ (functions) 327

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 327 of 339 Printed: 9/25/96

Description Returns True if the given menu item exists; returns False otherwise.

Comments The MenuItemName$ parameter specifies a complete menu item or menu item pop-up
following the same format as that used by the Menu statement.

Examples Sub Main()
If MenuItemExists ("File.Open") Then Beep
If MenuItemExists ("File") Then MsgBox "There is a File menu."

End Sub

See Also Menu (statement); MenuItemChecked (function); MenuItemEnabled (function).

Platform(s) Windows.

Mid, Mid$, MidB, MidB$ (functions)

Syntax Mid[$](string, start [, length])
MidB[$](string, start [, length])

Description Returns a substring of the specified string, beginning with start, for length characters
(for Mid and Mid$) or bytes (for MidB and MidB$).

Comments The Mid and Mid$ functions return a substring starting at character position start and
will be length characters long. The MidB and MidB functions return a substring
starting at byte position start and will be length bytes long.

The Mid$ and MidB$ functions return a String, whereas the Mid and MidB functions
return a String variant.

These functions take the following named parameters:

The Mid function will return Null if string is Null .

The MidB and MidB$ functions are used to return a substring of bytes from a string
containing byte data.

Example 'This example displays a substring from the middle of a string
'variable using the Mid$ function and replaces the first four

Named Parameter Description

string Any String expression containing the text from which data
are returned.

start Integer specifying the position where the substring begins. If
start is greater than the length of string, then a zero-length
string is returned.

length Integer specifying the number of characters or bytes to
return. If this parameter is omitted, then the entire string is
returned, starting at start.

328 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 328 of 339 Printed: 9/25/96

'characters with "NEW " using the Mid$ statement.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a$ = "This is the Main string containing text."
b$ = Mid$ (a$,13,Len(a$))
Mid$ (b$,1) = NEW "
MsgBox a$ & crlf & b$

End Sub

See Also InStr, InStrB (functions); Option Compare (statement); Mid , Mid$, Mid , Mid$
(statements).

Platform(s) All.

Mid, Mid$, MidB, MidB$ (statements)

Syntax Mid[$](variable, start[, length]) = newvalue
MidB[$](variable, start[, length]) = newvalue

Description Replaces one part of a string with another.

Comments The Mid /Mid$ statements take the following parameters:

The resultant string is never longer than the original length of variable.

With Mid and MidB , variable must be a Variant variable convertible to a String, and
newvalue is any expression convertible to a string. A runtime error is generated if either
variant is Null .

The MidB and MidB$ statements are used to replace a substring of bytes, whereas Mid
and Mid$ are used to replace a substring of characters.

Example 'This example displays a substring from the middle of a string
'variable using the Mid$ function, replacing the first four
'characters with "NEW " using the Mid$ statement.

Parameter Description

variable String or Variant variable to be changed.

start Integer specifying the character position (for Mid and Mid$)
or byte position (for MidB and MidB$) within variable
where replacement begins. If start is greater than the length
of variable, then variable remains unchanged.

length Integer specifying the number of characters or bytes to
change. If this parameter is omitted, then the entire string is
changed, starting at start.

newvalue Expression used as the replacement. This expression must be
convertible to a String.

Minute (function) 329

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 329 of 339 Printed: 9/25/96

Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a$ = "This is the Main string containing text."
b$ = Mid$(a$,13,Len(a$))
Mid$ (b$,1) = "NEW "
MsgBox a$ & crlf & b$

End Sub

See Also Mid , Mid$, Mid B, MidB$ (functions); Option Compare (statement).

Platform(s) All.

Minute (function)

Syntax Minute(time)

Description Returns the minute of the day encoded in the specified time parameter.

Comments The value returned is as an Integer between 0 and 59 inclusive.

The time parameter is any expression that converts to a Date.

Example 'This example takes the current time; extracts the hour, minute,
'and second; and displays them as the current time.
Sub Main()

xt# = TimeValue(Time$())
xh# = Hour(xt#)
xm# = Minute (xt#)
xs# = Second(xt#)
MsgBox "The current time is: " & xh# & ":" & xm# & ":" & xs#

End Sub

See Also Day (function); Second (function); Month (function); Year (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) All.

MIRR (function)

Syntax MIRR(valuearray(), financerate, reinvestrate)

Description Returns a Double representing the modified internal rate of return for a series of
periodic payments and receipts.

Comments The modified internal rate of return is the equivalent rate of return on an investment in
which payments and receipts are financed at different rates. The interest cost of
investment and the rate of interest received on the returns on investment are both factors
in the calculations.

330 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 330 of 339 Printed: 9/25/96

The MIRR function requires the following named parameters:

The financerate and reinvestrate parameters should be expressed as percentages. For
example, 11 percent should be expressed as 0.11.

To return the correct value, be sure to order your payments and receipts in the correct
sequence.

Example 'This example illustrates the purchase of a lemonade stand for
'$800 financed with money borrowed at 10%. The returns are
'estimated to accelerate as the stand gains popularity. The
'proceeds are placed in a bank at 9 percent interest. The
'incomes are estimated (generated) over 12 months. This program
'first generates the income stream array in two For...Next
'loops, and then the modified internal rate of return is
'calculated and displayed. Notice that the annual rates are
'normalized to monthly rates by dividing them by 12.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim valu#(12)
valu(1) = -800 'Initial investment
message = valu(1) & ", "
For x = 2 To 5

valu(x) = 100 + (x * 2)'Incomes months 2-5
message = message & valu(x) & ", "

Next x
For x = 6 To 12

valu(x) = 100 + (x * 10) 'Incomes months 6-12
message = message & valu(x) & ", "

Next x
retrn# = MIRR(valu,.1/12,.09/12) 'Note: normalized annual

'rates
message = "The values: " & crlf & message & crlf & crlf
MsgBox message & "Modified rate: " & Format(retrn#,"Percent")

End Sub

Named Parameter Description

valuearray() Array of Double numbers representing the payments and
receipts. Positive values are payments (invested capital), and
negative values are receipts (returns on investment).

There must be at least one positive (investment) value and
one negative (return) value.

financerate Double representing the interest rate paid on invested monies
(paid out).

reinvestrate Double representing the rate of interest received on incomes
from the investment (receipts).

MkDir (statement) 331

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 331 of 339 Printed: 9/25/96

See Also Fv (function); IRR (function); Npv (function); Pv (function).

Platform(s) All.

MkDir (statement)

Syntax MkDir path

Description Creates a new directory as specified by path.

Example 'This example creates a new directory on the default drive. If
'this causes an error, then the error is displayed and the
'program terminates. If no error is generated, the directory is
'removed with the RmDir statement.
Sub Main()

On Error Resume Next
MkDir "TestDir"
If Err <> 0 Then

MsgBox "The following error occurred: " & Error(Err)
Else

MsgBox "Directory was created and is about to be removed."
RmDir "TestDir"

End If
End Sub

See Also ChDir (statement); ChDrive (statement); CurDir , CurDir$ (functions); Dir , Dir$
(functions); RmDir (statement).

Platform(s) All.

Platform Notes Windows: This command behaves the same as the DOS "mkdir" command.

Mod (operator)

Syntax expression1 Mod expression2

Description Returns the remainder of expression1 / expression2 as a whole number.

Comments If both expressions are integers, then the result is an integer. Otherwise, each expression
is converted to a Long before performing the operation, returning a Long.

A runtime error occurs if the result overflows the range of a Long.

If either expression is Null , then Null is returned. Empty is treated as 0.

Example 'This example uses the Mod operator to determine the value of a
'randomly selected card where card 1 is the ace (1) of clubs
'and card 52 is the king (13) of spades. Since the values recur

332 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 332 of 339 Printed: 9/25/96

'in a sequence of 13 cards within 4 suits, we can use the Mod
'function to determine the value of any given card number.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

cval$ = "ACE,TWO,THREE,FOUR,FIVE,"
cval$ = cval$ + "SIX,SEVEN,EIGHT,NINE,TEN,JACK,QUEEN,KING"
Randomize
card% = Random(1,52)
value = card% Mod 13
If value = 0 Then value = 13
CardNum$ = Item$(cval,value)
If card% < 53 Then suit$ = "spades"
If card% < 40 Then suit$ = "hearts"
If card% < 27 Then suit$ = "diamonds"
If card% < 14 Then suit$ = "clubs"
message = "Card number " & card% & " is the "
message = message & CardNum & " of " & suit$
MsgBox message

End Sub

See Also / (operator); \ (operator).

Platform(s) All.

Month (function)

Syntax Month(date)

Description Returns the month of the date encoded in the specified date parameter.

Comments The value returned is as an Integer between 1 and 12 inclusive.

The date parameter is any expression that converts to a Date.

Example 'This example returns the current month in a dialog box.
Sub Main()

mons$ = "Jan., Feb., Mar., Apr., May, Jun., "
mons$ = "Jul., Aug., Sep., Oct., Nov., Dec."
tdate$ = Date$
tmonth! = Month (DateValue(tdate$))
MsgBox "The current month is: " & Item$(mons$,tmonth!)

End Sub

See Also Day (function); Minute (function); Second (function); Year (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) All.

Msg.Close (method) 333

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 333 of 339 Printed: 9/25/96

Msg.Close (method)

Syntax Msg.Close

Description Closes the modeless message dialog box.

Comments Nothing will happen if there is no open message dialog box.

Example Sub Main()
Msg.Open "Printing. Please wait...",0,True,True
Sleep 3000
Msg.Close

End Sub

See Also Msg.Open (method); Msg.Thermometer (property); Msg.Text (property).

Platform(s) Windows, Win32.

Msg.Open (method)

Syntax Msg.Open prompt, timeout, cancel, thermometer [, XPos, YPos]

Description Displays a message in a dialog box with an optional Cancel button and thermometer.

Comments The Msg.Open method takes the following named parameters:

Parameter Description

prompt String containing the text to be displayed.

The text can be changed using the Msg.Text property.

timeout Integer specifying the number of seconds before the dialog box
is automatically removed. The timeout parameter has no effect if
its value is 0.

cancel Boolean controlling whether or not a Cancel button appears
within the dialog box beneath the displayed message. If this
parameter is True, then a Cancel button appears. If it is not
specified or False, then no Cancel button is created.

If a user chooses the Cancel button at runtime, a trappable
runtime error is generated (error number 18). In this manner, a
message dialog box can be displayed and processing can
continue as normal, aborting only when the user cancels the
process by choosing the Cancel button.

334 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 334 of 339 Printed: 9/25/96

Unlike other dialog boxes, a message dialog box remains open until the user selects
Cancel, the timeout has expired, or the Msg.Close method is executed (this is
sometimes referred to as modeless).

Only a single message window can be opened at any one time. The message window is
removed automatically when a script terminates.

The Cancel button, if present, can be selected using either the mouse or keyboard.
However, these events will never reach the message dialog unless you periodically call
DoEvents from within your script.

Example 'This example displays several types of message boxes.
Sub Main()

Msg.Open "Printing. Please wait...",0,True,False
Sleep 3000
Msg.Close
Msg.Open "Printing. Please wait...",0,True,True
For x = 1 to 100

Msg.Thermometer = x
Next x
Sleep 1000
Msg.Close

End Sub

See Also Msg.Close (method); Msg.Thermometer (property); Msg.Text (property).

Platform(s) Windows, Win32.

Msg.Text (property)

Syntax Msg.Text [= newtext$]

Description Changes the text within an open message dialog box (one that was previously opened
with the Msg.Open method).

Comments The message dialog box is not resized to accommodate the new text.

thermometer Boolean controlling whether the dialog box contains a
thermometer. If this parameter is True, then a thermometer is
created between the text and the optional Cancel button. The
thermometer initially indicates 0% complete and can be changed
using the Msg.Thermometer property.

XPos, YPos Integer coordinates specifying the location of the upper left
corner of the message box, in twips (twentieths of a point). If
these parameters are not specified, then the window is centered
on top of the application.

Parameter Description

Msg.Thermometer (property) 335

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 335 of 339 Printed: 9/25/96

A runtime error will result if a message dialog box is not currently open (using
Msg.Open).

Example 'This example creates a modeless message box, leaving room in
'the message text for the record number. This box contains a
'Cancel button.
Sub Main()

Msg.Open "Reading Record",0,True,False
For i = 1 To 100

'Read a record here.
'Update the modeless message box.
Sleep 100
Msg.Text = "Reading record " & i

Next i
Msg.Close

End Sub

See Also Msg.Close (method); Msg.Open (method); Msg.Thermometer (property).

Platform(s) Windows, Win32.

Msg.Thermometer (property)

Syntax Msg.Thermometer [= percentage]

Description Changes the percentage filled indicated within the thermometer of a message dialog box
(one that was previously opened with the Msg.Open method).

Comments A runtime error will result if a message box is not currently open (using Msg.Open) or
if the value of percentage is not between 0 and 100 inclusive.

Example 'This example create a modeless message box with a thermometer
'and a Cancel button. This example also shows how to process the
'clicking of the Cancel button.
Sub Main()

On Error Goto ErrorTrap
Msg.Open "Reading records from file...",0,True,True
For i = 1 To 100

'Read a record here.
'Update the modeless message box.
Msg.Thermometer = i
DoEvents
Sleep 50

Next i
Msg.Close
On Error Goto 0'Turn error trap off.
Exit Sub

ErrorTrap:

336 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 336 of 339 Printed: 9/25/96

If Err = 809 Then
MsgBox "Cancel was pressed!"
Exit Sub 'Reset error handler.

End If
End Sub

See Also Msg.Close (method); Msg.Open (method); Msg.Text (property).

Platform(s) Windows, Win32.

MsgBox (function)

Syntax MsgBox(prompt [, [buttons] [,[title] [, helpfile, context]]])

Description Displays a message in a dialog box with a set of predefined buttons, returning an
Integer representing which button was selected.

Comments The MsgBox function takes the following named parameters:

Named Parameter Description

prompt Message to be displayed—any expression convertible to a
String.

End-of-lines can be used to separate lines (either a carriage
return, line feed, or both). If a given line is too long, it will be
word-wrapped. If prompt contains character 0, then only the
characters up to the character 0 will be displayed.

The width and height of the dialog box are sized to hold the
entire contents of prompt.

A runtime error is generated if prompt is Null .

buttons Integer specifying the type of dialog box (see below).

title Caption of the dialog box. This parameter is any expression
convertible to a String. If it is omitted, then "BasicScript" is
used.

A runtime error is generated if title is Null .

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also
be specified.

context Number specifying the ID of the topic within helpfile for this
dialog's help. If this parameter is specified, then helpfile must
also be specified.

MsgBox (function) 337

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 337 of 339 Printed: 9/25/96

The MsgBox function returns one of the following values:

The buttons parameter is the sum of any of the following values:

The default value for buttons is 0 (display only the OK button, making it the default).

Constant Value Description

ebOK 1 OK was pressed.

ebCancel 2 Cancel was pressed.

ebAbort 3 Abort was pressed.

ebRetry 4 Retry was pressed.

ebIgnore 5 Ignore was pressed.

ebYes 6 Yes was pressed.

ebNo 7 No was pressed.

Constant Value Description

ebOKOnly 0 Displays OK button only.

ebOKCancel 1 Displays OK and Cancel buttons.

ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore
buttons.

ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.

ebYesNo 4 Displays Yes and No buttons.

ebRetryCancel 5 Displays Retry and Cancel buttons.

ebCritical 16 Displays "stop" icon.

ebQuestion 32 Displays "question mark" icon.

ebExclamation 48 Displays "exclamation point" icon.

ebInformation 64 Displays "information" icon.

ebDefaultButton1 0 First button is the default button.

ebDefaultButton2 256 Second button is the default button.

ebDefaultButton3 512 Third button is the default button.

ebApplicationModal 0 Application modal—the current
application is suspended until the
dialog box is closed.

ebSystemModal 4096 System modal—all applications are
suspended until the dialog box is
closed.

338 BasicScript Language Reference

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 338 of 339 Printed: 9/25/96

If both the helpfile and context parameters are specified, then context-sensitive help can
be invoked using the help key (F1 on most platforms). Invoking help does not remove
the dialog.

Breaking Text across Lines

The prompt parameter can contain end-of-line characters, forcing the text that follows to
start on a new line. The following example shows how to display a string on two lines:

MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

The carriage-return or line-feed characters can be used by themselves to designate an
end-of-line.

Example Sub Main
MsgBox "This is a simple message box."
MsgBox "This is a message box with a title and an icon.", _

ebExclamation,"Simple"
MsgBox "This message box has OK and Cancel buttons.", _

ebOkCancel
MsgBox "This message box has Yes, No, and Cancel buttons.", _

ebYesNoCancel Or ebDefaultButton2
MsgBox "This message box has Yes and No buttons.", _

ebYesNo
MsgBox "This message box has Retry and Cancel buttons.", _

ebRetryCancel
MsgBox "This message box is system modal!",ebSystemModal

End Sub

See Also AskBox, AskBox$ (functions); AskPassword, AskPassword$ (functions); InputBox ,
InputBox$ (functions); OpenFileName$ (function); SaveFileName$ (function);
SelectBox (function); AnswerBox (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes The appearance of the MsgBox dialog box and its icons differs slightly depending on
the platform.

MsgBox (statement)

Syntax MsgBox prompt [, [buttons] [,[title] [, helpfile, context]]]

Description This command is the same as the MsgBox function, except that the statement form does
not return a value. See MsgBox (function).

Example Sub Main()
MsgBox "This is text displayed in a message box." 'Display

'text.
MsgBox "The result is: " & (10 * 45)'Display a number.

MsgBox (statement) 339

Summit Software Confidential
Filename: lrm.fm5 Template: LRprint.FM5
Page: 339 of 339 Printed: 9/25/96

End Sub

See Also AskBox, AskBox$ (functions); AskPassword, AskPassword$ (functions); InputBox ,
InputBox$ (functions); OpenFileName$ (function); SaveFileName$ (function);
SelectBox (function); AnswerBox (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

340 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 340 of 376 Printed: 9/25/96

Name (statement)

Syntax Name oldfile$ As newfile$

Description Renames a file.

Comments Each parameter must specify a single filename. Wildcard characters such as * and ? are
not allowed.

Some platforms allow naming of files to different directories on the same physical disk
volume. For example, the following rename will work under Windows:

Name "c:\samples\mydoc.txt" As "c:\backup\doc\mydoc.bak"

You cannot rename files across physical disk volumes. For example, the following will
error under Windows:

Name "c:\samples\mydoc.txt" As "a:\mydoc.bak" 'This will

’error!

To rename a file to a different physical disk, you must first copy the file, then erase the
original:

FileCopy "c:\samples\mydoc.txt","a:\mydoc.bak" 'Make a copy.

Kill "c:\samples\mydoc.txt" 'Delete the original.

Example ’This example creates a file called test.dat and then renames it
’to test2.dat.
Sub Main()

On Error Resume Next
If FileExists("test.dat") Then

Name "test.dat" As "test2.dat"
If Err <> 0 Then

message = "File exists and cannot be renamed! Error: " _
& Err

Else
message = "File exists and renamed to test2.dat."

End If
Else

Open "test.dat" For Output As #1
Close
Name "test.dat" As "test2.dat"
If Err <> 0 Then

message = "File created but not renamed! Error: " & Err
Else

message = "File created and renamed to test2.dat."
End If

End If
MsgBox message

End Sub

Named Parameters (topic) 341

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 341 of 376 Printed: 9/25/96

See Also Kill (statement); FileCopy (statement).

Platform(s) All.

Named Parameters (topic)

Many language elements in BasicScript support named parameters. Named parameters
allow you to specify parameters to a function or subroutine by name rather than in
adherence to a predetermined order. The following table contains examples showing
various calls to MsgBox both using parameter by both name and position.

By Name MsgBox Prompt:= "Hello, world."

By Position MsgBox "Hello, world."

By Name MsgBox Title:="Title", Prompt:="Hello, world."

By Position MsgBox "Hello, world",,"Title"

By Name MsgBox HelpFile:="BASIC.HLP", _
Prompt:="Hello, world.", Context:=10

By Position MsgBox "Hello, world.",,,"BASIC.HLP",10

Using named parameter makes your code easier to read, while at the same time removes
you from knowing the order of parameter. With function that require many parameters,
most of which are optional (such as MsgBox), code becomes significantly easier to
write and maintain.

When supported, the names of the named parameter appear in the description of that
language element.

When using named parameter, you must observe the following rules:

• Named parameter must use the parameter name as specified in the description of
that language element. Unrecognized parameter names cause compiler errors.

• All parameters, whether named or positional, are separated by commas.

• The parameter name and its associated value are separated with :=

• If one parameter is named, then all subsequent parameter must also be named as
shown below:
MsgBox "Hello, world", Title:="Title" ’OK

MsgBox Prompt:="Hello, world.",,"Title" ’WRONG!!!

342 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 342 of 376 Printed: 9/25/96

Net.AddCon (method)

Syntax Net.AddCon netpath$,[password$],[localname$] [,[username$]
[, permanent]]

Description Redirects a local device (a disk drive or printer queue) to the specified shared device or
remote server.

Comments The Net.AddCon method takes the following parameters:

A runtime error will result if no network is present.

Example ’This example sets N: so that it refers to the network path
’SYS:\PUBLIC.
Sub Main()

Net.AddCon "SYS:\PUBLIC","","N:"
End Sub

See Also Net.CancelCon (method); Net.GetCon$ (method).

Platform(s) Windows, Win32.

Parameter Description

netpath$ String containing the name of the shared device or the name of a
remote server. This parameter can contain the name of a shared
printer queue (such as that returned by Net.Browse[1]) or the
name of a network path (such as that returned by
Net.Browse[0]).

password$ String containing the password for the given device or server.
This parameter is mainly used to specify the password on a
remote server.

If password$ is not specified, then the default password is used.

localname$ String containing the name of the local device being redirected,
such as "LPT1" or "D:".

If localname$ is not specified, then a connection is made to the
network resource without redirecting a local device.

username$ Specifies the name of the user making the connection.

permanent Specifies if the connection should be restored during subsequent
logon operations. Only a successful connection will persist in
this manner.

Connections are assumed to be permanent if this parameter is
omitted. Connections established when localname$ is missing
are never permanent.

Net.Browse$ (method) 343

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 343 of 376 Printed: 9/25/96

Platform Notes Windows: On Windows platforms, the localname$ parameter cannot be omitted. The
username$ and permanent parameters are ignored.

Win32: On Win32 platforms, if username$ is omitted, then the default user for the
current process is used. The permanent parameter is always True under Win32s.

Net.Browse$ (method)

Syntax Net.Browse$(type)

Description Calls the currently installed network's browse dialog box, requesting a particular type of
information.

Comments The type parameter is an Integer specifying the type of dialog box to display:

This dialog box differs depending on the type of network installed.

A runtime error will result if no network is present.

Example ’This example retrieves a valid network path.
Sub Main()

s$ = Net.Browse$ (0)
If s$ <> "" Then

MsgBox "The following network path was selected: " & s$
Else

MsgBox "Dialog box was canceled."
End If

End Sub

See Also Net.Dialog (method).

Platform(s) Windows, Win32.

Platform Notes Windows: Under Windows, types 2 and 3 are not supported.

Win32: On Win32 platforms, this method always returns an empty string. Instead, each
dialog automatically establishes the connection.

Type Description

0 Displays a dialog box that allows the user to browse network
volumes and directories. Choosing OK returns the completed
pathname as a String.

1 Displays a dialog box that allows the user to browse the network's
printer queues. Choosing OK returns the complete name of that
printer queue as a String. This string is the same format as required
by the Net.AddCon method.

2 Displays the disconnect dialog for disk resources.

3 Displays the disconnect dialog for printer resources.

344 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 344 of 376 Printed: 9/25/96

Types 1 and 3 are only supported under Windows 95 and Windows NT version 4.0 or
later.

Net.CancelCon (method)

Syntax Net.CancelCon connection$ [,[isForce] [,isPermanent]]

Description Cancels a network connection.

Comments The Net.CancelCon method takes the following parameters:

A runtime error will result if no network is present.

Example ’This example deletes the drive mapping associated with drive N:.
Sub Main()

Net.CancelCon "N:"
End Sub

See Also Net.AddCon (method); Net.GetCon$ (method).

Platform(s) Windows, Win32.

Platform Notes Windows: Under Windows, isPermanent is ignored.

Win32: The Net.CancelCon requires Win32s version 1.3 or later.

Parameter Description

connection$ String containing the name of the device to cancel, such as
"LPT1" or "D:".

If connection$ specifies a local device, then only that local
device is disconnected. If connection$ specifies a remote device,
then all local devices attached to that remote device are
disconnected.

isForce Boolean specifying whether to force the cancellation of the
connection if there are open files or open print jobs. If this
parameter is True, then this method will close all open files and
open print jobs before the connection is closed. If this parameter
is False, this the method will issue a runtime error if there are
any open files or open print jobs.

If omitted, then isForce is assumed to be True.

isPermanent Boolean specifying whether the disconnection should be
temporary or should persist to subsequent logon operations. If
this parameter is missing, then it is assumed to be True.

Net.Dialog (method) 345

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 345 of 376 Printed: 9/25/96

Net.Dialog (method)

Syntax Net.Dialog

Description Displays the dialog box that allows configuration of the currently installed network.

Comments The displayed dialog box depends on the currently installed network. The dialog box is
modal—script execution will be paused until the dialog box is completed.

A runtime error will result if no network is present.

Example ’This example invokes the network driver dialog box.
Sub Main()

Net.Dialog
End Sub

See Also Net.Browse$ (method).

Platform(s) Windows.

Net.GetCaps (method)

Syntax Net.GetCaps(type [, localname$])

Description Returns an Integer specifying information about the network and its capabilities.

Comments The Net.GetCaps method takes the following parameters:

A runtime error will result if no network is present.

Examples Sub Main()
'This example checks the type of network.
If Net.GetCaps (2) = 768 Then MsgBox "This is a Novell network."
'Check whether the net supports retrieval of the user name.
If Net.GetCaps (4) And 1 Then MsgBox "User name is: " +

Net.User$
'This checks whether this net supports the Browse dialog

boxes.
If Net.GetCaps (6) And &H0010 Then MsgBox Net.Browse$(1)

End Sub

Parameter Description

type An Integer specifying what type of information to retrieve. This
parameter is different from platform to platform.

localname$ A String specifying the name of the local device to which is
attached to the network device to be queried. If this parameter is
missing, then information about the first network device is returned.

346 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 346 of 376 Printed: 9/25/96

Platform(s) Windows, Win32.

Platform Notes Windows: Under Windows, since only one network connection is possible at any given
time, the localname$ parameter is ignored.

The type parameter for Win16 platforms can be any of the values described in the
following table:

Value of type Description

1 Returns the version of the driver specification to which the currently
installed network driver conforms. The high byte of the returned
value contains the major version number and the low byte contains
the minor version number. These values can be retrieved using the
following code:

MajorVersionNumber = Net.GetCaps(1) \ 256

MinorVersionNumber = Net.GetCaps(1) And &H00FF

2 Returns the type of network. The network type is returned in the
high byte and the subnetwork type is returned in the low byte. These
values can be obtained using the following code:

NetType = Net.GetCaps(2) \ 256

SubNetType = Net.GetCaps(2) And &H00FF

Using the above values, NetType can be any of the following values:

0 No network is installed.

1 Microsoft Network.

2 Microsoft LAN Manager.

3 Novell NetWare.

4 Banyan Vines.

5 10Net.

6 Locus

7 SunSoft PC NFS.

8 LanStep.

9 9 Tiles.

10 Articom Lantastic.

11 IBM AS/400.

12 FTP Software FTP NFS.

13 DEC Pathworks.

Net.GetCaps (method) 347

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 347 of 376 Printed: 9/25/96

If NetType is 128, then SubNetType is any of the following values
(you can test for any of these values using the And operator):

bit &H0001 Microsoft Network.

bit &H0002 Microsoft LAN Manager.

bit &H0004 Windows for Workgroups.

bit &H0008 Novell NetWare.

bit &H0010 Banyan Vines.

bit &H0080 Other unspecified network.

3 Returns the network driver version number.

4 Returns 1 if the Net.User$ property is supported; returns 0
otherwise.

6 Returns any of the following values indicating which connections
are supported (you can test for these values using the And operator):

bit &H0001 Driver supports Net.AddCon.

bit &H0002 Driver supports Net.CancelCon.

bit &H0004 Driver supports Net.GetCon.

bit &H0008 Driver supports auto connect.

bit &H0010 Driver supports Net.Browse$.

Value of type Description

348 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 348 of 376 Printed: 9/25/96

Win32: For Win32 platforms, the type parameter can be any of the following values:

7 Returns a value indicating which printer functions are available (you
can test for these values using the And operator):

bit &H0002 Driver supports open print job.

bit &H0004 Driver supports close print job.

bit &H0010 Driver supports hold print job.

bit &H0020 Driver supports release print job.

bit &H0040 Driver supports cancel print job.

bit &H0080 Driver supports setting the number of print
copies.

bit &H0100 Driver supports watch print queue.

bit &H0200 Driver supports unwatch print queue.

bit &H0400 Driver supports locking queue data.

bit &H0800 Driver supports unlocking queue data.

bit &H1000 Driver supports queue change message.

bit &H2000 Driver supports abort print job.

bit &H4000 Driver supports no arbitrary lock.

bit &H8000 Driver supports write print job.

8 Returns a value indicating which dialog functions are available (you
can test for these values using the And operator):

bit &H0001 Driver supports Device Mode dialog.

bit &H0002 Driver supports the Browse dialog.

bit &H0004 Driver supports the Connect dialog.

bit &H0008 Driver supports the Disconnect dialog.

bit &H0010 Driver supports the View Queue dialog.

bit &H0020 Driver supports the Property dialog.

bit &H0040 Driver supports the Connection dialog.

bit &H0080 Driver supports the Printer Connect dialog.

bit &H0100 Driver supports the Shares dialog.

bit &H0200 Driver supports the Share As dialog.

Value of type Description

Net.GetCon$ (method) 349

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 349 of 376 Printed: 9/25/96

Net.GetCon$ (method)

Syntax Net.GetCon$(localname$)

Description Returns the name of the network resource associated with the specified redirected local
device.

Comments The localname$ parameter specifies the name of the local device, such as "LPT1" or
"D:".

The function returns a zero-length string if the specified local device is not redirected.

A runtime error will result if no network is present.

Example ’This example finds out where drive Z is mapped.
Sub Main()

Value of type Description

1 Always returns 0

2 Network type:

0 No network is installed.

1 Microsoft Network.

2 Microsoft LAN Manager.

3 Novell NetWare.

4 Banyan Vines.

5 10Net.

6 Locus

7 SunSoft PC NFS.

8 LanStep.

9 9 Titles.

10 Articom Lantastic.

11 IBM AS/400.

12 FTP Software FTP NFS.

13 DEC Pathworks.

3 Version of the network with the major version in the high byte and
the minor version in the low byte:

Major = Net.GetCaps(2) \ 256

Minor = Net.GetCaps(2) And &H00FF

350 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 350 of 376 Printed: 9/25/96

NetPath$ = Net.GetCon$ ("Z:")
MsgBox "Drive Z is mapped as " & NetPath$

End Sub

See Also Net.CancelCon (method); Net.AddCon (method).

Platform(s) Windows Win32.

Net.User$ (method)

Syntax Net.User$ [([localname$])]

Description Returns the name of the user on the network.

Comments The localname$ parameter is a String specifying the name of the local device that the
user has made a connection to. If this parameter is omitted, then the name of the user of
the current process is used.

If localname$ is the name of a network device and the user is connected to that resource
using different names, then the network provider may not be able to resolve which user
name to return. In this case, the provider may make an arbitrary choice from the
possible user names.

A runtime error is generated if the network is not installed.

Examples Sub Main()
'This example tells the user who he or she is.
MsgBox "You are " & Net.User$
'This example makes sure this capability is supported.
If Net.GetCaps(4) And 1 Then MsgBox "You are " & Net.User$

End Sub

Platform(s) Windows, Win32.

Platform Notes Windows: On Win16 platforms, localname$ is ignored.

New (keyword)

Syntax 1 Dim ObjectVariable As New ObjectType

Syntax 2 Set ObjectVariable = New ObjectType

Description Creates a new instance of the specified object type, assigning it to the specified object
variable.

Comments The New keyword is used to declare a new instance of the specified data object. This
keyword can only be used with data object types.

Not (operator) 351

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 351 of 376 Printed: 9/25/96

At runtime, the application or extension that defines that object type is notified that a
new object is being defined. The application responds by creating a new physical object
(within the appropriate context) and returning a reference to that object, which is
immediately assigned to the variable being declared.

When that variable goes out of scope (i.e., the Sub or Function procedure in which the
variable is declared ends), the application is notified. The application then performs
some appropriate action, such as destroying the physical object.

See Also Dim (statement); Set (statement).

Platform(s) All.

Not (operator)

Syntax Not expression

Description Returns either a logical or binary negation of expression.

Comments The result is determined as shown in the following table:

Example ’This example demonstrates the use of the Not operator in
’comparing logical expressions and for switching a True/False
’toggle variable.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a = False
b = True
If (Not a and b) Then message = "a = False, b = True" & crlf

toggle% = True
message = message & "toggle% is now " _

& Format(toggle%,"True/False") & crlf
toggle% = Not toggle%
message = message & "toggle% is now " _

& Format(toggle%,"True/False") & crlf

If the expression is then the result is

True False

False True

Null Null

Any numeric type A binary negation of the number. If the number is an
Integer, then an Integer is returned. Otherwise, the
expression is first converted to a Long, then a binary
negation is performed, returning a Long.

Empty Treated as a Long value 0.

352 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 352 of 376 Printed: 9/25/96

toggle% = Not toggle%
message = message & "toggle% is now " _

& Format(toggle%,"True/False")
MsgBox message

End Sub

See Also Boolean (data type); Comparison Operators (topic).

Platform(s) All.

Now (function)

Syntax Now[()]

Description Returns a Date variant representing the current date and time.

Example ’This example shows how the Now function can be used as an
’elapsed-time counter.
Sub Main()

t1# = Now()
MsgBox "Wait a while and click OK."
t2# = Now()
t3# = Second(t2#) - Second(t1#)
MsgBox "Elapsed time was: " & t3# & " seconds."

End Sub

See Also Date, Date$ (functions); Time, Time$ (functions).

Platform(s) All.

NPer (function)

Syntax NPer(rate, pmt, pv, fv, due)

Description Returns the number of periods for an annuity based on periodic fixed payments and a
constant rate of interest.

Comments An annuity is a series of fixed payments paid to or received from an investment over a
period of time. Examples of annuities are mortgages, retirement plans, monthly savings
plans, and term loans.

The NPer function requires the following named parameters:

Named Parameter Description

rate Double representing the interest rate per period. If the periods
are monthly, be sure to normalize annual rates by dividing them
by 12.

Npv (function) 353

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 353 of 376 Printed: 9/25/96

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example ’This example calculates the number of $100.00 monthly payments
’necessary to accumulate $10,000.00 at an annual rate of 10%.
’Payments are made at the beginning of the month.
Sub Main()

ag# = NPer ((.10/12),100,0,10000,1)
MsgBox "The number of monthly periods is: " &

Format(ag#,"Standard")
End Sub

See Also IPmt (function); Pmt (function); PPmt (function); Rate (function).

Platform(s) All.

Npv (function)

Syntax Npv(rate, valuearray())

Description Returns the net present value of an annuity based on periodic payments and receipts,
and a discount rate.

Comments The Npv function requires the following named parameters:

pmt Double representing the amount of each payment or income.
Income is represented by positive values, whereas payments are
represented by negative values.

pv Double representing the present value of your annuity. In the
case of a loan, the present value would be the amount of the loan,
and the future value (see below) would be zero.

fv Double representing the future value of your annuity. In the case
of a loan, the future value would be zero, and the present value
would be the amount of the loan.

due Integer indicating when payments are due for each payment
period. A 0 specifies payment at the end of each period, whereas
a 1 indicates payment at the start of each period.

Named Parameter Description

Named Parameter Description

rate Double that represents the interest rate over the length of the
period. If the values are monthly, annual rates must be divided by
12 to normalize them to monthly rates.

354 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 354 of 376 Printed: 9/25/96

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

For accurate results, be sure to enter your payments and receipts in the correct order
because Npv uses the order of the array values to interpret the order of the payments and
receipts.

If your first cash flow occurs at the beginning of the first period, that value must be
added to the return value of the Npv function. It should not be included in the array of
cash flows.

Npv differs from the Pv function in that the payments are due at the end of the period
and the cash flows are variable. Pv's cash flows are constant, and payment may be made
at either the beginning or end of the period.

Example ’This example illustrates the purchase of a lemonade stand for
’$800 financed with money borrowed at 10%. The returns are
’estimated to accelerate as the stand gains popularity. The
’incomes are estimated (generated) over 12 months. This program
’first generates the income stream array in two For...Next loops,
’and then the net present value (Npv) is calculated and displayed.
’Note normalization of the annual 10% rate.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim valu#(12)
valu(1) = -800 'Initial investment
message = valu(1) & ", "
For x = 2 To 5 'Months 2-5

valu(x) = 100 + (x * 2)
message = message & valu(x) & ", "

Next x
For x = 6 To 12 'Months 6-12

valu(x) = 100 + (x * 10)'Accelerated income
message = message & valu(x) & ", "

Next x
NetVal# = NPV((.10/12),valu)
message = "The values:" & crlf & message & crlf & crlf
MsgBox message & "Net present value: " _

& Format(NetVal#,"Currency")
End Sub

See Also Fv (function); IRR (function); MIRR (function); Pv (function).

valuearray() Array of Double numbers representing the payments and
receipts. Positive values are payments, and negative values are
receipts.

There must be at least one positive and one negative value.

Named Parameter Description

Object (data type) 355

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 355 of 376 Printed: 9/25/96

Platform(s) All.

Object (data type)

Syntax Object

Description A data type used to declare OLE Automation variables.

Comments The Object type is used to declare variables that reference objects within an application
using OLE Automation.

Each object is a 4-byte (32-bit) value that references the object internally. The value 0
(or Nothing) indicates that the variable does not reference a valid object, as is the case
when the object has not yet been given a value. Accessing properties or methods of such
Object variables generates a runtime error.

Using Objects

Object variables are declared using the Dim, PUBLIC, or Private statement:
Dim MyApp As Object

Object variables can be assigned values (thereby referencing a real physical object)
using the Set statement:

Set MyApp = CreateObject("phantom.application")

Set MyApp = Nothing

Properties of an Object are accessed using the dot (.) separator:
MyApp.Color = 10

i% = MyApp.Color

Methods of an Object are also accessed using the dot (.) separator:
MyApp.Open "sample.txt"

isSuccess = MyApp.Save("new.txt",15)

Automatic Destruction

BasicScript keeps track of the number of variables that reference a given object so that
the object can be destroyed when there are no longer any references to it:

Sub Main() 'Number of references to object

Dim a As Object '0

Dim b As Object '0

Set a = CreateObject("phantom.application) '1

Set b = a '2

Set a = Nothing '1

End Sub '0 (object

356 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 356 of 376 Printed: 9/25/96

'destroyed)

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement).

Platform(s) Windows, Win32, Macintosh.

Objects (topic)

BasicScript defines two types of objects: data objects and OLE Automation objects.

Syntactically, these are referenced in the same way.

What Is an Object

An object in BasicScript is an encapsulation of data and routines into a single unit. The
use of objects in BasicScript has the effect of grouping together a set of functions and
data items that apply only to a specific object type.

Objects expose data items for programmability called properties. For example, a sheet
object may expose an integer called NumColumns. Usually, properties can be both
retrieved (get) and modified (set).

Objects also expose internal routines for programmability called methods. In
BasicScript, an object method can take the form of a function or a subroutine. For
example, a OLE Automation object called MyApp may contain a method subroutine
called Open that takes a single argument (a filename), as shown below:

MyApp.Open "c:\files\sample.txt"

Declaring Object Variables

In order to gain access to an object, you must first declare an object variable using either
Dim, Public, or Private:

Dim o As Object 'OLE Automation object

Initially, objects are given the value 0 (or Nothing). Before an object can be accessed, it
must be associated with a physical object.

Note: An OLE Automation object is instructed by BasicScript to destroy itself when
no variables reference that object. However, it is the responsibility of the OLE
Automation server to destroy it. Some servers do not destroy their objects, usually
when the objects have a visual component and can be destroyed manually by the
user.

Objects (topic) 357

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 357 of 376 Printed: 9/25/96

Assigning a Value to an Object Variable

An object variable must reference a real physical object before accessing any properties
or methods of that object. To instantiate an object, use the Set statement.

Dim MyApp As Object

Set MyApp = CreateObject("Server.Application")

Accessing Object Properties

Once an object variable has been declared and associated with a physical object, it can
be modified using BasicScript code. Properties are syntactically accessible using the dot
operator, which separates an object name from the property being accessed:

MyApp.BackgroundColor = 10

i% = MyApp.DocumentCount

Properties are set using BasicScript's normal assignment statement:
MyApp.BackgroundColor = 10

Object properties can be retrieved and used within expressions:
i% = MyApp.DocumentCount + 10

MsgBox "Number of documents = " & MyApp.DocumentCount

Accessing Object Methods

Like properties, methods are accessed via the dot operator. Object methods that do not
return values behave like subroutines in BasicScript (i.e., the arguments are not enclosed
within parentheses):

MyApp.Open "c:\files\sample.txt",True,15

Object methods that return a value behave like function calls in BasicScript. Any
arguments must be enclosed in parentheses:

If MyApp.DocumentCount = 0 Then MsgBox "No open documents."

NumDocs = app.count(4,5)

There is no syntactic difference between calling a method function and retrieving a
property value, as shown below:

variable = object.property(arg1,arg2)

variable = object.method(arg1,arg2)

Comparing Object Variables

The values used to represent objects are meaningless to the script in which they are
used, with the following exceptions:

• Objects can be compared to each other to determine whether they refer to the same
object.

• Objects can be compared with Nothing to determine whether the object variable
refers to a valid object.

358 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 358 of 376 Printed: 9/25/96

Object comparisons are accomplished using the Is operator:
If a Is b Then MsgBox "a and b are the same object."

If a Is Nothing Then MsgBox "a is not initialized."

If b Is Not Nothing Then MsgBox "b is in use."

Collections

A collection is a set of related object variables. Each element in the set is called a
member and is accessed via an index, either numeric or text, as shown below:

MyApp.Toolbar.Buttons(0)

MyApp.Toolbar.Buttons("Tuesday")

It is typical for collection indexes to begin with 0.

Each element of a collection is itself an object, as shown in the following examples:
Dim MyToolbarButton As Object

Set MyToolbarButton = MyApp.Toolbar.Buttons("Save")

MyAppp.Toolbar.Buttons(1).Caption = "Open"

The collection itself contains properties that provide you with information about the
collection and methods that allow navigation within that collection:

Dim MyToolbarButton As Object

NumButtons% = MyApp.Toolbar.Buttons.Count

MyApp.Toolbar.Buttons.MoveNext

MyApp.Toolbar.Buttons.FindNext "Save"

For i = 1 To MyApp.Toolbar.Buttons.Count

Set MyToolbarButton = MyApp.Toolbar.Buttons(i)

MyToolbarButton.Caption = "Copy"

Next i

Predefined Objects

BasicScript predefines a few objects for use in all scripts. These are:

Oct, Oct$ (functions)

Syntax Oct[$](number)

Description Returns a String containing the octal equivalent of the specified number.

Clipboard System Desktop HWND

Net Basic Screen

Note: Some of these objects are not available on all platforms.

OKButton (statement) 359

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 359 of 376 Printed: 9/25/96

Comments Oct$ returns a String, whereas Oct returns a String variant.

The returned string contains only the number of octal digits necessary to represent the
number.

The number parameter is any numeric expression. If this parameter is Null , then Null is
returned. Empty is treated as 0. The number parameter is rounded to the nearest whole
number before converting to the octal equivalent.

Example 'This example displays the octal equivalent of several numbers.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

st$ = "The octal values are: " & crlf
For x = 1 To 5

y% = x * 10
st$ = st$ & y% & " : " & Oct$ (y%) & crlf

Next x
MsgBox st$

End Sub

See Also Hex, Hex$ (functions).

Platform(s) All.

OKButton (statement)

Syntax OKButton x, y, width, height [, .Identifier]

Description Creates an OK button within a dialog box template.

Comments This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The OKButton statement accepts the following parameters:

If the DefaultButton parameter is not specified in the Dialog statement, the OK button
will be used as the default button. In this case, the OK button can be selected by
pressing Enter on a nonbutton control.

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

.Identifier Name by which this control can be referenced by statements in
a dialog function (such as DlgFocus and DlgEnable).

360 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 360 of 376 Printed: 9/25/96

A dialog box template must contain at least one OKButton , CancelButton, or
PushButton statement (otherwise, the dialog box cannot be dismissed).

Example 'This example shows how to use the OK and Cancel buttons within a
'dialog box template and how to detect which one closed the dialog
'box.
Sub Main()

Begin Dialog ButtonTemplate 17,33,104,23,"Buttons"
OKButton 8,4,40,14,.OK
CancelButton 56,4,40,14,.Cancel

End Dialog
Dim ButtonDialog As ButtonTemplate
WhichButton = Dialog(ButtonDialog)
If WhichButton = -1 Then

MsgBox "OK was pressed."
ElseIf WhichButton = 0 Then

MsgBox "Cancel was pressed."
End If

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement); PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

On Error (statement)

Syntax On Error {Goto label | Resume Next | Goto 0}

Description Defines the action taken when a trappable runtime error occurs.

Comments The form On Error Goto label causes execution to transfer to the specified label when
a runtime error occurs.

The form On Error Resume Next causes execution to continue on the line following
the line that caused the error.

The form On Error Goto 0 causes any existing error trap to be removed.

If an error trap is in effect when the script ends, then an error will be generated.

An error trap is only active within the subroutine or function in which it appears.

On Error (statement) 361

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 361 of 376 Printed: 9/25/96

Once an error trap has gained control, appropriate action should be taken, and then
control should be resumed using the Resume statement. The Resume statement resets
the error handler and continues execution. If a procedure ends while an error is pending,
then an error will be generated. (The Exit Sub or Exit Function statement also resets
the error handler, allowing a procedure to end without displaying an error message.)

Errors within an Error Handler

If an error occurs within the error handler, then the error handler of the caller (or any
procedure in the call stack) will be invoked. If there is no such error handler, then the
error is fatal, causing the script to stop executing. The following statements reset the
error state (i.e., these statements turn off the fact that an error occurred):

Resume

Err=-1

The Resume statement forces execution to continue either on the same line or on the
line following the line that generated the error. The Err=-1 statement allows explicit
resetting of the error state so that the script can continue normal execution without
resuming at the statement that caused the error condition.

The On Error statement will not reset the error. Thus, if an On Error statement occurs
within an error handler, it has the effect of changing the location of a new error handler
for any new errors that may occur once the error has been reset.

Example 'This example will demonstrate three types of error handling. The
'first case simply by-passes an expected error and continues with
'program operation. The second case creates an error branch that
'jumps to a common error handling routine that processes incoming
'errors, clears the error (with the Resume statement) and resumes
'program execution. The third case clears all internal error
'handling so that execution will stop when the next error is
'encountered.
Sub Main()

Dim x%
a = 10000
b = 10000

On Error Goto Pass'Branch to this label on error.
Do

x% = a * b
Loop

Pass:
Err = -1 'Clear error status.
MsgBox "Cleared error status and continued."

On Error Goto Overflow 'Branch to new error routine on any
x% = 1000 'subsequent errors.

362 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 362 of 376 Printed: 9/25/96

x% = a * b
x% = a / 0

On Error Goto 0 'Clear error branching.
x% = a * b 'Program will stop here.
Exit Sub 'Exit before common error routine.

Overflow: 'Beginning of common error routine.
If Err = 6 then

MsgBox "Overflow Branch."
Else

MsgBox Error(Err)
End If
Resume Next

End Sub

See Also Error Handling (topic); Error (statement); Resume (statement).

Platform(s) All.

Open (statement)

Syntax Open filename$ [For mode] [Access accessmode] [lock] As [#] filenumber
_

[Len = reclen]

Description Opens a file for a given mode, assigning the open file to the supplied filenumber.

Comments The filename$ parameter is a string expression that contains a valid filename.

The filenumber parameter is a number between 1 and 255. The FreeFile function can be
used to determine an available file number.

The mode parameter determines the type of operations that can be performed on that
file:

File Mode Description

Input Opens an existing file for sequential input (filename$ must
exist). The value of accessmode, if specified, must be Read.

Output Opens an existing file for sequential output, truncating its length
to zero, or creates a new file. The value of accessmode, if
specified, must be Write .

Append Opens an existing file for sequential output, positioning the file
pointer at the end of the file, or creates a new file. The value of
accessmode, if specified, must be Read Write.

Open (statement) 363

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 363 of 376 Printed: 9/25/96

If the mode parameter is missing, then Random is used.

The accessmode parameter determines what type of I/O operations can be performed on
the file:

If the accessmode parameter is not specified, the following defaults are used:

The lock parameter determines what access rights are granted to other processes that
attempt to open the same file. The following table describes the values for lock:

Binary Opens an existing file for binary I/O or creates a new file.
Existing binary files are never truncated in length. The value of
accessmode, if specified, determines how the file can
subsequently be accessed.

Random Opens an existing file for record I/O or creates a new file.
Existing random files are truncated only if accessmode is Write .
The reclen parameter determines the record length for I/O
operations.

Access Description

Read Opens the file for reading only. This value is valid only for files
opened in Binary , Random, or Input mode.

Write Opens the file for writing only. This value is valid only for files
opened in Binary , Random, or Output mode.

Read Write Opens the file for both reading and writing. This value is valid
only for files opened in Binary , Random, or Append mode.

File Mode Default Value for accessmode

Input Read

Output Write

Append Read Write

Binary When the file is initially opened, access is attempted three times
in the following order:

1. Read Write

2. Write

3. Read

Random Same as Binary files

lock Value Description

Shared Another process can both read this file and write to it.
(Deny none.)

File Mode Description

364 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 364 of 376 Printed: 9/25/96

If lock is not specified, then the file is opened in Shared mode.

If the file does not exist and the lock parameter is specified, the file is opened
twiceonce to create the file and again to establish the correct sharing mode.

Files opened in Random mode are divided up into a sequence of records, each of the
length specified by the reclen parameter. If this parameter is missing, then 128 is used.
For files opened for sequential I/O, the reclen parameter specifies the size of the internal
buffer used by BasicScript when performing I/O. Larger buffers mean faster file access.
For Binary files, the reclen parameter is ignored.

For files opened in Append mode, BasicScript opens the file and positions the file
pointer after the last character in the file. The end-of-file character, if present, is not
removed by BasicScript.

Example 'This example opens several files in various configurations.
Sub Main()

Open "test.dat" For Output Access Write Lock Write As #2
Close
Open "test.dat" For Input Access Read Shared As #1
Close
Open "test.dat" For Append Access Write Lock Read Write as #3
Close
Open "test.dat" For Binary Access Read Write Shared As #4
Close
Open "test.dat" For Random Access Read Write Lock Read As #5
Close
Open "test.dat" For Input Access Read Shared As #6
Close
Kill "test.dat"

End Sub

See Also Close (statement); Reset (statement); FreeFile (function).

Platform(s) All.

Platform Notes UNIX: BasicScript sets the permissions of new files to the logical conjunction of 0777
octal and the process’s umask.

Lock Read Another process can write to this file but not read it.
(Deny read.)

Lock Write Another process can read this file but not write to it.
(Deny write.)

Lock Read Write Another process is prevented both from reading this file
and from writing to it. (Exclusive.)

lock Value Description

OpenFileName$ (function) 365

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 365 of 376 Printed: 9/25/96

OpenFileName$ (function)

Syntax OpenFileName$[([title$ [,[extensions$] [, helpfile, context]]])]

Description Displays a dialog box that prompts the user to select from a list of files, returning the
full pathname of the file the user selects or a zero-length string if the user selects
Cancel.

Comments This function displays the standard file open dialog box, which allows the user to select
a file. It takes the following parameters:

If both the helpfile and context parameters are specified, then a Help button is added in
addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

Example ’This example asks the user for the name of a file, then proceeds
’to read the first line from that file.

Sub Main
Dim f As String,s As String
f$ = OpenFileName$ ("Open Picture","Text Files:*.TXT")
If f$ <> "" Then

Open f$ For Input As #1
Line Input #1,s$
Close #1
MsgBox "First line from " & f$ & " is " & s$

End If
End Sub

See Also MsgBox (statement); AskBox, AskBox$ (functions); AskPassword, AskPassword$
(functions); InputBox , InputBox$ (functions); SaveFileName$ (function); SelectBox
(function); AnswerBox (function).

Parameter Description

title$ String specifying the title that appears in the dialog box's title
bar. If this parameter is omitted, then "Open" is used.

extension$ String specifying the available file types. The format for this
string depends on the platform on which BasicScript is running.
If this parameter is omitted, then all files are displayed.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also be
specified.

context Number specifying the ID of the topic within helpfile for this
dialog’s help. If this parameter is specified, then helpfile must
also be specified.

366 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 366 of 376 Printed: 9/25/96

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes Windows, Win32, OS/2: The extensions$ parameter must be in the following format:
type: ext[, ext][; type: ext[, ext]]...

For example, the following are valid extensions$ specifications:
"All Files:*.*"

"Documents:*.TXT,*.DOC"

"All Files:*.*;Documents:*.TXT,*.DOC"

Macintosh: On the Macintosh, the extensions$ parameter contains a comma-separated
list of four-character file types. For example:

"TEXT,XLS4,MSWD"

On the Macintosh, the title$ parameter is ignored.

Operator Precedence (topic)

The following table shows the precedence of the operators supported by BasicScript.
Operations involving operators of higher precedence occur before operations involving
operators of lower precedence. When operators of equal precedence occur together,
they are evaluated from left to right.

Placeholder Description

type Specifies the name of the grouping of files, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.

Operator Description Precedence Order

() Parentheses Highest

^ Exponentiation

- Unary minus

/, * Division and multiplication

\ Integer division

Mod Modulo

+, - Addition and subtraction

& String concatenation

=, <>, >, <, <=, >= Relational

Like , Is String and object comparison

Not Logical negation

And Logical or binary conjunction

Operator Precision (topic) 367

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 367 of 376 Printed: 9/25/96

The precedence order can be controlled using parentheses, as shown below:
a = 4 + 3 * 2 'a becomes 10.

a = (4 + 3) * 2 'a becomes 14.

Operator Precision (topic)

When numeric, binary, logical or comparison operators are used, the data type of the
result is generally the same as the data type of the more precise operand. For example,
adding an Integer and a Long first converts the Integer operand to a Long, then
preforms a long addition, overflowing only if the result cannot be contained with a
Long. The order of precision is shown in the following list:

There are exceptions noted in the descriptions of each operator.

The rules for operand conversion are further complicated when an operator is used with
variant data. In many cases, an overflow causes automatic promotion of the result to the
next highest precise data type. For example, adding two Integer variants results in an
Integer variant unless it overflows, in which case the result is automatically promoted
to a Long variant.

Option Base (statement)

Syntax Option Base {0 | 1}

Or Logical or binary disjunction

Xor , Eqv, Imp Logical or binary operators Lowest

Operator Description Precedence Order

Empty Least precise

Boolean

Integer

Long

Single

Date

Double

Currency Most precise

368 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 368 of 376 Printed: 9/25/96

Description Sets the lower bound for array declarations.

Comments By default, the lower bound used for all array declarations is 0.

This statement must appear outside of any functions or subroutines.

Example Option Base 1
Sub Main()

Dim a(10) 'Contains 10 elements (not 11).
End Sub

See Also Dim (statement); Public (statement); Private (statement).

Platform(s) All.

Option Compare (statement)

Syntax Option Compare [Binary | Text]

Description Controls how strings are compared.

Comments When Option Compare is set to Binary , then string comparisons are case-sensitive
(e.g., "A" does not equal "a"). When it is set to Text, string comparisons are
case-insensitive (e.g., "A" is equal to "a").

The default value for Option Compare is Binary .

The Option Compare statement affects all string comparisons in any statements that
follow the Option Compare statement. Additionally, the setting affects the default
behavior of Instr , StrComp, and the Like operator. The following table shows the
types of string comparisons affected by this setting:

The Option Compare statement must appear outside the scope of all subroutines and
functions. In other words, it cannot appear within a Sub or Function block.

Example 'This example shows the use of Option Compare.
Option Compare Binary
Sub CompareBinary

a$ = "This String Contains UPPERCASE."
b$ = "this string contains uppercase."
If a$ = b$ Then

MsgBox "The two strings were compared case-insensitive."
Else

MsgBox "The two strings were compared case-sensitive."

> < <>

<= >= Instr

StrComp Like

Option CStrings (statement) 369

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 369 of 376 Printed: 9/25/96

End If
End Sub
Option Compare Text
Sub CompareText

a$ = "This String Contains UPPERCASE."
b$ = "this string contains uppercase."
If a$ = b$ Then

MsgBox "The two strings were compared case-insensitive."
Else

MsgBox "The two strings were compared case-sensitive."
End If

End Sub
Sub Main()

CompareBinary 'Calls subroutine above.
CompareText 'Calls subroutine above.

End Sub

See Also Like (operator); InStr , InStrB (functions); StrComp (function); Comparison
Operators (topic).

Platform(s) All.

Option CStrings (statement)

Syntax Option CStrings {On | Off}

Description Turns on or off the ability to use C-style escape sequences within strings.

Comments When Option CStrings On is in effect, the compiler treats the backslash character as an
escape character when it appears within strings. An escape character is simply a special
character that otherwise cannot ordinarily be typed by the computer keyboard.

Escape Description Equivalent Expression

\r Carriage return Chr$(13)

\n Line Feed Chr$(10)

\a Bell Chr$(7)

\b Backspace Chr$(8)

\f Form Feed Chr$(12)

\t Tab Chr$(9)

\v Vertical tab Chr$(11)

\0 Null Chr$(0_

\" Double quote "" or Chr$(34)

\\ Backslash Chr$(92)

370 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 370 of 376 Printed: 9/25/96

With hexadecimal values, BasicScript stops scanning for digits when it encounters a
nonhexadecimal digit or two digits, whichever comes first. Similarly, with octal values,
BasicScript stops scanning when it encounters a nonoctal digit or three digits,
whichever comes first.

When Option CStrings Off is in effect, then the backslash character has no special
meaning. This is the default.

Example Option CStrings On
Sub Main()

MsgBox "They said, \"Watch out for that clump of grass!\""
MsgBox "First line.\r\nSecond line."
MsgBox "Char A: \x41 \r\n Char B: \x42"

End Sub

Platform(s) All.

Option Default (statement)

Syntax Option Default type

Description Sets the default data type of variables and function return values when not otherwise
specified.

Comments By default, the type of implicitly defined variables and function return values is
Variant . This statement is used for backward compatibility with earlier versions of
BasicScript where the default data type was Integer.

This statement must appear outside the scope of all functions and subroutines.

Currently, type can only be set to Integer.

Example 'This script sets the default data type to Integer. This fact
'is used to declare the function AddIntegers which returns an
'Integer data type.
Option Default Integer
Function AddIntegers(a As Integer,b As Integer)

Foo = a + b
End Function

\? Question mark ?

\’ Single quote ’

\xhh Hexadecimal number Chr$(Val(&H hh))

\ooo Octal number Chr$(Val(&O ooo))

\anycharacter Any character anycharacter

Escape Description Equivalent Expression

Option Explicit (statement) 371

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 371 of 376 Printed: 9/25/96

Sub Main
Dim a,b,result
a = InputBox("Enter an integer:")
b = InputBox("Enter an integer:")
result = AddIntegers(a,b)

End Sub

See Also DefType (statement).

Platform(s) All.

Option Explicit (statement)

Syntax Option Explicit

Description Prevents implicit declaration of variables and externally called procedures.

Comments By default, BasicScript implicitly declares variables that are used but have not been
explicitly declared with Dim, Public, or Private. To avoid typing errors, you may want
to use Option Explicit to prevent this behavior.

The Option Explicit statement also enforces explicit declaration of all externally called
procedures. Once specified, all externally called procedures must be explicitly declared
with the Declare statement.

See Also Const (statement); Dim (statement); Public (statement); Private (statement); ReDim
(statement); Declare (statement).

Platform(s) All.

OptionButton (statement)

Syntax OptionButton x, y, width, height, title$ [, .Identifier]

Description Defines an option button within a dialog box template.

Comments This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The OptionButton statement accepts the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in
dialog units.

372 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 372 of 376 Printed: 9/25/96

Example See OptionGroup (statement).

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement); PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes Windows, Win32, OS/2: On Windows, Win32, and OS/2 platforms, accelerators are
underlined, and the accelerator combination Alt+letter is used.

Macintosh: On the Macintosh, accelerators are normal in appearance, and the
accelerator combination Command+letter is used.

OptionEnabled (function)

Syntax OptionEnabled(name$ | id)

Description Returns True if the specified option button is enabled within the current window or
dialog box; returns False otherwise.

Comments This function is used to determine whether a given option button is enabled within the
current window or dialog box. If an option button is enabled, then its value can be set
using the SetOption statement.

The OptionEnabled statement takes the following parameters:

title$ String containing text that appears within the option button. This
text may contain an ampersand character to denote an
accelerator letter, such as "&Portrait" for Portrait, which can be
selected by pressing the P accelerator.

.Identifier Name by which this control can be referenced by statements in a
dialog function (such as DlgFocus and DlgEnable).

Parameter Description

Parameter Description

name$ String containing the name of the option button.

id Integer specifying the ID of the option button.

Note: The OptionEnabled function is used to determine whether an option button is
enabled in another application's dialog box. Use the DlgEnable function with
dynamic dialog boxes.

OptionExists (function) 373

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 373 of 376 Printed: 9/25/96

Example 'This example checks to see whether the option button is enabled
'before setting it.
If OptionEnabled ("Tile") Then

SetOption "Tile"
End If

See Also GetOption (function); OptionExists (function); SetOption (statement).

Platform(s) Windows.

OptionExists (function)

Syntax OptionExists(name$ | id)

Description Returns True if the specified option button exists within the current window or dialog
box; returns False otherwise.

Comments This function is used to determine whether a given option button exists within the
current window or dialog box.

The OptionExists statement takes the following parameters:

Example 'This example checks to see whether the option button exists and
'is enabled before setting it.
If OptionExists ("Tile") Then

If OptionEnabled("Tile") Then
SetOption("Tile")

End If
End If

See Also GetOption (function); OptionEnabled (function); SetOption (statement).

Platform(s) Windows.

OptionGroup (statement)

Syntax OptionGroup .Identifier

Parameter Description

name$ String containing the name of the option button.

id Integer specifying the ID of the option button.

Note: The OptionExists function is used to determine whether an option button
exists in another application's dialog box. There is no equivalent function for use
with dynamic dialog boxes.

374 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 374 of 376 Printed: 9/25/96

Description Specifies the start of a group of option buttons within a dialog box template.

Comments The .Identifier parameter specifies the name by which the group of option buttons can
be referenced by statements in a dialog function (such as DlgFocus and DlgEnable).
This parameter also creates an integer variable whose value corresponds to the index of
the selected option button within the group (0 is the first option button, 1 is the second
option button, and so on). This variable can be accessed using the following syntax:
DialogVariable.Identifier.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

When the dialog box is created, the option button specified by .Identifier will be on; all
other option buttons in the group will be off. When the dialog box is dismissed, the
.Identifier will contain the selected option button.

Example 'This example creates a group of option buttons.
Sub Main()

Begin Dialog PrintTemplate 16,31,128,65,"Print"
GroupBox 8,8,64,52,"Orientation",.Junk
OptionGroup .Orientation

OptionButton 16,20,37,8,"Portrait",.Portrait
OptionButton 16,32,51,8,"Landscape",.Landscape
OptionButton 16,44,49,8,"Don't Care",.DontCare

OKButton 80,8,40,14
End Dialog
Dim PrintDialog As PrintTemplate
Dialog PrintDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionButton (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement); PictureButton (statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Or (operator)

Syntax result = expression1 Or expression2

Description Performs a logical or binary disjunction on two expressions.

Or (operator) 375

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 375 of 376 Printed: 9/25/96

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
disjunction is performed as follows:

Binary Disjunction

If the two expressions are Integer, then a binary disjunction is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to
Long and a binary disjunction is then performed, returning a Long result.

Binary disjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

Examples 'This first example shows the use of logical Or.
Dim s$ As String
s$ = InputBox$("Enter a string.")
If s$ = "" Or Mid$(s$,1,1) = "A" Then

s$ = LCase$(s$)
End If
'This second example shows the use of binary Or.
Dim w As Integer
TryAgain:

s$ = InputBox$("Enter a hex number (four digits max).")
If Mid$(s$,1,1) <> "&" Then

s$ = "&H" & s$
End If

If expression1 is and expression2 is then the result is

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null

If bit in expression1 is and bit in expression2 is the result is

1 1 1

0 1 1

1 0 1

0 0 0

376 BasicScript Language Reference

Summit Software Confidential
Filename: lrn-o.fm5 Template: LRprint.FM5
Page: 376 of 376 Printed: 9/25/96

If Not IsNumeric(s$) Then Goto TryAgain
w = CInt(s$)
MsgBox "Your number is &H" & Hex$(w)
w = w Or &H8000
MsgBox "Your number with the high bit set is &H" & Hex$(w)

See Also Operator Precedence (topic); Xor (operator); Eqv (operator); Imp (operator); And
(operator).

Platform(s) All.

Picture (statement) 377

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 377 of 418 Printed: 9/25/96

Picture (statement)

Syntax Picture x, y, width, height, PictureName$, PictureType [,[.Identifier]
[, style]]

Description Creates a picture control in a dialog box template.

Comments Picture controls are used for the display of graphics images only. The user cannot
interact with these controls.

The Picture statement accepts the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog
box.

width, height Integer coordinates specifying the dimensions of the control
in dialog units.

PictureName$ String containing the name of the picture. If PictureType is 0,
then this name specifies the name of the file containing the
image. If PictureType is 10, then PictureName$ specifies the
name of the image within the resource of the picture library.

If PictureName$ is empty, then no picture will be associated
with the control. A picture can later be placed into the picture
control using the DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following
sources are supported:

0 - The image is contained in a file on disk.

10 - The image is contained in a picture library as specified
by the PicName$ parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements
in a dialog function (such as DlgFocus and DlgEnable). If
omitted, then the first two words of PictureName$ are used.

style Specifies whether the picture is drawn within a 3D frame. It
can be either of the following values:

0 - Draw the picture control with a normal frame.

1 - Draw the picture control with a 3D frame.

If this parameter is omitted, then the picture control is drawn
with a normal frame.

378 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 378 of 418 Printed: 9/25/96

The picture control extracts the actual image from either a disk file or a picture library.
In the case of bitmaps, both 2- and 16-color bitmaps are supported. In the case of
WMFs, BasicScript supports the Placeable Windows Metafile.

If PictureName$ is a zero-length string, then the picture is removed from the picture
control, freeing any memory associated with that picture.

Examples 'This first example shows how to use a picture from a file.
Sub Main()

Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
OKButton 240,8,40,14
Picture 8,8,224,64,"c:\bitmaps\logo.bmp",0,.Logo

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub
'This second example shows how to use a picture from a picture
'library with a 3D frame.
Sub Main()

Begin Dialog LogoDlg 16,31,288,76,"Introduction",,"pics.dll"
OKButton 240,8,40,14
Picture 8,8,224,64,"CompanyLogo",10,.Logo,1

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionButton (statement);
OptionGroup (statement); PushButton (statement); Text (statement); TextBox
(statement); Begin Dialog (statement); PictureButton (statement); DlgSetPicture
(statement); HelpButton (statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes Windows, Win32: Picture controls can contain either a bitmap or a WMF (Windows
metafile). When extracting images from a picture library, BasicScript assumes that the
resource type for metafiles is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

OS/2: Picture controls can contain either bitmaps or Windows metafiles.

Picture libraries under OS/2 are implemented as resources within DLLs. The
PictureName$ parameter corresponds to the name of one of these resources as it appears
within the DLL.

Macintosh: Picture controls on the Macintosh can contain only PICT images. These are
contained in files of type PICT.

PictureButton (statement) 379

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 379 of 418 Printed: 9/25/96

Picture libraries on the Macintosh are files with collections of named PICT resources.
The PictureName$ parameter corresponds to the name of one the resources as it appears
within the file.

PictureButton (statement)

Syntax PictureButton x, y, width, height, PictureName$, PictureType [, .Identifier]

Description Creates a picture button control in a dialog box template.

Comments Picture button controls behave very much like push button controls. Visually, picture
buttons are different from push buttons in that they contain a graphic image imported
either from a file or from a picture library.

The PictureButton statement accepts the following parameters:

The picture button control extracts the actual image from either a disk file or a picture
library, depending on the value of PictureType. The supported picture formats vary from
platform to platform.

If PictureName$ is a zero-length string, then the picture is removed from the picture
button control, freeing any memory associated with that picture.

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control
in dialog units.

PictureName$ String containing the name of the picture. If PictureType is 0,
then this name specifies the name of the file containing the
image. If PictureType is 10, then PictureName$ specifies the
name of the image within the resource of the picture library.

If PictureName$ is empty, then no picture will be associated
with the control. A picture can later be placed into the picture
control using the DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following
sources are supported:

0 - The image is contained in a file on disk.

10 - The image is contained in a picture library as specified by
the PicName$ parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in
a dialog function (such as DlgFocus and DlgEnable).

380 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 380 of 418 Printed: 9/25/96

Examples 'This first example shows how to use a picture from a file.
Sub Main()

Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
OKButton 240,8,40,14
PictureButton 8,4,224,64,"c:\bitmaps\logo.bmp",0,.Logo

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

'This second example shows how to use a picture from a picture
'library.
Sub Main()

Begin Dialog LogoDlg 16,31,288,76,"Introduction",,"pics.dll"
OKButton 240,8,40,14
PictureButton 8,4,224,64,"CompanyLogo",10,.Logo

End Dialog
Dim LogoDialog As LogoDlg
Dialog LogoDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionButton (statement);
OptionGroup (statement); PushButton (statement); Text (statement); TextBox
(statement); Begin Dialog (statement); Picture (statement); DlgSetPicture (statement);
HelpButton (statement).

Platform(s) Windows, Win32, OS/2, Macintosh, UNIX.

Platform Notes Windows, Win32: Picture controls can contain either a bitmap or a WMF (Windows
metafile). When extracting images from a picture library, BasicScript assumes that the
resource type for metafiles is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

OS/2: Picture controls can contain either bitmaps or Windows metafiles.

Picture libraries under OS/2 are implemented as resources within DLLs. The
PictureName$ parameter corresponds to the name of one of these resources as it appears
within the DLL.

Macintosh: Picture controls on the Macintosh can contain only PICT images. These are
contained in files of type PICT.

Picture libraries on the Macintosh are files with collections of named PICT resources.
The PictureName$ parameter corresponds to the name of one the resources as it appears
within the file.

Pmt (function) 381

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 381 of 418 Printed: 9/25/96

Pmt (function)

Syntax Pmt(rate, nper, pv, fv, due)

Description Returns the payment for an annuity based on periodic fixed payments and a constant
rate of interest.

Comments An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages and
monthly savings plans.

The Pmt function requires the following named parameters:

The rate and nper parameters must be expressed in the same units. If rate is expressed
in months, then nper must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example 'This example calculates the payment necessary to repay a
'$1,000.00 loan over 36 months at an annual rate of 10%.
'Payments are due at the beginning of the period.
Sub Main()

x = Pmt((.1/12),36,1000.00,0,1)
message = "The payment is: "
MsgBox message & Format(x,"Currency")

End Sub

See Also IPmt (function); NPer (function); PPmt (function); Rate (function).

Platform(s) All.

Named Parameter Description

rate Double representing the interest rate per period. If the
periods are given in months, be sure to normalize annual rates
by dividing them by 12.

nper Double representing the total number of payments in the
annuity.

pv Double representing the present value of your annuity. In the
case of a loan, the present value would be the amount of the
loan.

fv Double representing the future value of your annuity. In the
case of a loan, the future value would be 0.

due Integer indicating when payments are due for each payment
period. A 0 specifies payment at the end of each period,
whereas a 1 specifies payment at the start of each period.

382 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 382 of 418 Printed: 9/25/96

PopupMenu (function)

Syntax PopupMenu(MenuItems$())

Description Displays a pop-up menu containing the specified items, returning an Integer
representing the index of the selected item.

Comments If no item is selected (i.e., the pop-up menu is canceled), then a value of 1 less than the
lower bound of the array is returned.

This function creates a pop-up menu using the string elements in the given array. Each
array element is used as a menu item. A zero-length string results in a separator bar in
the menu.

The pop-up menu is created with the upper left corner at the current mouse position.

A runtime error results if MenuItems$ is not a single-dimension array.

Only one pop-up menu can be displayed at a time. An error will result if another script
executes this function while a pop-up menu is visible.

Example Sub Main()
Dim a$()
AppList a$
w% = PopupMenu(a$)

End Sub

See Also SelectBox (function).

Platform(s) Windows, Win32.

PPmt (function)

Syntax PPmt(rate, per, nper, pv, fv, due)

Description Calculates the principal payment for a given period of an annuity based on periodic,
fixed payments and a fixed interest rate.

Comments An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages and
monthly savings plans.

The PPmt function requires the following named parameters:

Named Parameter Description

rate Double representing the interest rate per period.

per Double representing the number of payment periods. The per
parameter can be no less than 1 and no greater than nper.

PPmt (function) 383

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 383 of 418 Printed: 9/25/96

The rate and nper parameters must be in the same units to calculate correctly. If rate is
expressed in months, then nper must also be expressed in months.

Negative values represent payments paid out, whereas positive values represent
payments received.

Example 'This example calculates the principal paid during each year on
'a loan of $1,000.00 with an annual rate of 10% for a period of
'10 years. The result is displayed as a table containing the
'following information: payment, principal payment, principal
'balance.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

pay = Pmt(.1,10,1000.00,0,1)
message = "Amortization table for"
message = message & " 10 years: " & crlf & crlf
bal = 1000.00
For per = 1 to 10

prn = PPmt(.1,per,10,1000,0,0)
bal = bal + prn
message = message & Format(pay,"Currency") & " " _

& Format$(Prn,"Currency")
message = message & " " & Format(bal,"Currency") & crlf

Next per
MsgBox message

End Sub

See Also IPmt (function); NPer (function); Pmt (function); Rate (function).

Platform(s) All.

nper Double representing the total number of payments in your
annuity.

pv Double representing the present value of your annuity. In the
case of a loan, the present value would be the amount of the
loan.

fv Double representing the future value of your annuity. In the
case of a loan, the future value would be 0.

due Integer indicating when payments are due. If this parameter
is 0, then payments are due at the end of each period; if it is 1,
then payments are due at the start of each period.

Named Parameter Description

384 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 384 of 418 Printed: 9/25/96

Print (statement)

Syntax Print [[{Spc(n) | Tab(n)}][expressionlist][{; | ,}]]

Description Prints data to an output device.

Comments The actual output device depends on the platform on which BasicScript is running.

The following table describes how data of different types is written:

Each expression in expressionlist is separated with either a comma (,) or a semicolon (;).
A comma means that the next expression is output in the next print zone. A semicolon
means that the next expression is output immediately after the current expression. Print
zones are defined every 14 spaces.

If the last expression in the list is not followed by a comma or a semicolon, then a
carriage return is printed to the file. If the last expression ends with a semicolon, no
carriage return is printedthe next Print statement will output information
immediately following the expression. If the last expression in the list ends with a
comma, the file pointer is positioned at the start of the next print zone on the current
line.

Data Type Description

String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space =
positive). Additionally, there is a space following each
number.

Boolean Printed as "True" or "False". These keywords are translated
as appropriate according to your system’s locale.

Date Printed using the short date format. If either the date or
time component is missing, only the provided portion is
printed (this is consistent with the "general date" format
understood by the Format/Format$ functions).

Empty Nothing is printed

Null Prints "Null". This keyword is translated as appropriate
according to your system’s locale.

User-defined errors User-defined errors are printed to files as "Error code",
where code is the value of the user-defined error. The word
"Error" is not translated. The "Error" keyword is translated
as appropriate according to your system’s locale.

Object For any object type, BasicScript retrieves the default
property of that object and prints this value using the above
rules.

Print# (statement) 385

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 385 of 418 Printed: 9/25/96

The Tab and Spc functions provide additional control over the column position. The
Tab function moves the file position to the specified column, whereas the Spc function
outputs the specified number of spaces.

Examples Sub Main()
i% = 10
s$ = "This is a test."
Print "The value of i=";i%,"the value of s=";s$
'This example prints the value of i% in print zone 1 and s$
'in print zone 3.
Print i%,,s$
'This example prints the value of i% and s$ separated by 10
'spaces.
Print i%;Spc(10);s$
'This example prints the value of i in column 1 and s$ in
'column 30.
Print i%;Tab(30);s$
'This example prints the value of i% and s$.
Print i%;s$,
Print 67

End Sub

See Also Viewport.Open (method).

Platform(s) All.

Platform Notes Windows, Win32: Under Windows, this statement writes data to a viewport window.

If no viewport window is open, then the statement is ignored. Printing information to a
viewport window is a convenient way to output debugging information. To open a
viewport window, use the following statement:

Viewport.Open

UNIX, Macintosh: On all UNIX platforms, and the Macintosh, the Print statement
prints data to stdout.

Print# (statement)

Syntax Print [#] filenumber, [[{Spc(n) | Tab(n)}][expressionlist][{;|,}]]

Description Writes data to a sequential disk file.

Comments The filenumber parameter is a number that is used by BasicScript to refer to the open
file—the number passed to the Open statement.

Note: Null charactersChr$(0)within strings are translated to spaces when
printing to the Viewport window. When printing to files, this translation is not
performed.

386 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 386 of 418 Printed: 9/25/96

The following table describes how data of different types is written:

Each expression in expressionlist is separated with either a comma (,) or a semicolon (;).
A comma means that the next expression is output in the next print zone. A semicolon
means that the next expression is output immediately after the current expression. Print
zones are defined every 14 spaces.

If the last expression in the list is not followed by a comma or a semicolon, then an
end-of-line is printed to the file. If the last expression ends with a semicolon, no
end-of-line is printedthe next Print statement will output information immediately
following the expression. If the last expression in the list ends with a comma, the file
pointer is positioned at the start of the next print zone on the current line.

The Write statement always outputs information ending with an end-of-line. Thus, if a
Print statement is followed by a Write statement, the file pointer is positioned on a new
line.

The Print statement can only be used with files that are opened in Output or Append
mode.

The Tab and Spc functions provide additional control over the file position. The Tab
function moves the file position to the specified column, whereas the Spc function
outputs the specified number of spaces.

Data Type Description

String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space =
positive). Additionally, there is a space following each
number.

Boolean Printed as "True" or "False". These keywords are translated
as appropriate according to your system’s locale.

Date Printed using the short date format. If either the date or
time component is missing, only the provided portion is
printed (this is consistent with the "general date" format
understood by the Format/Format$ functions).

Empty Nothing is printed

Null Prints "Null". This keyword is translated as appropriate
according to your system’s locale.

User-defined errors User-defined errors are printed to files as "Error code",
where code is the value of the user-defined error. The word
"Error" is not translated. The "Error" keyword is translated
as appropriate according to your system’s locale.

Object For any object type, BasicScript retrieves the default
property of that object and prints this value using the above
rules.

PrinterGetOrientation (function) 387

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 387 of 418 Printed: 9/25/96

In order to correctly read the data using the Input# statement, you should write the data
using the Write statement.

The end-of-line character is different on many platforms. On some platforms, it is
defined as a carriage-return/line-feed pair, and on other platforms, it is defined as only a
line feed. The BasicScript statements that read sequential files don't care about the
end-of-line character—either will work.

Examples Sub Main()
'This example opens a file and prints some data.
Open "test.dat" For Output As #1
i% = 10
s$ = "This is a test."
Print #1,"The value of i=";i%,"the value of s=";s$
'This example prints the value of i% in print zone 1 and s$
'in print zone 3.
Print #1,i%,,s$
'This example prints the value of i% and s$ separated by ten
'spaces.
Print #1,i%;Spc(10);s$
'This example prints the value of i in column 1 and s$ in
'column 30.
Print #1,i%;Tab(30);s$
'This example prints the value of i% and s$.
Print #1,i%;s$,
Print #1,67
Close #1
Kill "test.dat"

End Sub

See Also Open (statement); Put (statement); Write# (statement).

Platform(s) All.

PrinterGetOrientation (function)

Syntax PrinterGetOrientation[()]

Description Returns an Integer representing the current orientation of paper in the default printer.

Comments PrinterGetOrientation returns ebPortrait if the printer orientation is set to portrait;
otherwise, it returns ebLandscape. Zero is returned if there is no installed default
printer.

This function loads the printer driver and therefore may be slow.

Example 'This example toggles the printer orientation.
Sub Main()

If PrinterGetOrientation = ebLandscape Then

388 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 388 of 418 Printed: 9/25/96

PrinterSetOrientation ebPortrait
Else

PrinterSetOrientation ebLandscape
End If

End Sub

See Also PrinterSetOrientation (statement).

Platform(s) Windows.

Windows: The default printer is determined by examining the device= line in the
[windows] section of the win.ini file.

PrinterSetOrientation (statement)

Syntax PrinterSetOrientation NewSetting

Description Sets the orientation of the default printer to NewSetting.

Comments The possible values for NewSetting are as follows:

This function loads the printer driver for the default printer and therefore may be slow.

Example See PrinterGetOrientation (function).

See Also PrinterGetOrientation (function).

Platform(s) Windows.

Platform Notes Windows: The default printer is determined by examining the device= line in the
[windows] section of the win.ini file.

PrintFile (function)

Syntax PrintFile(filename$)

Description Prints the filename$ using the application to which the file belongs.

Comments PrintFile returns an Integer indicating success or failure.

If an error occurs executing the associated application, then PrintFile generates a
trappable runtime error, returning 0 for the result. Otherwise, PrintFile returns a value
representing that application to the system. This value is suitable for calling the
AppActivate statement.

Setting Description

ebLandscape Sets printer orientation to landscape.

ebPortrait Sets printer orientation to portrait.

Private (statement) 389

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 389 of 418 Printed: 9/25/96

Example 'This example asks the user for the name of a text file, then
'prints it.
Sub Main()

f$ = OpenFilename$("Print Text File","Text Files:*.txt")
If f$ <> "" Then

rc% = PrintFile (f$)
If rc% > 32 Then

MsgBox "File is printing."
End If

End If
End Sub

See Also Shell (function).

Platform(s) Windows.

Platform Notes Windows: This function invokes the Windows 3.1 shell functions that cause an
application to execute and print a file. The application executed by PrintFile depends
on your system's file associations.

Private (statement)

Syntax Private name [(subscripts)] [As type] [, name [(subscripts)] [As
type]]...

Description Declares a list of private variables and their corresponding types and sizes.

Comments Private variables are global to every Sub and Function within the currently executing
script.

If a type-declaration character is used when specifying name (such as % , @, & , $, or !),
the optional [As type] expression is not allowed. For example, the following are
allowed:

Private foo As Integer

Private foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the
following syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of
the array. If lower is not specified, then the lower bound as specified by Option Base is
used (or 1 if no Option Base statement has been encountered). Up to 60 array
dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:
Private a()

390 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 390 of 418 Printed: 9/25/96

The type parameter specifies the type of the data item being declared. It can be any of
the following data types: String, Integer, Long, Single, Double, Currency, Object,
data object, built-in data type, or any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or
Private, then it will be implicitly declared local to the routine in which it is used.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-declaration
character:

Private name As String * length

where length is a literal number specifying the string's length.

Initial Values

All declared variables are given initial values, as described in the following table:

Example See Public (statement).

See Also Dim (statement); Redim (statement); Public (statement); Option Base (statement).

Platform(s) All.

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Object Nothing

Date December 31, 1899 00:00:00

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as
described above.

Arrays Each element of the array is given a default value, as
described above.

Public (statement) 391

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 391 of 418 Printed: 9/25/96

Public (statement)

Syntax Public name [(subscripts)] [As type] [, name [(subscripts)] [As type]]...

Description Declares a list of public variables and their corresponding types and sizes.

Comments Public variables are global to all Subs and Functions in all scripts.

If a type-declaration character is used when specifying name (such as % , @, & , $, or !),
the optional [As type] expression is not allowed. For example, the following are
allowed:

Public foo As integer

Public foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the
following syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of
the array. If lower is not specified, then the lower bound as specified by Option Base is
used (or 1 if no Option Base statement has been encountered). Up to 60 array
dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:
Public a()

The type parameter specifies the type of the data item being declared. It can be any of
the following data types: String, Integer, Long, Single, Double, Currency, Object,
data object, built-in data type, or any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or
Private, then it will be implicitly declared local to the routine in which it is used.

For compatibility, the keyword Global is also supported. It has the same meaning as
Public.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-declaration
character:

Public name As String * length

where length is a literal number specifying the string's length.

All declared variables are given initial values, as described in the following table:

Data Type Initial Value

Integer 0

392 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 392 of 418 Printed: 9/25/96

Sharing Variables

When sharing variables, you must ensure that the declarations of the shared variables
are the same in each script that uses those variables. If the public variable being shared
is a user-defined structure, then the structure definitions must be exactly the same.

Example 'This example uses a subroutine to calculate the area of ten
'circles and displays the result in a dialog box. The variables
'R and Ar are declared as Public variables so that they can be
'used in both Main and Area.
Const crlf = Chr$(13) + Chr$(10)
Public x#, ar#
Sub Area()

ar# = (x# ^ 2) * Pi
End Sub
Sub Main()

message = "The area of the ten circles are:" & crlf
For x# = 1 To 10

Area
message = message & x# & ": " & ar# & Basic.Eoln$

Next x#
MsgBox message

End Sub

See Also Dim (statement); Redim (statement); Private (statement); Option Base (statement).

Platform(s) All.

Long 0

Double 0.0

Single 0.0

Currency 0.0

Date December 31, 1899 00:00:00

Object Nothing

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as
described above.

Arrays Each element of the array is given a default value, as
described above.

Data Type Initial Value

PushButton (statement) 393

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 393 of 418 Printed: 9/25/96

PushButton (statement)

Syntax PushButton x, y, width, height, title$ [, .Identifier]

Description Defines a push button within a dialog box template.

Comments Choosing a push button causes the dialog box to close (unless the dialog function
redefines this behavior).

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The PushButton statement accepts the following parameters:

If a push button is the default button, it can be selected by pressing Enter on a nonbutton
control.

A dialog box template must contain at least one OKButton , CancelButton, or
PushButton statement (otherwise, the dialog box cannot be dismissed).

Example 'This example creates a bunch of push buttons and displays which
'button was pushed.
Sub Main()

Begin Dialog ButtonTemplate 17,33,104,84,"Buttons"
OKButton 8,4,40,14,.OK
CancelButton 8,24,40,14,.Cancel
PushButton 8,44,40,14,"1",.Button1
PushButton 8,64,40,14,"2",.Button2
PushButton 56,4,40,14,"3",.Button3
PushButton 56,24,40,14,"4",.Button4
PushButton 56,44,40,14,"5",.Button5
PushButton 56,64,40,14,"6",.Button6

End Dialog
Dim ButtonDialog As ButtonTemplate
WhichButton% = Dialog(ButtonDialog)
MsgBox "You pushed button " & WhichButton%

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in
dialog units.

title$ String containing the text that appears within the push button.
This text may contain an ampersand character to denote an
accelerator letter, such as "&Save" for Save.

.Identifier Name by which this control can be referenced by statements in
a dialog function (such as DlgFocus and DlgEnable).

394 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 394 of 418 Printed: 9/25/96

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionButton (statement);
OptionGroup (statement); Picture (statement); Text (statement); TextBox
(statement); Begin Dialog (statement); PictureButton (statement); HelpButton
(statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes Windows, Win32, OS/2: On Windows, Win32, and OS/2 platforms, accelerators are
underlined, and the accelerator combination Alt+letter is used.

Macintosh: On the Macintosh, accelerators are normal in appearance, and the
accelerator combination Command+letter is used.

Put (statement)

Syntax Put [#] filenumber, [recordnumber], variable

Description Writes data from the specified variable to a Random or Binary file.

Comments The Put statement accepts the following parameters:

Parameter Description

filenumber Integer representing the file to be written to. This is the same
value as returned by the Open statement.

recordnumber Long specifying which record is to be written to the file.

For Binary files, this number represents the first byte to be
written starting with the beginning of the file (the first byte is
1). For Random files, this number represents the record
number starting with the beginning of the file (the first record
is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is
written to the file (if no records have been written yet, then the
first record in the file is written). When recordnumber is
omitted, the commas must still appear, as in the following
example:

Put #1,,recvar

If recordlength is specified, it overrides any previous change
in file position specified with the Seek statement.

Put (statement) 395

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 395 of 418 Printed: 9/25/96

The variable parameter is the name of any variable of any of the following types:

VariableType File Storage Description

Integer 2 bytes are written to the file.

Long 4 bytes are written to the file.

String (variable-length) In Binary files, variable-length strings are written by
first determining the specified string variable's length,
then writing that many bytes to a file.

In Random files, variable-length strings are written by
first writing a 2-byte length, then writing that many
characters to the file.

String (fixed-length) Fixed-length strings are written to Random and
Binary files in the same way: the number of characters
equal to the string's declared length are written.

Double 8 bytes are written to the file (IEEE format),

Single 4 bytes are written to the file (IEEE format).

Date 8 bytes are written to the file (IEEE double format).

Boolean 2 bytes are written to the file (either –1 for True or 0
for False).

Variant A 2-byte VarType is written to the file followed by the
data as described above. With variants of type 10
(user-defined errors), the 2-byte VarType is followed
by a 4-byte error value (the low word containing the
error value and the high word containing additional
bytes of information).

The exception is with strings, which are always
preceded by a 2-byte string length.

User-defined types Each member of a user-defined data type is written
individually.

In Binary files, variable-length strings within
user-defined types are written by first writing a 2-byte
length followed by the string's content. This storage is
different than variable-length strings outside of
user-defined types.

When writing user-defined types, the record length
must be greater than or equal to the combined size of
each element within the data type.

Arrays Arrays cannot be written to a file using the Put
statement.

396 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 396 of 418 Printed: 9/25/96

With Random files, a runtime error will occur if the length of the data being written
exceeds the record length (specified as the reclen parameter with the Open statement).
If the length of the data being written is less than the record length, the entire record is
written along with padding (whatever data happens to be in the I/O buffer at that time).
With Binary files, the data elements are written contiguously: they are never separated
with padding.

Example 'This example opens a file for random write, then writes ten
'records into the file with the values 10-50. Then the file is
'closed and reopened in random mode for read, and the records
'are read with the Get statement. The result is displayed in a
'dialog box.
Sub Main()

Open "test.dat" For Random Access Write As #1
For x = 1 To 10

r% = x * 10
Put #1,x,r%

Next x
Close
Open "test.dat" For Random Access Read As #1
For x = 1 To 10

Get #1,x,r%
message = message & "Record " & x & " is: " & r% _

& Basic.Eoln$
Next x
MsgBox message
Close
Kill "test.dat"

End Sub

See Also Open (statement); Put (statement); Write# (statement); Print# (statement).

Platform(s) All.

Pv (function)

Syntax Pv(rate, nper, pmt, fv, due)

Description Calculates the present value of an annuity based on future periodic fixed payments and a
constant rate of interest.

Objects Object variables cannot be written to a file using the
Put statement.

VariableType File Storage Description

QueEmpty (statement) 397

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 397 of 418 Printed: 9/25/96

Comments The Pv function requires the following named parameters:

The rate and nper parameters must be expressed in the same units. If rate is expressed
in months, then nper must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example 'This example demonstrates the present value (the amount you'd
'have to pay now) for a $100,000 annuity that pays an annual
'income of $5,000 over 20 years at an annual interest rate of 10%.
Sub Main()

pval = Pv(.1,20,-5000,100000,1)
MsgBox "The present value is: " & Format(pval,"Currency")

End Sub

See Also Fv (function); IRR (function); MIRR (function); Npv (function).

Platform(s) All.

QueEmpty (statement)

Syntax QueEmpty

Description Empties the current event queue.

Comments After this statement, QueFlush will do nothing.

Example 'This code begins a new queue, then drags a selection over a
'range of characters in Notepad.

Named Parameter Description

rate Double representing the interest rate per period. When used
with monthly payments, be sure to normalize annual
percentage rates by dividing them by 12.

nper Double representing the total number of payments in the
annuity.

pmt Double representing the amount of each payment per
period.

fv Double representing the future value of the annuity after the
last payment has been made. In the case of a loan, the future
value would be 0.

due Integer indicating when the payments are due for each
payment period. A 0 specifies payment at the end of each
period, whereas a 1 specifies payment at the start of each
period.

398 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 398 of 418 Printed: 9/25/96

Sub Main()
AppActivate "Notepad"
QueEmpty 'Make sure the queue is empty.
QueMouseDn ebLeftButton,1440,1393
QueMouseUp ebLeftButton,4147,2363
QueFlush True

End Sub

Platform(s) Windows.

Platform Notes Windows: If a system modal dialog is invoked during queue playback, the queue
playback is temporarily disabled. Queue playback will resume once the dialog has been
dismissed. Hardware input is enabled during processing of the system modal dialog
such that the dialog can be dismissed by the user. Otherwise, hardware input is enabled
until playback is finished.

QueFlush (statement)

Syntax QueFlush isSaveState

Description Plays back events that are stored in the current event queue.

Comments After QueFlush is finished, the queue is empty.

If isSaveState is True, then QueFlush saves the state of the Caps Lock, Num Lock,
Scroll Lock, and Insert and restores the state after the QueFlush is complete. If this
parameter is False, these states are not restored.

The function does not return until the entire queue has been played.

Example 'This example pumps some keys into Notepad.
Sub Main()

AppActivate "Notepad"
QueKeys "This is a test{Enter}"
QueFlush True 'Play back the queue.

End Sub

Platform(s) Windows.

Platform Notes Windows: The QueFlush statement uses the Windows journaling mechanism to replay
the mouse and keyboard events stored in the queue. As a result, the mouse position may
be changed. Furthermore, events can be played into any Windows application, including
DOS applications running in a window.

QueKeyDn (statement)

Syntax QueKeyDn KeyString$ [, time]

QueKeys (statement) 399

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 399 of 418 Printed: 9/25/96

Description Appends key-down events for the specified keys to the end of the current event queue.

Comments The QueKeyDn statement accepts the following parameters:

The QueFlush command is used to play back the events stored in the current event
queue.

Example 'This example plays back a Ctrl + mouse click.
Sub Main()

QueEmpty
QueKeyDn "^"
QueMouseClick ebLeftButton 1024,792
QueKeyUp "^"
QueFlush True

End Sub

See Also DoKeys (statement); SendKeys (statement); QueKeys (statement); QueKeyUp
(statement); QueFlush (statement).

Platform(s) Windows.

QueKeys (statement)

Syntax QueKeys KeyString$ [, time]

Description Appends keystroke information to the current event queue.

Comments The QueKeys statement accepts the following parameters:

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$
is described under the SendKeys statement.

time Integer specifying the number of milliseconds devoted for the
output of the entire KeyString$ parameter. It must be within the
following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$
parameter contains ten keys, then a key will be output every 1/2
second. If unspecified (or 0), the keys will play back at full
speed.

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$
is described under the SendKeys statement.

400 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 400 of 418 Printed: 9/25/96

The QueFlush command is used to play back the events stored in the current event
queue.

Example Sub Main()
WinActivate "Notepad"
QueEmpty
QueKeys "This is a test.{Enter}This is on a new line.{Enter}"
QueKeys "{Tab 3}This is indented with three tabs."
QueKeys "Some special characters: {~}{^}{%}{+}~"
QueKeys "Invoking the Find dialog.%Sf"'Alt+S,F
QueFlush True

End Sub

See Also DoKeys (statement); SendKeys (statement); QueKeyDn (statement); QueKeyUp
(statement); QueFlush (statement).

Platform(s) Windows.

Platform Notes Windows: Under Windows, you cannot send keystrokes to MS-DOS applications
running in a window.

QueKeyUp (statement)

Syntax QueKeyUp KeyString$ [, time]

Description Appends key-up events for the specified keys to the end of the current event queue.

Comments The QueKeyUp statement accepts the following parameters:

time Integer specifying the number of milliseconds devoted for the
output of the entire KeyString$ parameter. It must be within the
following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$
parameter contains ten keys, then a key will be output every 1/2
second. If unspecified (or 0), the keys will play back at full
speed.

Parameter Description

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$
is described under the SendKeys statement.

QueMouseClick (statement) 401

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 401 of 418 Printed: 9/25/96

The QueFlush command is used to play back the events stored in the current event
queue.

Example See QueKeyDn (statement).

See Also DoKeys (statement); SendKeys (statement); QueKeys (statement); QueKeyDn
(statement); QueFlush (statement).

Platform(s) Windows.

QueMouseClick (statement)

Syntax QueMouseClick button, x, y [, time]

Description Adds a mouse click to the current event queue.

Comments The QueMouseClick statement takes the following parameters:

A mouse click consists of a mouse button down at position x, y, immediately followed
by a mouse button up.

The QueFlush command is used to play back the events stored in the current event
queue.

Example 'This example activates Notepad and invokes the Find dialog box.

time Integer specifying the number of milliseconds devoted for the
output of the entire KeyString$ parameter. It must be within the
following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$
parameter contains ten keys, then a key will be output every 1/2
second. If unspecified (or 0), the keys will play back at full
speed.

Parameter Description

Parameter Description

button Integer specifying which mouse button to click:

ebLeftButtonClick the left mouse button.

ebRightButtonClick the right mouse button.

x, y Integer coordinates, in twips, where the mouse click is to be
recorded.

time Integer specifying the delay in milliseconds between this event
and the previous event in the queue. If this parameter is omitted
(or 0), the mouse click will play back at full speed.

402 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 402 of 418 Printed: 9/25/96

'It then uses the QueMouseClick command to click the Cancel
'button.
Sub Main()

AppActivate "Notepad"'Activate Notepad.
QueKeys "%Sf"'Invoke the Find dialog box.
QueFlush True'Play this back (allow dialog box to open).
QueSetRelativeWindow'Set mouse relative to Find dialog box.
QueMouseClick ebLeftButton,7059,1486'Click the Cancel button.
QueFlush True'Play back the queue.

End Sub

See Also QueMouseDn (statement); QueMouseUp (statement); QueMouseDblClk (statement);
QueMouseDblDn (statement); QueMouseMove (statement); QueMouseMoveBatch
(statement); QueFlush (statement).

Platform(s) Windows.

QueMouseDblClk (statement)

Syntax QueMouseDblClk button, x, y [, time]

Description Adds a mouse double click to the current event queue.

Comments The QueMouseDblClk statement takes the following parameters:

A mouse double click consists of a mouse down/up/down/up at position x, y. The events
are queued in such a way that a double click is registered during queue playback.

The QueFlush command is used to play back the events stored in the current event
queue.

Example 'This example double-clicks the left mouse button.
QueMouseDblClk ebLeftButton,344,360

Parameter Description

button Integer specifying which mouse button to double-click:

ebLeftButtonDouble-click the left mouse button.

ebRightButtonDouble-click the right mouse button.

x, y Integer coordinates, in twips, where the mouse double click is
to be recorded.

time Integer specifying the delay in milliseconds between this event
and the previous event in the queue. If this parameter is omitted
(or 0), the mouse double click will play back at full speed.

QueMouseDblDn (statement) 403

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 403 of 418 Printed: 9/25/96

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseUp (statement);
QueMouseDblDn (statement); QueMouseMove (statement); QueMouseMoveBatch
(statement); QueFlush (statement).

Platform(s) Windows.

QueMouseDblDn (statement)

Syntax QueMouseDblDn button, x, y [, time]

Description Adds a mouse double down to the end of the current event queue.

Comments The QueMouseDblDn statement takes the following parameters:

This statement adds a mouse double down to the current event queue. A double down
consists of a mouse down/up/down at position x, y.

The QueFlush command is used to play back the events stored in the current event
queue.

Example 'This example double-clicks a word, then drags it to a new
'location.
Sub Main()

QueFlush 'Start with empty queue.
QueMouseDblDn ebLeftButton,356,4931
QueMouseMove 600,4931'Drag to new spot.
QueMouseUp ebLeftButton'Now release the mouse.
QueFlush True 'Play back the queue.

End Sub

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseUp (statement);
QueMouseDblClk (statement); QueMouseMove (statement); QueMouseMoveBatch
(statement); QueFlush (statement).

Platform(s) Windows.

Parameter Description

button Integer specifying which mouse button to press:

ebLeftButtonPress the left mouse button.

ebRightButtonPress the right mouse button.

x, y Integer coordinates, in twips, where the mouse double down is
to be recorded.

time Integer specifying the delay in milliseconds between this event
and the previous event in the queue. If this parameter is omitted
(or 0), the mouse double down will play back at full speed.

404 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 404 of 418 Printed: 9/25/96

QueMouseDn (statement)

Syntax QueMouseDn button, x, y [, time]

Description Adds a mouse down to the current event queue.

Comments The QueMouseDn statement takes the following parameters:

The QueFlush command is used to play back the events stored in the current event
queue.

Example See QueEmpty (statement).

See Also QueMouseClick (statement); QueMouseUp (statement); QueMouseDblClk
(statement); QueMouseDblDn (statement); QueMouseMove (statement);
QueMouseMoveBatch (statement); QueFlush (statement).

Platform(s) Windows.

QueMouseMove (statement)

Syntax QueMouseMove x, y [, time]

Description Adds a mouse move to the current event queue.

Comments The QueMouseMove statement takes the following parameters:

The QueFlush command is used to play back the events stored in the current event
queue.

Parameter Description

button Integer specifying which mouse button to press:

ebLeftButtonPress the left mouse button.

ebRightButtonPress the right mouse button.

x, y Integer coordinates, in twips, where the mouse down is to be
recorded.

time Integer specifying the delay in milliseconds between this event
and the previous event in the queue. If this parameter is omitted
(or 0), the mouse down will play back at full speed.

Parameter Description

x, y Integer coordinates, in twips, where the mouse is to be moved.

time Integer specifying the delay in milliseconds between this event
and the previous event in the queue. If this parameter is omitted
(or 0), the mouse move will play back at full speed.

QueMouseMoveBatch (statement) 405

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 405 of 418 Printed: 9/25/96

Example See QueMouseDblDn (statement).

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseUp (statement);
QueMouseDblClk (statement); QueMouseDblDn (statement);
QueMouseMoveBatch (statement); QueFlush (statement).

Platform(s) Windows.

QueMouseMoveBatch (statement)

Syntax QueMouseMoveBatch ManyMoves$

Description Adds a series of mouse-move events to the current event queue.

Comments The ManyMoves$ parameter is a string containing positional and timing information in
the following format:

x, y, time [, x, y, time]...

The x and y parameters specify a mouse position in twips. The time parameter specifies
the delay in milliseconds between the current mouse move and the previous event in the
queue. If time is 0, then the mouse move will play back as fast as possible.

The QueMouseMoveBatch command should be used in place of a series of
QueMouseMove statements to reduce the number of lines in your script. A further
advantage is that, since the mouse-move information is contained within a literal string,
the storage for the data is placed in the constant segment instead of the code segment,
reducing the size of the code.

The QueFlush command is used to play back the events stored in the current event
queue.

Example 'This example activates PaintBrush, then paints the word "Hi".
Sub Main()

AppActivate "Paintbrush"
AppMaximize
QueMouseDn ebLeftButton,2175,3412
QueMouseMoveBatch _
"2488,3224,0,2833,2786,0,3114,2347,0,3208,2160,0,3240,2097,0"
QueMouseMoveBatch _
"3255,2034,0,3255,1987,0,3255,1956,0,3255,1940,0,3224,1956,0"
QueMouseMoveBatch _
"3193,1987,0,3114,2019,0,3036,2066,0,3005,2113,0,2973,2175,0"
QueMouseMoveBatch _
"2942,2332,0,2926,2394,0,2926,2582,0,2911,2739,0,2911,2801,0"
QueMouseMoveBatch _
"2911,2958,0,2911,3020,0,2911,3052,0,2911,3083,0,2911,3114,0"
QueMouseMoveBatch _
"2911,3130,0,2895,3161,0,2895,3193,0,2895,3208,0,2895,3193,0"

406 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 406 of 418 Printed: 9/25/96

QueMouseMoveBatch _
"2895,3146,0,2911,3083,0,2926,3020,0,2942,2958,0,2973,2895,0"
QueMouseMoveBatch _
"3005,2848,0,3020,2817,0,3036,2801,0,3052,2770,0,3083,2770,0"
QueMouseMoveBatch _
"3114,2754,0,3130,2754,0,3146,2770,0,3161,2786,0,3161,2848,0"
QueMouseMoveBatch _
"3193,3005,0,3193,3193,0,3208,3255,0,3224,3318,0,3240,3349,0"
QueMouseMoveBatch _
"3255,3349,0,3286,3318,0,3380,3271,0,3474,3208,0,3553,3052,0"
QueMouseMoveBatch _
"3584,2895,0,3615,2739,0,3631,2692,0,3631,2645,0,3646,2645,0"
QueMouseMoveBatch _
"3646,2660,0,3646,2723,0,3646,2880,0,3662,2942,0,3693,2989,0"
QueMouseMoveBatch _
"3709,3005,0,3725,3005,0,3756,2989,0,3787,2973,0"
QueMouseUp ebLeftButton,3787,2973
QueMouseDn ebLeftButton,3678,2535
QueMouseMove 3678,2520
QueMouseMove 3678,2535
QueMouseUp ebLeftButton,3678,2535
QueFlush True

End Sub

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseUp (statement);
QueMouseDblClk (statement); QueMouseDblDn (statement); QueMouseMove
(statement); QueFlush (statement).

Platform(s) Windows.

QueMouseUp (statement)

Syntax QueMouseUp button, x, y [, time]

Description Adds a mouse up to the current event queue.

Comments The QueMouseUp statement takes the following parameters:

Parameter Description

button Integer specifying the mouse button to be released:

ebLeftButtonRelease the left mouse button.

ebRightButtonRelease the right mouse button.

x, y Integer coordinates, in twips, where the mouse button is to be
released.

QueSetRelativeWindow (statement) 407

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 407 of 418 Printed: 9/25/96

The QueFlush command is used to play back the events stored in the current event
queue.

Example See QueEmpty (statement).

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseDblClk
(statement); QueMouseDblDn (statement); QueMouseMove (statement);
QueMouseMoveBatch (statement); QueFlush (statement).

Platform(s) Windows.

QueSetRelativeWindow (statement)

Syntax QueSetRelativeWindow [window_object]

Description Forces all subsequent QueX commands to adjust the mouse positions relative to the
specified window.

Comments The window_object parameter is an object of type HWND. If window_object is
Nothing or omitted, then the window with the focus is used (i.e., the active window).

The QueFlush command is used to play back the events stored in the current event
queue.

Example Sub Main()
'Adjust mouse coordinates relative to Notepad.
Dim a As HWND
Set a = WinFind("Notepad")
QueSetRelativeWindow a

End Sub

Platform(s) Windows.

Random (function)

Syntax Random(min, max)

Description Returns a Long value greater than or equal to min and less than or equal to max.

Comments Both the min and max parameters are rounded to Long. A runtime error is generated if
min is greater than max.

time Integer specifying the delay in milliseconds between this event
and the previous event in the queue. If this parameter is omitted
(or 0), the mouse up will play back at full speed.

Parameter Description

408 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 408 of 418 Printed: 9/25/96

Example 'This example uses the random number generator to generate ten
'lottery numbers.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Randomize 'Start with new random seed.
For x = 1 To 10

y = Random(0,100)'Generate numbers.
message = message & y & crlf

Next x
MsgBox "Ten numbers for the lottery: " & crlf & message

End Sub

See Also Randomize (statement); Random (function).

Platform(s) All.

Randomize (statement)

Syntax Randomize [number]

Description Initializes the random number generator with a new seed.

Comments If number is not specified, then the current value of the system clock is used.

Example 'This example sets the randomize seed to a random number between
'100 and 1000, then generates ten random numbers for the lottery.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Randomize 'Start with new random seed.
For x = 1 To 10

y = Random(0,100)'Generate numbers.
message = message + Str(y) + crlf

Next x
MsgBox "Ten numbers for the lottery: " & crlf & message

End Sub

See Also Random (function); Rnd (function).

Platform(s) All.

Rate (function)

Syntax Rate(nper, pmt, pv, fv, due, guess)

Description Returns the rate of interest for each period of an annuity.

ReadIni$ (function) 409

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 409 of 418 Printed: 9/25/96

Comments An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages and
monthly savings plans.

The Rate function requires the following named parameters:

Positive numbers represent cash received, whereas negative values represent cash paid
out.

The value of Rate is found by iteration. It starts with the value of guess and cycles
through the calculation adjusting guess until the result is accurate within 0.00001
percent. After 20 tries, if a result cannot be found, Rate fails, and the user must pick a
better guess.

Example 'This example calculates the rate of interest necessary to save
'$8,000 by paying $200 each year for 48 years. The guess rate
'is 10%.
Sub Main()

r# = Rate (48,-200,8000,0,1,.1)
MsgBox "The rate required is: " & Format(r#,"Percent")

End Sub

See Also IPmt (function); NPer (function); Pmt (function); PPmt (function).

Platform(s) All.

ReadIni$ (function)

Syntax ReadIni$(section$, item$[, filename$])

Named Parameter Description

nper Double representing the total number of payments in the
annuity.

pmt Double representing the amount of each payment per period.

pv Double representing the present value of your annuity. In a loan
situation, the present value would be the amount of the loan.

fv Double representing the future value of the annuity after the last
payment has been made. In the case of a loan, the future value
would be zero.

due Integer specifying when the payments are due for each
payment period. A 0 indicates payment at the end of each
period, whereas a 1 indicates payment at the start of each
period.

guess Double specifying a guess as to the value the Rate function will
return. The most common guess is .1 (10 percent).

410 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 410 of 418 Printed: 9/25/96

Description Returns a String containing the specified item from an ini file.

Comments The ReadIni$ function takes the following parameters:

The maximum length of a string returned by this function is 4096 characters.

See Also WriteIni (statement); ReadIniSection (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: Under Windows and Win32, if the name of the ini file is not
specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for ini files
in the Windows directory.

ReadIniSection (statement)

Syntax ReadIniSection section$, ArrayOfItems()[, filename$]

Description Fills an array with the item names from a given section of the specified ini file.

Comments The ReadIniSection statement takes the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variable,
such as "windows". Section names are specified without the
enclosing brackets.

item$ String specifying the item whose value is to be retrieved.

filename$ String containing the name of the ini file to read.

Parameter Description

section$ String specifying the section that contains the desired variables,
such as "windows". Section names are specified without the
enclosing brackets.

ArrayOfItems() Specifies either a zero- or a one-dimensioned array of strings or
variants. The array can be either dynamic or fixed.

If ArrayOfItems() is dynamic, then it will be redimensioned to
exactly hold the new number of elements. If there are no
elements, then the array will be redimensioned to contain no
dimensions. You can use the LBound, UBound, and
ArrayDims functions to determine the number and size of the
new array's dimensions.

Redim (statement) 411

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 411 of 418 Printed: 9/25/96

On return, the ArrayOfItems() parameter will contain one array element for each
variable in the specified ini section. The maximum combined length of all the entry
names returned by this function is limited to 32K.

Example Sub Main()
Dim items() As String
ReadIniSection "windows",items$
r% = SelectBox("INI Items",,items$)

End Sub

See Also ReadIni$ (function); WriteIni (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: Under Windows and Win32, if the name of the ini file is not
specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for ini files
in the Windows directory.

Redim (statement)

Syntax Redim [Preserve] variablename ([subscriptRange]) [As type],...

Description Redimensions an array, specifying a new upper and lower bound for each dimension of
the array.

Comments The variablename parameter specifies the name of an existing array (previously
declared using the Dim statement) or the name of a new array variable. If the array
variable already exists, then it must previously have been declared with the Dim
statement with no dimensions, as shown in the following example:

Dim a$() 'Dynamic array of strings (no dimensions yet)

Dynamic arrays can be redimensioned any number of times.

The subscriptRange parameter specifies the new upper and lower bounds for each
dimension of the array using the following syntax:

[lower To] upper [,[lower To] upper]...

If the array is fixed, each array element is first erased, then the
new elements are placed into the array. If there are fewer
elements than will fit in the array, then the remaining elements
are initialized to zero-length strings (for String arrays) or
Empty (for Variant arrays). A runtime error results if the array
is too small to hold the new elements.

filename$ String containing the name of an ini file.

Parameter Description

412 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 412 of 418 Printed: 9/25/96

If subscriptRange is not specified, then the array is redimensioned to have no elements.

If lower is not specified, then 0 is used (or the value set using the Option Base
statement). A runtime error is generated if lower is less than upper. Array dimensions
must be within the following range:

–32768 <= lower <= upper <= 32767

The type parameter can be used to specify the array element type. Arrays can be
declared using any fundamental data type, user-defined data types, and objects.

Redimensioning an array erases all elements of that array unless the Preserve keyword
is specified. When this keyword is specified, existing data in the array is preserved
where possible. If the number of elements in an array dimension is increased, the new
elements are initialized to 0 (or empty string). If the number of elements in an array
dimension is decreased, then the extra elements will be deleted. If the Preserve
keyword is specified, then the number of dimensions of the array being redimensioned
must either be zero or the same as the new number of dimensions.

Example 'This example uses the FileList statement to redim an array and
'fill it with filename strings. A new array is then redimmed to
'hold the number of elements found by FileList, and the FileList
'array is copied into it and partially displayed.
Sub Main()

Dim fl$()
FileList fl$,"*.*"
count = Ubound(fl$)
Redim nl$(Lbound(fl$) To Ubound(fl$))
For x = 1 to count

nl$(x) = fl(x)
Next x
MsgBox "The last element of the new array is: " & nl$(count)

End Sub

See Also Dim (statement); Public (statement); Private (statement); ArrayDims (function);
LBound (function); UBound (function).

Platform(s) All.

Rem (statement)

Syntax Rem text

Description Causes the compiler to skip all characters on that line.

Example Sub Main()
Rem This is a line of comments that serves to illustrate the
Rem workings of the code. You can insert comments to make it
Rem more readable and maintainable in the future.

Reset (statement) 413

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 413 of 418 Printed: 9/25/96

End Sub

See Also ' (keyword); Comments (topic).

Platform(s) All.

Reset (statement)

Syntax Reset

Description Closes all open files, writing out all I/O buffers.

Example 'This example opens a file for output, closes it with the Reset
'statement, then deletes it with the Kill statement.
Sub Main()

Open "test.dat" for Output Access Write as # 1
Reset
Kill "test.dat"
If FileExists("test.dat") Then

MsgBox "The file was not deleted."
Else

MsgBox "The file was deleted."
End If

End Sub

See Also Close (statement); Open (statement).

Platform(s) All.

Resume (statement)

Syntax Resume {[0] | Next | label}

Description Ends an error handler and continues execution.

Comments The form Resume 0 (or simply Resume by itself) causes execution to continue with the
statement that caused the error.

The form Resume Next causes execution to continue with the statement following the
statement that caused the error.

The form Resume label causes execution to continue at the specified label.

The Resume statement resets the error state. This means that, after executing this
statement, new errors can be generated and trapped as normal.

Example 'This example accepts two integers from the user and attempts
'to multiply the numbers together. If either number is larger
'than an integer, the program processes an error routine and

414 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 414 of 418 Printed: 9/25/96

'then continues program execution at a specific section using
'"Resume <label>". Another error trap is then set using "Resume
'Next". The new error trap will clear any previous error
'branching and also "tell" the program to continue execution of
'the program even if an error is encountered.
Sub Main()

Dim a%, b%, x%
Again:

On Error Goto Overflow
a% = InputBox("Enter 1st integer to multiply","Enter Number")
b% = InputBox("Enter 2nd integer to multiply","Enter Number")
On Error Resume Next 'Continue program execution at next
x% = a% * b% 'line if an error occurs.
if err = 0 then

MsgBox x%
else

Msgbox a% & " * " & b% & " cause an overflow!"
end if
Exit Sub

Overflow: 'Error handler.
MsgBox "You've entered a noninteger value. Try again!"
Resume Again

End Sub

See Also Error Handling (topic); On Error (statement).

Platform(s) All.

Return (statement)

Syntax Return

Description Transfers execution control to the statement following the most recent GoSub.

Comments A runtime error results if a Return statement is encountered without a corresponding
GoSub statement.

Example 'This example calls a subroutine and then returns execution to
'the Main routine by the Return statement.
Sub Main()

GoSub SubTrue
MsgBox "The Main routine continues here."
Exit Sub

SubTrue:
MsgBox "This message is generated in the subroutine."
Return
Exit Sub

End Sub

Right, Right$, RightB, RightB$ (functions) 415

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 415 of 418 Printed: 9/25/96

See Also GoSub (statement).

Platform(s) All.

Right, Right$, RightB, RightB$ (functions)

Syntax Right[$](string, length)
RightB[$](string, length)

Description Returns the rightmost length characters (for Right and Right$) or bytes (for RightB
and RightB$) from a specified string.

Comments The Right$ and RightB$ functions return a String, whereas the Right and RightB
functions return a String variant.

These functions take the following named parameters:

The RightB and RightB$ functions are used to return byte data from strings containing
byte data.

Example 'This example shows the Right$ function used in a routine to
'change uppercase names to lowercase with an uppercase first
'letter.
Sub Main()

lname$ = "WILLIAMS"
x = Len(lname$)
rest$ = Right$ (lname$,x - 1)
fl$ = Left$(lname$,1)
lname$ = fl$ & LCase$(rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also Left , Left$, LeftB , LeftB$ (functions).

Platform(s) All.

Named Parameter Description

string String from which characters are returned. A runtime error is
generated if string is Null .

length Integer specifying the number of characters or bytes to return.
If length is greater than or equal to the length of the string, then
the entire string is returned. If length is 0, then a zero-length
string is returned.

416 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 416 of 418 Printed: 9/25/96

RmDir (statement)

Syntax RmDir path

Description Removes the directory specified by the String contained in path.

Comments Removing the Current Directory

On platforms that support drive letters, removing a directory that is the current directory
on that drive causes unpredictable side effects. For example, consider the following
statements:

MkDir "Z:\JUNK"

ChDir "Z:\JUNK"

RmDir "Z:\JUNK"

If this code is run under Windows and drive Z is a network drive, then some networks
will delete the directory and unmap the drive without generating a script error. If drive Z
is a local drive, the directory will not be deleted, nor will the script receive an error.

Different platforms and file systems exhibit similar strange behavior in these cases.

Example 'This routine creates a directory and then deletes it with RmDir.
Sub Main()

On Error Goto ErrMake
MkDir("test01")
On Error Goto ErrRemove
RmDir ("test01")

ErrMake:
MsgBox "The directory could not be created."
Exit Sub

ErrRemove:
MsgBox "The directory could not be removed."
Exit Sub

End Sub

See Also ChDir (statement); ChDrive (statement); CurDir , CurDir$ (functions); Dir , Dir$
(functions); MkDir (statement).

Platform(s) All.

Platform Notes Windows: Under Windows, this command behaves the same as the DOS "rd"
command.

Rnd (function)

Syntax Rnd[(number)]

Description Returns a random Single number between 0 and 1.

RSet (statement) 417

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 417 of 418 Printed: 9/25/96

Comments If number is omitted, the next random number is returned. Otherwise, the number
parameter has the following meaning:

Example 'This routine generates a list of random numbers and displays
'them.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

For x = -1 To 8
y! = Rnd(1) * 100
message = message & x & " : " & y! & crlf

Next x
MsgBox message & "Last form: " & Rnd

End Sub

See Also Randomize (statement); Random (function).

Platform(s) All.

RSet (statement)

Syntax RSet destvariable = source

Description Copies the source string source into the destination string destvariable.

Comments If source is shorter in length than destvariable, then the string is right-aligned within
destvariable and the remaining characters are padded with spaces. If source is longer in
length than destvariable, then source is truncated, copying only the leftmost number of
characters that will fit in destvariable. A runtime error is generated if source is Null .

The destvariable parameter specifies a String or Variant variable. If destvariable is a
Variant containing Empty, then no characters are copied. If destvariable is not
convertible to a String, then a runtime error occurs. A runtime error results if
destvariable is Null .

Example 'This example replaces a 40-character string of asterisks (*)
'with an RSet and LSet string and then displays the result.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim message,tmpstr$
tmpstr$ = String$(40, "*")
message = "Here are two strings that have been right-" & crlf

If Then

number < 0 Always returns the same number.

number = 0 Returns the last number generated.

number > 0 Returns the next random number.

418 BasicScript Language Reference

Summit Software Confidential
Filename: lrp-r.fm5 Template: LRprint.FM5
Page: 418 of 418 Printed: 9/25/96

message = message & "and left-justified in a " _
& "40-character string."

message = message & crlf & crlf
RSet tmpstr$ = "Right->"
message = message & tmpstr$ & crlf
LSet tmpstr$ = "<-Left"
message = message & tmpstr$ & crlf
MsgBox message

End Sub

See Also LSet (statement).

Platform(s) All.

RTrim, RTrim$ (functions)

See Trim , Trim$, LTrim , LTrim$, RTrim , RTrim$ (functions).

SaveFileName$ (function) 419

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 419 of 475 Printed: 9/25/96

SaveFileName$ (function)

Syntax SaveFileName$[([title$ [,[extensions$] [helpfile, context]]])]

Description Displays a dialog box that prompts the user to select from a list of files and returns a
String containing the full path of the selected file.

Comments The SaveFileName$ function accepts the following parameters:

The SaveFileName$ function returns a full pathname of the file that the user selects. A
zero-length string is returned if the user selects Cancel. If the file already exists, then the
user is prompted to overwrite it.

If both the helpfile and context parameters are specified, then a Help button is added in
addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 key on most platforms). Invoking help
does not remove the dialog.

Example 'This example creates a save dialog box, giving the user the
'ability to save to several different file types.
Sub Main()

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = SaveFileName$ ("Save Picture",e$)
If Not f$ = "" Then

MsgBox "User choose to save file as: " + f$
Else

MsgBox "User canceled."
End If

End Sub

See Also MsgBox (statement); AskBox, AskBox$ (functions); AskPassword, AskPassword$
(functions); InputBox , InputBox$ (functions); OpenFileName$ (function); SelectBox
(function); AnswerBox (function).

Parameter Description

title$ String containing the title that appears on the dialog box's
caption. If this string is omitted, then "Save As" is used.

extensions$ String containing the available file types. Its format depends on
the platform on which BasicScript is running. If this string is
omitted, then all files are used.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also be
specified.

context Number specifying the ID of the topic within helpfile for this
dialog's help. If this parameter is specified, then helpfile must
also be specified.

420 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 420 of 475 Printed: 9/25/96

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes Windows, Win32: Under Windows andWin32 , the extensions$ parameter must be in
the following format:

description: ext[, ext][; description: ext[, ext]]...

For example, the following are valid extensions$ specifications:
"All Files:*"

"Documents:*.TXT,*.DOC"

"All Files:*;Documents:*.TXT,*.DOC"

OS/2: Under OS/2, the extensions$ parameter is a comma-delimited list of extended
attribute names. An entry for <All Files> will always appear in the File Types list,
regardless of the contents of the extensions$ parameter. For example, the following is a
valid extensions$ specification:

"OS/2 Command File,Plain Text"

Macintosh: On the Macintosh, the extensions$ parameter contains a comma-separated
list of four-character file types. For example:

"TEXT,XLS4,MSWD"

On the Macintosh, the title$ parameter is ignored.

SaveSetting (statement)

Syntax SaveSetting appname, section, key, setting

Description Saves the value of the specified key in the system registry. The following table describes
the named parameters to the SaveSetting statement:

Example ’The following example adds two entries to the Windows registry
’if run under Win32 or to NEWAPP.INI on other platforms,

Placeholder Description

description Specifies the grouping of files for the user, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.

Named Parameter Description

appname String expression indicating the name of the application
whose setting will be modified.

section String expression indicating the name of the section whose
setting will be modified.

key String expression indicating the name of the setting to be
modified.

setting The value assigned to key.

Screen.DlgBaseUnitsX (property) 421

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 421 of 475 Printed: 9/25/96

’using the SaveSetting statement. It then uses DeleteSetting
’to remove these entries.
Sub Main()

SaveSetting appname := "NewApp", section := "Startup", _
key := "Height", setting := 200

SaveSetting appname := "NewApp", section := "Startup", _
key := "Width", setting := 320

DeleteSetting "NewApp" ’Remove NewApp key from registry
End Sub

See Also GetAllSettings (function); DeleteSetting (statement); GetSetting (function).

Platform(s) Windows, Win32, OS/2.

Platform Notes Win32: Under Win32, this statement operates on the system registry. All settings are
saved to the following entry in the system registry:

HKEY_CURRENT_USER\Software\BasicScript Program
Settings\ appname\ section\ key

On this platform, the appname parameter is not optional.

Windows, OS/2: Settings are stored in INI files. The name of the INI file is specified by
appname. If appname is omitted, then this command operates on the WIN.INI file. For
example, to change the Language setting from the intl section of the WIN.INI file, you
could use the following statement:

s$ = SaveSetting (,"intl","sLanguage","eng")

Screen.DlgBaseUnitsX (property)

Syntax Screen.DlgBaseUnitsX

Description Returns an Integer used to convert horizontal pixels to and from dialog units.

Comments The number returned depends on the name and size of the font used to display dialog
boxes.

To convert from pixels to dialog units in the horizontal direction:
((XPixels * 4) + (Screen.DlgBaseUnitsX - 1)) /
Screen.DlgBaseUnitsX

To convert from dialog units to pixels in the horizontal direction:
(XDlgUnits * Screen.DlgBaseUnitsX) / 4

Example 'This example converts the screen width from pixels to dialog
'units.
Sub Main()

XPixels = Screen.Width
conv% = Screen.DlgBaseUnitsX
XDlgUnits = (XPixels * 4) + (conv% -1) / conv%

422 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 422 of 475 Printed: 9/25/96

MsgBox "The screen width is " & XDlgUnits & " dialog units."
End Sub

See Also Screen.DlgBaseUnitsY (property).

Platform(s) Windows, Win32.

Screen.DlgBaseUnitsY (property)

Syntax Screen.DlgBaseUnitsY

Description Returns an Integer used to convert vertical pixels to and from dialog units.

Comments The number returned depends on the name and size of the font used to display dialog
boxes.

To convert from pixels to dialog units in the vertical direction:
(YPixels * 8) + (Screen.DlgBaseUnitsY - 1) /
Screen.DlgBaseUnitsY

To convert from dialog units to pixels in the vertical direction:
(YDlgUnits * Screen.DlgBaseUnitsY) / 8

Example 'This example converts the screen width from pixels to dialog
'units.
Sub Main()

YPixels = Screen.Height
conv% = Screen.DlgBaseUnitsY
YDlgUnits = (YPixels * 8) + (conv% -1) / conv%
MsgBox "The screen width is " & YDlgUnits & " dialog units."

End Sub

See Also Screen.DlgBaseUnitsX (property).

Platform(s) Windows, Win32.

Screen.Height (property)

Syntax Screen.Height

Description Returns the height of the screen in pixels as an Integer.

Comments This property is used to retrieve the height of the screen in pixels. This value will differ
depending on the display resolution.

This property is read-only.

Example 'This example displays the screen height in pixels.
Sub Main()

Screen.TwipsPerPixelX (property) 423

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 423 of 475 Printed: 9/25/96

MsgBox "The Screen height is " & Screen.Height & " pixels."
End Sub

See Also Screen.Width (property).

Platform(s) Windows, Win32.

Screen.TwipsPerPixelX (property)

Syntax Screen.TwipsPerPixelX

Description Returns an Integer representing the number of twips per pixel in the horizontal
direction of the installed display driver.

Comments This property is read-only.

Example 'This example displays the number of twips across the screen
'horizontally.
Sub Main()

XScreenTwips = Screen.Width * Screen.TwipsPerPixelX
MsgBox "Total horizontal screen twips = " & XScreenTwips

End Sub

See Also Screen.TwipsPerPixelY (property).

Platform(s) Windows, Win32.

Screen.TwipsPerPixelY (property)

Syntax Screen.TwipsPerPixelY

Description Returns an Integer representing the number of twips per pixel in the vertical direction
of the installed display driver.

Comments This property is read-only.

Example 'This example displays the number of twips across the screen
'vertically.
Sub Main()

YScreenTwips = Screen.Height * Screen.TwipsPerPixelY
MsgBox "Total vertical screen twips = " & YScreenTwips

End Sub

See Also Screen.TwipsPerPixelX (property).

Platform(s) Windows, Win32.

424 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 424 of 475 Printed: 9/25/96

Screen.Width (property)

Syntax Screen.Width

Description Returns the width of the screen in pixels as an Integer.

Comments This property is used to retrieve the width of the screen in pixels. This value will differ
depending on the display resolution.

This property is read-only.

Example 'This example displays the screen width in pixels.
Sub Main()

MsgBox "The screen width is " & Screen.Width & " pixels."
End Sub

See Also Screen.Height (property).

Platform(s) Windows, Win32.

Second (function)

Syntax Second(time)

Description Returns the second of the day encoded in the specified time parameter.

Comments The value returned is an Integer between 0 and 59 inclusive.

The time parameter is any expression that converts to a Date.

Example 'This example takes the current time; extracts the hour, minute,
'and second; and displays them as the current time.
Sub Main()

xt# = TimeValue(Time$())
xh# = Hour(xt#)
xm# = Minute(xt#)
xs# = Second (xt#)
Msgbox "The current time is: " & CStr(xh#) & ":" & CStr(xm#) _

& ":" & CStr(xs#)
End Sub

See Also Day (function); Minute (function); Month (function); Year (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) All.

Seek (function) 425

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 425 of 475 Printed: 9/25/96

Seek (function)

Syntax Seek(filenumber)

Description Returns the position of the file pointer in a file relative to the beginning of the file.

Comments The filenumber parameter is a number that BasicScript uses to refer to the open file—
the number passed to the Open statement.

The value returned depends on the mode in which the file was opened:

The value returned is a Long between 1 and 2147483647, where the first byte (or first
record) in the file is 1.

Example 'This example opens a file for random write, then writes ten
'records into the file using the Put statement. The file
'position is displayed using the Seek function, and the file is
'closed.
Sub Main()

Open "test.dat" For Random Access Write As #1
For x = 1 To 10

r% = x * 10
Put #1,x,r%

Next x
y = Seek (1)
MsgBox "The current file position is: " & y
Close

End Sub

See Also Seek (statement); Loc (function).

Platform(s) All.

Seek (statement)

Syntax Seek [#] filenumber, position

Description Sets the position of the file pointer within a given file such that the next read or write
operation will occur at the specified position.

File Mode Returns

Input Byte position for the next read

Output Byte position for the next write

Append Byte position for the next write

Random Number of the next record to be written or read

Binary Byte position for the next read or write

426 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 426 of 475 Printed: 9/25/96

Comments The Seek statement accepts the following parameters:

A file can be extended by seeking beyond the end of the file and writing data there.

Example 'This example opens a file for random write, then writes ten
'records into the file using the Put statement. The file is then
'reopened for read, and the ninth record is read using the Seek
'and Get functions.
Sub Main()

Open "test.dat" For Random Access Write As #1
For x = 1 To 10

rec$ = "Record#: " & x
Put #1,x,rec$

Next x
Close
Open "test.dat" For Random Access Read As #1
Seek #1,9
Get #1,,rec$
MsgBox "The ninth record = " & x
Close
Kill "test.dat"

End Sub

See Also Seek (function); Loc (function).

Platform(s) All.

Select...Case (statement)

Syntax Select Case testexpression
[Case expressionlist
 [statement_block]]
[Case expressionlist
 [statement_block]]

.

.

Parameter Description

filenumber Integer used by BasicScript to refer to the open file—the
number passed to the Open statement.

position Long that specifies the location within the file at which to
position the file pointer. The value must be between 1 and
2147483647, where the first byte (or record number) in the file is
1. For files opened in either Binary , Output , Input , or Append
mode, position is the byte position within the file. For Random
files, position is the record number.

Select...Case (statement) 427

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 427 of 475 Printed: 9/25/96

[Case Else
 [statement_block]]
End Select

Description Used to execute a block of BasicScript statements depending on the value of a given
expression.

Comments The Select Case statement has the following parts:

Multiple expression ranges can be used within a single Case clause. For example:
Case 1 to 10,12,15, Is > 40

Only the statement_block associated with the first matching expression will be
executed. If no matching statement_block is found, then the statements following the
Case Else will be executed.

A Select...End Select expression can also be represented with the If...Then expression.
The use of the Select statement, however, may be more readable.

Example 'This example uses the Select...Case statement to output the
'current operating system.
Sub Main()

OpSystem% = Basic.OS
Select Case OpSystem%

Case 0,2
s = "Microsoft Windows"

Case 3 to 8, 12
s = "UNIX"

Case 10
s = "IBM OS/2"

Case Else
s = "Other"

End Select
MsgBox "This version of BasicScript is running on: " & s

Part Description

testexpression Any numeric or string expression.

statement_block Any group of BasicScript statements. If the testexpression
matches any of the expressions contained in expressionlist, then
this statement block will be executed.

expressionlist A comma-separated list of expressions to be compared against
testexpression using any of the following syntaxes:

expression [, expression]...
expression To expression
Is relational_operator expression

The resultant type of expression in expressionlist must be the
same as that of testexpression.

428 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 428 of 475 Printed: 9/25/96

End Sub

See Also Choose (function); Switch (function); IIf (function); If...Then...Else (statement).

Platform(s) All.

SelectBox (function)

Syntax SelectBox([title], prompt, ArrayOfItems [, helpfile, context])

Description Displays a dialog box that allows the user to select from a list of choices and returns an
Integer containing the index of the item that was selected.

Comments The SelectBox statement accepts the following parameters:

The value returned is an Integer representing the index of the item in the list box that
was selected relative to the lower bound of ArrayOfItems. If the user selects Cancel, a
value 1 less than the lower bound of the array is returned.

If both the helpfile and context parameters are specified, then a Help button is added in
addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

Parameter Description

title Title of the dialog box. This can be an expression convertible
to a String. A runtime error is generated if title is Null .

If title is missing, then the default title is used.

prompt Text to appear immediately above the list box containing the
items. This can be an expression convertible to a String. A
runtime error is generated if prompt is Null .

ArrayOfItems Single-dimensioned array. Each item from the array will
occupy a single entry in the list box. A runtime error is
generated if ArrayOfItems is not a single-dimensioned array.

ArrayOfItems can specify an array of any fundamental data
type (structures are not allowed). Null and Empty values are
treated as zero-length strings.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also
be specified.

context Number specifying the ID of the topic within helpfile for this
dialog's help. If this parameter is specified, then helpfile must
also be specified.

SelectButton (statement) 429

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 429 of 475 Printed: 9/25/96

Example 'This example gets the current apps running, puts them in to an
'array and then asks the user to select one from a list.
Sub Main()

Dim a$()
AppList a$
result% = SelectBox ("Picker","Pick an application:",a$)
If Not result% = -1 then

Msgbox "User selected: " & a$(result%)
Else

Msgbox "User canceled"
End If

End Sub

See Also MsgBox (statement); AskBox, AskBox$ (functions); AskPassword, AskPassword$
(functions); InputBox , InputBox$ (functions); OpenFileName$ (function);
SaveFileName$ (function); AnswerBox (function).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

SelectButton (statement)

Syntax SelectButton name$ | id

Description Simulates a mouse click on the a push button given the push button's name (the name$
parameter) or ID (the id parameter).

Comments The SelectButton statement accepts the following parameters:

A runtime error is generated if a push button with the given name or ID cannot be found
in the active window.

Example 'This example simulates the selection of several buttons in a
'dialog.
Sub Main()

SelectButton "OK"
SelectButton 2
SelectButton "Close"

End Sub

Parameter Description

name$ String containing the name of the push button to be selected.

id Integer representing the ID of the push button to be selected.

Note: The SelectButton statement is used to select a button in another application's
dialog box. This command is not intended for use with built-in or dynamic dialog
boxes.

430 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 430 of 475 Printed: 9/25/96

See Also ButtonEnabled (function); ButtonExists (function).

Platform(s) Windows.

SelectComboBoxItem (statement)

Syntax SelectComboBoxItem { name$ | id},{ ItemName$ | ItemNumber}
[, isDoubleClick]

Description Selects an item from a combo box given the name or ID of the combo box and the name
or line number of the item.

Comments The SelectComboBoxItem statement accepts the following parameters:

Example 'This example simulates the selection of a couple of combo boxes.
Sub Main()

SelectComboBoxItem "ComboBox1","Item4"
SelectComboBoxItem 1,2,TRUE

Parameter Description

name$ String indicating the name of the combo box containing the
item to be selected.

The name of a combo box is determined by scanning the
window list looking for a text control with the given name that
is immediately followed by a combo box. A runtime error is
generated if a combo box with that name cannot be found
within the active window.

id Integer specifying the ID of the combo box containing the
item to be selected.

ItemName$ String specifying which item is to be selected. The string is
compared without regard to case. If ItemName$ is a
zero-length string, then all currently selected items are
deselected. A runtime error results if ItemName$ cannot be
found in the combo box.

ItemNumber Integer containing the index of the item to be selected. A
runtime error is generated if ItemNumber is not within the
correct range.

isDoubleClick Boolean value indicating whether a double click of that item is
to be simulated.

Note: The SelectComboBoxItem statement is used to set the item of a combo box in
another application's dialog box. Use the DlgText statement to change the content of
the text box part of a list box in a dynamic dialog box.

SelectListBoxItem (statement) 431

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 431 of 475 Printed: 9/25/96

End Sub

See Also ComboBoxEnabled (function); ComboBoxExists (function); GetComboBoxItem$
(function); GetComboBoxItemCount (function).

Platform(s) Windows.

SelectListBoxItem (statement)

Syntax SelectListBoxItem { name$ | id},{ ItemName$ | ItemNumber}
[, isDoubleClick]

Description Selects an item from a list box given the name or ID of the list box and the name or line
number of the item.

Comments The SelectListBoxItem statement accepts the following parameters:

The list box must exist within the current window or dialog box; otherwise, a runtime
error will be generated.

Parameter Description

name$ String indicating the name of the list box containing the item to
be selected.

The name of a list box is determined by scanning the window
list looking for a text control with the given name that is
immediately followed by a list box. A runtime error is
generated if a list box with that name cannot be found within
the active window.

id Integer specifying the ID of the list box containing the item to
be selected.

ItemName$ String specifying which item is to be selected. The string is
compared without regard to case. If ItemName$ is a zero-length
string, then all currently selected items are deselected. A
runtime error results if ItemName$ cannot be found in the list
box.

ItemNumber Integer containing the index of the item to be selected. A
runtime error is generated if ItemNumber is not within the
correct range.

isDoubleClick Boolean value indicating whether a double click of that item is
to be simulated.

432 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 432 of 475 Printed: 9/25/96

For multiselect list boxes, SelectListBoxItem will select additional items (i.e., it will
not remove the selection from the currently selected items).

Example 'This example simulates a double click on the first item in list
'box 1.
Sub Main()

SelectListBoxItem "ListBox1",1,TRUE
End Sub

See Also GetListBoxItem$ (function); GetListBoxItemCount (function); ListBoxEnabled
(function); ListBoxExists (function).

Platform(s) Windows.

SendKeys (statement)

Syntax SendKeys string [, [wait] [, delay]]

Description Sends the specified keys to the active application, optionally waiting for the keys to be
processed before continuing.

Comments The SendKeys statement accepts the following named parameters:

The SendKeys statement will wait for a prior SendKeys to complete before executing.

Note: The SelectListBoxItem statement is used to select an item in a list box of
another application's dialog box. Use the DlgText statement to change the selected
item in a list box within a dynamic dialog box.

Named Parameter Description

string String containing the keys to be sent. The format for string is
described below.

wait Boolean value. If True, then BasicScript waits for the keys to
be completely processed before continuing. The default value
is False, which causes BasicScript to continue script execution
while before SendKeys finishes.

delay Integer specifying the number of milliseconds devoted for the
output of the entire string parameter. It must be within the
following range:

0 <= delay <= 32767

For example, if delay is 5000 (5 seconds) and the string
parameter contains ten keys, then a key will be output every
1/2 second. If unspecified (or 0), the keys will play back at full
speed.

SendKeys (statement) 433

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 433 of 475 Printed: 9/25/96

Specifying Keys

To specify any key on the keyboard, simply use that key, such as "a" for lowercase a, or
"A" for uppercase a.

Sequences of keys are specified by appending them together: "abc" or "dir /w".

Some keys have special meaning and are therefore specified in a special way—by
enclosing them within braces. For example, to specify the percent sign, use "{%}". The
following table shows the special keys:

Keys that are not displayed when you press them are also specified within braces, such
as {Enter} or {Up}. A list of these keys follows:

Key Special Meaning Example

+ Shift "+{F1}" Shift+F1

^ Ctrl "^a" Ctrl+A

~ Shortcut for Enter "~" Enter

% Alt "%F" Alt+F

[] No special meaning "{[}" Open bracket

{} Used to enclose special keys "{Up}" Up arrow

() Used to specify grouping "^(ab)" Ctrl+A, Ctrl+B

{BkSp} {BS} {Break} {CapsLock} {Clear}

{Delete} {Del} {Down} {End} {Enter}

{Escape} {Esc} {Help} {Home} {Insert}

{Left} {NumLock} {NumPad0} {NumPad1} {NumPad2}

{NumPad3} {NumPad4} {NumPad5} {NumPad6} {NumPad7}

{NumPad8} {NumPad9} {NumPad/} {NumPad*} {NumPad-}

{NumPad+} {NumPad.} {PgDn} {PgUp} {PrtSc}

{Right} {Tab} {Up} {F1} {Scroll
Lock}

{F2} {F3} {F4} {F5} {F6}

{F7} {F8} {F9} {F10} {F11}

{F12} {F13} {F14} {F15} {F16}

434 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 434 of 475 Printed: 9/25/96

Keys can be combined with Shift, Ctrl, and Alt using the reserved keys "+", "^", and
"%" respectively:

To specify a modifier key combined with a sequence of consecutive keys, group the key
sequence within parentheses, as in the following example:

Use "~" as a shortcut for embedding Enter within a key sequence:

To embed quotation marks, use two quotation marks in a row:

Key sequences can be repeated using a repeat count within braces:

Example 'This example runs Notepad, writes to Notepad, and saves the new
'file using the SendKeys statement.
Sub Main()

id = Shell("Notepad.exe")
AppActivate "Notepad"
SendKeys "Hello, Notepad.",True 'Write some text.
SendKeys "%fs",True 'Save File as "name.txt"
SendKeys "name.txt{ENTER}",True
AppClose "Notepad"

End Sub

See Also DoKeys (statement); QueKeys (statement); QueKeyDn (statement); QueKeyUp
(statement).

For Key Combination Use

Shift+Enter "+{Enter}"

Ctrl+C "^c"

Alt+F2 "%{F2}"

For Key Combination Use

Shift+A, Shift+B "+(abc)"

Ctrl+F1, Ctrl+F2 "^({F1}{F2})"

For Key Combination Use

a, b, Enter, d, e "ab~de"

Enter, Enter "~~"

For Key Combination Use

"Hello" ""Hello""

a"b"c "a""b""c"

For Key Combination Use

Ten "a" keys "{a 10}"

Two Enter keys "{Enter 2}"

Set (statement) 435

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 435 of 475 Printed: 9/25/96

Platform(s) Windows, Win32.

Set (statement)

Syntax 1 Set object_var = object_expression

Syntax 2 Set object_var = New object_type

Syntax 3 Set object_var = Nothing

Description Assigns a value to an object variable.

Comments Syntax 1

The first syntax assigns the result of an expression to an object variable. This statement
does not duplicate the object being assigned but rather copies a reference of an existing
object to an object variable.

The object_expression is any expression that evaluates to an object of the same type as
the object_var.

With data objects, Set performs additional processing. When the Set is performed, the
object is notified that a reference to it is being made and destroyed. For example, the
following statement deletes a reference to object A, then adds a new reference to B.

Set a = b

In this way, an object that is no longer being referenced can be destroyed.

Syntax 2

In the second syntax, the object variable is being assigned to a new instance of an
existing object type. This syntax is valid only for data objects.

When an object created using the New keyword goes out of scope (i.e., the Sub or
Function in which the variable is declared ends), the object is destroyed.

Syntax 3

The reserved keyword Nothing is used to make an object variable reference no object.
At a later time, the object variable can be compared to Nothing to test whether the
object variable has been instantiated:

Set a = Nothing

:

If a Is Nothing Then Beep

Example 'This example creates two objects and sets their values.
Sub Main()

Dim document As Object
Dim page As Object
Set document = GetObject("c:\resume.doc")

436 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 436 of 475 Printed: 9/25/96

Set page = Document.ActivePage
MsgBox page.name

End Sub

See Also = (statement); Let (statement); CreateObject (function); GetObject (function).

Platform(s) All.

SetAttr (statement)

Syntax SetAttr pathname, attributes

Description Changes the attribute pathname to the given attribute. A runtime error results if the file
cannot be found.

Comments The SetAttr statement accepts the following named parameters:

The attributes parameter can contain any combination of the following values:

The attributes can be combined using the + operator or the binary Or operator.

Example 'This example creates a file and sets its attributes to
'Read-Only and System.
Sub Main()

Open "test.dat" For Output Access Write As #1
Close
MsgBox "The current file attribute is: " & GetAttr("test.dat")
SetAttr "test.dat",ebReadOnly Or ebSystem
MsgBox "The file attribute was set to: " & GetAttr("test.dat")

End Sub

See Also GetAttr (function); FileAttr (function).

Named Parameter Description

pathname String containing the name of the file.

attributes Integer specifying the new attribute of the file.

Constant Value Includes

ebNormal 0 Turns off all attributes

ebReadOnly 1 Read-only files

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes

SetCheckBox (statement) 437

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 437 of 475 Printed: 9/25/96

Platform(s) All.

Platform Notes Windows: Under Windows, these attributes are the same as those used by DOS.

UNIX: On UNIX platforms, the hidden file attribute corresponds to files without the
read or write attributes.

SetCheckBox (statement)

Syntax SetCheckBox { name$ | id}, state

Description Sets the state of the check box with the given name or ID.

Comments The SetCheckBox statement accepts the following parameters:

A runtime error is generated if a check box with the specified name cannot be found in
the active window.

This statement has the side effect of setting the focus to the given check box.

Example 'This example sets a check box.
Sub Main()

SetCheckBox "CheckBox1",1
End Sub

See Also CheckBoxExists (function); CheckBoxEnabled (function); GetCheckBox (function);
DlgValue (statement).

Platform(s) Windows.

SetEditText (statement)

Syntax SetEditText { name$ | id}, content$

Parameter Description

name$ String containing the name of the check box to be set.

id Integer specifying the ID of the check box to be set.

state Integer indicating the new state of the check box. If state is 1,
then the box is checked. If state is 0, then the check is
removed. If state is 2, then the box is dimmed (only applicable
for three-state check boxes).

Note: The SetCheckBox statement is used to set the state of a check box in another
application's dialog box. Use the DlgValue statement to modify the state of a check
box within a dynamic dialog box.

438 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 438 of 475 Printed: 9/25/96

Description Sets the content of an edit control given its name or ID.

Comments The SetEditText statement accepts the following parameters:

This statement has the side effect of setting the focus to the given text box.

Example 'This example sets the content of the filename text box of the
'current window to "test.dat".
Sub Main()

SetEditText "Filename:","test.dat"
End Sub

See Also EditEnabled (function); EditExists (function); GetEditText$ (function).

Platform(s) Windows.

SetOption (statement)

Syntax SetOption name$ | id

Description Selects the specified option button given its name or ID.

Comments The SetOption statement accepts the following parameters:

Parameter Description

name$ String containing the name of the text box to be set.

The name of a text box control is determined by scanning the
window list looking for a text control with the given name that
is immediately followed by an edit control. A runtime error is
generated if a text box control with that name cannot be found
within the active window.

id Integer specifying the ID of the text box to be set.

For text boxes that do not have a preceding text control, the id
can be used to absolutely reference the control. The id is
determined by examining the dialog box with a resource editor
or using an application such as Spy.

content$ String containing the new content for the text box.

Note: The SetEditText statement is used to set the content of a text box in another
application's dialog box. Use the DlgText statement to set the text of a text box
within a dynamic dialog box.

Parameter Description

name$ String containing the name of the option button to be selected.

Sgn (function) 439

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 439 of 475 Printed: 9/25/96

A runtime error is generated if the option button cannot be found within the active
window.

Example 'This example selects the Continue option button.
Sub Main()

SetOption "Continue"
End Sub

See Also GetOption (function); OptionEnabled (function); OptionExists (function).

Platform(s) Windows.

Sgn (function)

Syntax Sgn(number)

Description Returns an Integer indicating whether a number is less than, greater than, or equal to 0.

Comments Returns 1 if number is greater than 0.

Returns 0 if number is equal to 0.

Returns –1 if number is less than 0.

The number parameter is a numeric expression of any type. If number is Null , then a
runtime error is generated. Empty is treated as 0.

Example 'This example tests the product of two numbers and displays a
'message based on the sign of the result.
Sub Main()

a% = -100
b% = 100
c% = a% * b%
Select Case Sgn(c%)

Case -1
MsgBox "The product is negative " & Sgn(c%)

Case 0
MsgBox "The product is 0 " & Sgn(c%)

Case 1
MsgBox "The product is positive " & Sgn(c%)

End Select

id Integer containing the ID of the option button to be selected.

Note: The SetOption statement is used to select an option button in another
application's dialog box. Use the DlgValue statement to select an option button
within a dynamic dialog box.

Parameter Description

440 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 440 of 475 Printed: 9/25/96

End Sub

See Also Abs (function).

Platform(s) All.

Shell (function)

Syntax Shell(pathname [, windowstyle])

Description Executes another application, returning the task ID if successful.

Comments The Shell statement accepts the following named parameters:

An error is generated if unsuccessful running pathname.

The Shell command runs programs asynchronously: the statement following the Shell
statement will execute before the child application has exited. On some platforms, the
next statement will run even before the child application has finished loading.

The Shell function returns a value suitable for activating the application using the
AppActivate statement. It is important that this value be placed into a Variant , as its
type depends on the platform.

Example 'This example displays the Windows Clock, delays a while, then
'closes it.

Named Parameter Description

pathname String containing the name of the application and any
parameters.

windowstyle Optional Integer specifying the state of the application window
after execution. It can be any of the following values:

ebHide Application is hidden.

ebNormalFocus Application is displayed in default
position with the focus.

ebMinimizedFocus Application is minimized with the focus
(this is the default).

MaximizedFocus Application is maximized with the focus.

ebNormalNoFocus Application is displayed in default
position without the focus.

ebMinimizedNoFocusApplication is minimized without the
focus

A runtime error is generated if windowstyle is not one of the
above values.

Shell (function) 441

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 441 of 475 Printed: 9/25/96

Sub Main()
id = Shell ("clock.exe",1)
AppActivate "Clock"
Sleep(2000)
AppClose "Clock"

End Sub

See Also PrintFile (function); SendKeys (statement); AppActivate (statement).

Platform(s) All.

Platform Notes Windows: Under Windows, this function returns the hInstance of the application. Since
this value is only a WORD in size, the upper WORD of the result is always zero.

The Shell function under Windows supports file associations. In other words, you can
specify the name of a file, and the Shell function executes the associated application
with that file as a parameter. (File associations are specified in the WIN.INI file.)

Win32: Under Win32, this function returns a global process ID that can be used to
identify the new process. Under Win32, the Shell function does not support file
associations (i.e., setting pathname to "sample.txt" will not execution Notepad).

When specifying long filenames as parameters, you may have to enclose the parameters
in double quotes. For example, under Windows 95, to run WordPad, passing it a file
called "Sample Document", you would use the following statement:

r = Shell ("WordPad ""Sample Document""")

Macintosh: The Macintosh does not support wildcard characters such as * and ?. These
are valid filename characters. Instead of wildcards, the Macintosh uses the MacID
function to specify a collection of files of the same type. The syntax for this function is:

Shell (MacID(text$) [, windowstyle])

The text$ parameter is a four-character string containing an application signature. A
runtime error occurs if the MacID function is used on platforms other than the
Macintosh.

On the Macintosh, the windowstyle parameter only specifies whether the application
receives the focus.

UNIX: Under all versions of UNIX, the windowstyle parameter is ignored. This
function returns the process identifier of the new process.

Under UNIX, BasicScript attempts to execute the command line using one of the
installed shells. BasicScript looks for a shell using the following precedence:

1. BasicScript examines the SHELL environment variable, which is normally set to
the path of the currently executing shell (e.g., /bin/sh, /bin/csh, and so on).

2. BasicScript examines the PATH environment variable for an executable program
called sh (the Bourne shell).

442 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 442 of 475 Printed: 9/25/96

3. In the unlikely event that a shell was not located with the above rules, BasicScript
will search for sh in the following areas:

/bin
/usr/bin
/usr/sbin

Once a suitable shell has been located, it is executed with pathname as a parameter. The
environment of the calling process is made available to the new process and will be use
by the shell in a manner specific to that shell.

Due to the asynchronous nature of the shell process, failure to find and start the program
is not reported to BasicScript.

OS/2: Under OS/2, the Shell function is capable of running both Presentation Manager
applications and command line applications. When running command line applications,
the Shell function always returns 0.

Sin (function)

Syntax Sin(number)

Description Returns a Double value specifying the sine of number.

Comments The number parameter is a Double specifying an angle in radians.

Example 'This example displays the sine of pi/4 radians (45 degrees).
Sub Main()

c# = Sin (Pi / 4)
MsgBox "The sine of 45 degrees is: " & c#

End Sub

See Also Tan (function); Cos (function); Atn (function).

Platform(s) All.

Single (data type)

Syntax Single

Description A data type used to declare variables capable of holding real numbers with up to seven
digits of precision.

Comments Single variables are used to hold numbers within the following ranges:

Sign Range

Negative -3.402823E38 <= single <= -1.401298E-45

Positive 1.401298E-45 <= single <= 3.402823E38

Sleep (statement) 443

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 443 of 475 Printed: 9/25/96

The type-declaration character for Single is !.

Storage

Internally, singles are stored as 4-byte (32-bit) IEEE values. Thus, when appearing
within a structure, singles require 4 bytes of storage. When used with binary or random
files, 4 bytes of storage is required.

Each single consists of the following

• A 1-bit sign

• An 8-bit exponent

• A 24-bit mantissa

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Object (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement); CSng (function).

Platform(s) All.

Sleep (statement)

Syntax Sleep milliseconds

Description Causes the script to pause for a specified number of milliseconds.

Comments The milliseconds parameter is a Long in the following range:
0 <= milliseconds <= 2,147,483,647

Example 'This example displays a message for 2 seconds.
Sub Main()

Msg.Open "Waiting 2 seconds",0,False,False
Sleep (2000)
Msg.Close

End Sub

Platform(s) All.

Platform Notes Windows: Under Windows, the accuracy of the system clock is modulo 55
milliseconds. The value of milliseconds will, in the worst case, be rounded up to the
nearest multiple of 55. In other words, if milliseconds is 1, it will be rounded to 55 in the
worst case.

Sln (function)

Syntax Sln(cost, salvage, life)

444 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 444 of 475 Printed: 9/25/96

Description Returns the straight-line depreciation of an asset assuming constant benefit from the
asset.

Comments The Sln of an asset is found by taking an estimate of its useful life in years, assigning
values to each year, and adding up all the numbers.

The formula used to find the Sln of an asset is as follows:
(Cost - Salvage Value) / Useful Life

The Sln function requires the following named parameters:

The unit of time used to express the useful life of the asset is the same as the unit of time
used to express the period for which the depreciation is returned.

Example 'This example calculates the straight-line depreciation of an
'asset that cost $10,000.00 and has a salvage value of $500.00
'as scrap after ten years of service life.
Sub Main()

dep# = Sln (10000.00,500.00,10)
MsgBox "The annual depreciation is: " &

Format(dep#,"Currency")
End Sub

See Also SYD (function); DDB (function).

Platform(s) All.

Space, Space$ (functions)

Syntax Space[$](number)

Description Returns a string containing the specified number of spaces.

Comments Space$ returns a String, whereas Space returns a String variant.

The number parameter is an Integer between 0 and 32767.

Example 'This example returns a string of ten spaces and displays it.
Sub Main()

ln$ = Space$ (10)
MsgBox "Hello" & ln$ & "over there."

End Sub

Named Parameter Description

cost Double representing the initial cost of the asset.

salvage Double representing the estimated value of the asset at the end
of its useful life.

life Double representing the length of the asset's useful life.

Spc (function) 445

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 445 of 475 Printed: 9/25/96

See Also String, String$ (functions); Spc (function).

Platform(s) All.

Spc (function)

Syntax Spc(numspaces)

Description Prints out the specified number of spaces. This function can only be used with the Print
and Print# statements.

Comments The numspaces parameter is an Integer specifying the number of spaces to be printed.
It can be any value between 0 and 32767.

If a line width has been specified (using the Width statement), then the number of
spaces is adjusted as follows:

numspaces = numspaces Mod width

If the resultant number of spaces is greater than width – print_position, then the number
of spaces is recalculated as follows:

numspaces = numspaces – (width – print_position)

These calculations have the effect of never allowing the spaces to overflow the line
length. Furthermore, with a large value for column and a small line width, the file
pointer will never advance more than one line.

Example 'This example displays 20 spaces between the arrows.
Sub Main()

Viewport.Open
Print "I am"; Spc(20); "20 spaces apart!"
Sleep (10000)'Wait 10 seconds.
Viewport.Close

End Sub

See Also Tab (function); Print (statement); Print# (statement).

Platform(s) All.

SQLBind (function)

Syntax SQLBind(connectionnum, array [, column])

Description Specifies which fields are returned when results are requested using the SQLRetrieve
or SQLRetrieveToFile function.

446 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 446 of 475 Printed: 9/25/96

Comments The following table describes the named parameters to the SQLBind function:

This function returns the number of bound columns on the connection. If no columns
are bound, then 0 is returned. If there are no pending queries, then calling SQLBind
will cause an error (queries are initiated using the SQLExecQuery function).

If supported by the driver, row numbers can be returned by binding column 0.

BasicScript generates a trappable runtime error if SQLBind fails. Additional error
information can then be retrieved using the SQLError function.

Example 'This example binds columns to data.
Sub Main()

Dim columns() As Variant
id& = SQLOpen("dsn=SAMPLE",,3)
t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
i% = SQLBind (id&,columns,3)
i% = SQLBind (id&,columns,1)
i% = SQLBind (id&,columns,2)
i% = SQLBind (id&,columns,6)
For x = 0 To (i% - 1)

MsgBox columns(x)
Next x
id& = SQLClose(id&)

End Sub

See Also SQLRetrieve (function); SQLRetrieveToFile (function).

Platform(s) Windows, Win32.

Named Parameter Description

connectionnum Long parameter specifying a valid connection.

array Any array of variants. Each call to SQLBind adds a new
column number (an Integer) in the appropriate slot in the array.
Thus, as you bind additional columns, the array parameter
grows, accumulating a sorted list (in ascending order) of bound
columns.

If array is fixed, then it must be a one-dimensional variant array
with sufficient space to hold all the bound column numbers. A
runtime error is generated if array is too small.

If array is dynamic, then it will be resized to exactly hold all the
bound column numbers.

column Optional Long parameter that specifies the column to which to
bind data. If this parameter is omitted, all bindings for the
connection are dropped.

SQLClose (function) 447

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 447 of 475 Printed: 9/25/96

SQLClose (function)

Syntax SQLClose(connectionnum)

Description Closes the connection to the specified data source.

Comments The unique connection ID (connectionnum) is a Long value representing a valid
connection as returned by SQLOpen. After SQLClose is called, any subsequent calls
made with the connectionnum will generate runtime errors.

The SQLClose function returns 0 if successful; otherwise, it returns the passed
connection ID and generates a trappable runtime error. Additional error information can
then be retrieved using the SQLError function.

BasicScript automatically closes all open SQL connections when either the script or the
application terminates. You should use the SQLClose function rather than relying on
BasicScript to automatically close connections in order to ensure that your connections
are closed at the proper time.

Example 'This example disconnects the the data source sample.
Sub Main()

id& = SQLOpen("dsn=SAMPLE",,3)
id& = SQLClose (id&)

End Sub

See Also SQLOpen (function).

Platform(s) Windows, Win32.

SQLError (function)

Syntax SQLError(resultarray, connectionnum)

Description Retrieves driver-specific error information for the most recent SQL functions that failed.

448 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 448 of 475 Printed: 9/25/96

Comments This function is called after any other SQL function fails. Error information is returned
in a two-dimensional array (resultarray). The following table describes the named
parameters to the SQLError function:

Each array entry in the resultarray parameter describes one error. The three elements in
each array entry contain the following information:

For example, to retrieve the ODBC text error message of the first returned error, the
array is referenced as:

resultarray(0,2)

The SQLError function returns the number of errors found.

BasicScript generates a runtime error if SQLError fails. (You cannot use the
SQLError function to gather additional error information in this case.)

Example 'This example forces a connection error and traps it for use
'with the SQLError function.
Sub Main()

Dim a() As Variant
On Error Goto Trap
id& = SQLOpen("",,4)
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError (a)

Named Parameter Description

resultarray Two-dimensional Variant array, which can be dynamic or fixed.

If the array is fixed, it must be (x,3), where x is the number of
errors you want returned. If x is too small to hold all the errors,
then the extra error information is discarded. If x is greater than
the number of errors available, all errors are returned, and the
empty array elements are set to Empty.

If the array is dynamic, it will be resized to hold the exact
number of errors.

connectionnum Optional Long parameter specifying a connection ID. If this
parameter is omitted, error information is returned for the most
recent SQL function call.

Element Value

(entry,0) The ODBC error state, indicated by a Long containing the error
class and subclass.

(entry,1) The ODBC native error code, indicated by a Long.

(entry,2) The text error message returned by the driver. This field is String
type.

SQLExecQuery (function) 449

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 449 of 475 Printed: 9/25/96

If (rc%) Then
For x = 0 To (rc% - 1)

MsgBox "The SQLState returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

Platform(s) Windows, Win32.

SQLExecQuery (function)

Syntax SQLExecQuery(connectionnum, querytext)

Description Executes an SQL statement query on a data source.

Comments This function is called after a connection to a data source is established using the
SQLOpen function. The SQLExecQuery function may be called multiple times with
the same connection ID, each time replacing all results.

The following table describes the named parameters to the SQLExecQuery function:

The return value of this function depends on the result returned by the SQL statement:

BasicScript generates a runtime error if SQLExecQuery fails. Additional error
information can then be retrieved using the SQLError function.

Example 'This example executes a query on the connected data source.
Sub Main()

Dim s As String
Dim qry As Long
Dim a() As Variant
On Error Goto Trap
id& = SQLOpen("dsn=SAMPLE", s$, 3)

Named Parameter Description

connectionnum Long identifying a valid connected data source. This parameter
is returned by the SQLOpen function.

querytext String specifying an SQL query statement. The SQL syntax of
the string must strictly follow that of the driver.

SQL Statement Value

SELECT...FROM The value returned is the number of columns
returned by the SQL statement

DELETE,INSERT,UPDATE The value returned is the number of rows affected
by the SQL statement

450 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 450 of 475 Printed: 9/25/96

qry = SQLExecQuery (id&,"Select * From c:\sample.dbf")
MsgBox "There are " & qry & " columns in the result set."
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError(a)
If (rc%) Then

For x = 0 To (rc% - 1)
MsgBox "The SQLState returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

See Also SQLOpen (function); SQLClose (function); SQLRetrieve (function);
SQLRetrieveToFile (function).

Platform(s) Windows, Win32.

SQLGetSchema (function)

Syntax SQLGetSchema(connectionnum, typenum, [, [resultarray] [, qualifiertext]])

Description Returns information about the data source associated with the specified connection.

Comments The following table describes the named parameters to the SQLGetSchema function:

Named Parameter Description

connectionnum Long parameter identifying a valid connected data source. This
parameter is returned by the SQLOpen function.

SQLGetSchema (function) 451

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 451 of 475 Printed: 9/25/96

typenum Integer parameter specifying the results to be returned. The
following are the values for this parameter:

Value Meaning

1 Returns a one-dimensional array of
available data sources. The array is
returned in the resultarray parameter.

2 Returns a one-dimensional array of
databases (either directory names or
database names, depending on the driver)
associated with the current connection.
The array is returned in the resultarray
parameter.

3 Returns a one-dimensional array of
owners (user IDs) of the database
associated with the current connection.
The array is returned in the resultarray
parameter.

4 Returns a one-dimensional array of table
names for a specified owner and database
associated with the current connection.
The array is returned in the resultarray
parameter.

5 Returns a two-dimensional array (n by 2)
containing information about a specified
table. The first element contains the
column name. The second element
contains the data type of the column

6 Returns a string containing the ID of the
current user.

7 Returns a string containing the name
(either the directory name or the database
name, depending on the driver) of the
current database.

Named Parameter Description

452 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 452 of 475 Printed: 9/25/96

8 Returns a string containing the name of
the data source on the current
connection.

9 Returns a string containing the name of
the DBMS of the data source on the
current connection (e.g., "FoxPro 2.5" or
"Excel Files").

10 Returns a string containing the name of
the server for the data source.

11 Returns a string containing the owner
qualifier used by the data source (e.g.,
"owner," "Authorization ID," "Schema").

12 Returns a string containing the table
qualifier used by the data source (e.g.,
"table," "file").

13 Returns a string containing the database
qualifier used by the data source (e.g.,
"database," "directory").

14 Returns a string containing the procedure
qualifier used by the data source (e.g.,
"database procedure," "stored
procedure," "procedure").

resultarray Optional Variant array parameter. This parameter is only
required for action values 1, 2, 3, 4, and 5. The returned
information is put into this array.

If resultarray is fixed and it is not the correct size necessary to
hold the requested information, then SQLGetSchema will fail.
If the array is larger than required, then any additional elements
are erased.

If resultarray is dynamic, then it will be redimensioned to hold
the exact number of elements requested.

Named Parameter Description

SQLGetSchema (function) 453

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 453 of 475 Printed: 9/25/96

BasicScript generates a runtime error if SQLGetSchema fails. Additional error
information can then be retrieved using the SQLError function.

If you want to retrieve the available data sources (where typenum = 1) before
establishing a connection, you can pass 0 as the connectionnum parameter. This is the
only action that will execute successfully without a valid connection.

This function calls the ODBC functions SQLGetInfo and SQLTables in order to
retrieve the requested information. Some database drivers do not support these calls and
will therefore cause the SQLGetSchema function to fail.

Example 'This example gets all available data sources.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Dim dsn() As Variant
numdims% = SQLGetSchema(0,1,dsn)
If (numdims%) Then

message = "Valid data sources are:" & crlf
For x = 0 To numdims% - 1

message = message & dsn(x) & crlf
Next x

Else
message = "There are no available data sources."

End If
MsgBox message

End Sub

See Also SQLOpen (function).

Platform(s) Windows, Win32.

qualifiertext Optional String parameter required for actions 3, 4, or 5. The
values are as follows:

Action Qualifier

3 The qualifiertext parameter must be the
name of the database represented by ID.

4 The qualifiertext parameter specifies a
database name and an owner name. The
syntax for this string is:
DatabaseName.OwnerName

5 The qualifiertext parameter specifies the
name of a table on the current
connection.

Named Parameter Description

454 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 454 of 475 Printed: 9/25/96

SQLOpen (function)

Syntax SQLOpen(connectionstr [, [outputref] [, driverprompt]])

Description Establishes a connection to the specified data source, returning a Long representing the
unique connection ID.

Comments This function connects to a data source using a login string (connectionstr) and
optionally sets the completed login string (outputref) that was used by the driver. The
following table describes the named parameters to the SQLOpen function:

The SQLOpen function will never return an invalid connection ID. The following
example establishes a connection using the driver's login dialog box:

id& = SQLOpen("",,1)

BasicScript returns 0 and generates a trappable runtime error if SQLOpen fails.
Additional error information can then be retrieved using the SQLError function.

Named Parameter Description

connectionstr String expression containing information required by the driver
to connect to the requested data source. The syntax must strictly
follow the driver's SQL syntax.

outputref Optional String variable that will receive a completed
connection string returned by the driver. If this parameter is
missing, then no connection string will be returned.

driverprompt Integer expression specifying any of the following values:

Value Meaning

1 The driver's login dialog box is always
displayed.

2 The driver's dialog box is only displayed
if the connection string does not contain
enough information to make the
connection. This is the default behavior.

3 The driver's dialog box is only displayed
if the connection string does not contain
enough information to make the
connection. Dialog box options that were
passed as valid parameters are dimmed
and unavailable.

4 The driver's login dialog box is never
displayed.

SQLRequest (function) 455

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 455 of 475 Printed: 9/25/96

Before you can use any SQL statements, you must set up a data source and relate an
existing database to it. This is accomplished using the odbcadm.exe program.

Example 'This example connects the data source called "sample,"
'returning the completed connction string, and then displays it.
Sub Main()

Dim s As String
id& = SQLOpen("dsn=SAMPLE",s$,3)
MsgBox "The completed connection string is: " & s$
id& = SQLClose(id&)

End Sub

See Also SQLClose (function).

Platform(s) Windows, Win32.

SQLRequest (function)

Syntax SQLRequest(connectionstr, querytext, resultarray [, [outputref] [,
[driverprompt] [, colnameslogical]]])

Description Opens a connection, runs a query, and returns the results as an array.

Comments The SQLRequest function takes the following named parameters:

Named Parameter Description

connectionstr String specifying the connection information required to
connect to the data source.

querytext String specifying the query to execute. The syntax of this string
must strictly follow the syntax of the ODBC driver.

resultarray Array of variants to be filled with the results of the query.

The resultarray parameter must be dynamic: it will be resized to
hold the exact number of records and fields.

outputref Optional String to receive the completed connection string as
returned by the driver.

456 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 456 of 475 Printed: 9/25/96

BasicScript generates a runtime error if SQLRequest fails. Additional error information
can then be retrieved using the SQLError function.

The SQLRequest function performs one of the following actions, depending on the
type of query being performed:

driverprompt Optional Integer specifying the behavior of the driver's dialog
box:

Value Meaning

1 The driver's login dialog box is always
displayed.

2 The driver's dialog box is only displayed
if the connection string does not contain
enough information to make the
connection. This is the default behavior.

3 The driver's dialog box is only displayed
if the connection string does not contain
enough information to make the
connection. Dialog box options that were
passed as valid parameters are dimmed
and unavailable.

4 The driver's login dialog box is never
displayed.

colnameslogical Optional Boolean specifying whether the column names are
returned as the first row of results. The default is False.

Type of Query Action

SELECT The SQLRequest function fills resultarray with the results
of the query, returning a Long containing the number of
results placed in the array. The array is filled as follows
(assuming an x by y query):

Named Parameter Description

SQLRetrieve (function) 457

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 457 of 475 Printed: 9/25/96

Example 'This example opens a data source, runs a select query on it,
'and then displays all the data found in the result set.
Sub Main()

Dim a() As Variant
l& = SQLRequest ("dsn=SAMPLE;","Select * From c:\sample.dbf" _

,a,,3,True)
For x = 0 To Ubound(a)

For y = 0 To l - 1
MsgBox a(x,y)

Next y
Next x

End Sub

Platform(s) Windows, Win32.

SQLRetrieve (function)

Syntax SQLRetrieve(connectionnum, resultarray[, [maxcolumns] [, [maxrows] [,
[colnameslogical] [, fetchfirstlogical]]]])

Description Retrieves the results of a query.

(record 1,field 1)

(record 1,field 2)

:

(record 1,field y)

(record 2,field 1)

(record 2,field 2)

:

(record 2,field y)

:

:

(record x,field 1)

(record x,field 2)

:

(record x,field y)

INSERT, DELETE,
UPDATE

The SQLRequest function erases resultarray and returns a
Long containing the number of affected rows.

Type of Query Action

458 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 458 of 475 Printed: 9/25/96

Comments This function is called after a connection to a data source is established, a query is
executed, and the desired columns are bound. The following table describes the named
parameters to the SQLRetrieve function:

Before you can retrieve the results from a query, you must (1) initiate a query by calling
the SQLExecQuery function and (2) specify the fields to retrieve by calling the
SQLBind function.

This function returns a Long specifying the number of rows available in the array.

BasicScript generates a runtime error if SQLRetrieve fails. Additional error
information is placed in memory.

Example 'This example executes a query on the connected data source,
'binds columns, and retrieves them.
Sub Main()

Dim a() As Variant
Dim b() As Variant
Dim c() As Variant
On Error Goto Trap
id& = SQLOpen("DSN=SAMPLE",,3)
qry& = SQLExecQuery(id&,"Select * From c:\sample.dbf"")

Named Parameter Description

connectionnum Long identifying a valid connected data source with pending
query results.

resultarray Two-dimensional array of variants to receive the results. The
array has x rows by y columns. The number of columns is
determined by the number of bindings on the connection.

maxcolumns Optional Integer expression specifying the maximum number
of columns to be returned. If maxcolumns is greater than the
number of columns bound, the additional columns are set to
empty. If maxcolumns is less than the number of bound results,
the rightmost result columns are discarded until the result fits.

maxrows Optional Integer specifying the maximum number of rows to
be returned. If maxrows is greater than the number of rows
available, all results are returned, and additional rows are set to
empty. If maxrows is less than the number of rows available,
the array is filled, and additional results are placed in memory
for subsequent calls to SQLRetrieve.

colnameslogical Optional Boolean specifying whether column names should
be returned as the first row of results. The default is False.

fetchfirstlogical Optional Boolean expression specifying whether results are
retrieved from the beginning of the result set. The default is
False.

SQLRetrieveToFile (function) 459

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 459 of 475 Printed: 9/25/96

i% = SQLBind(id&,b,3)
i% = SQLBind(id&,b,1)
i% = SQLBind(id&,b,2)
i% = SQLBind(id&,b,6)
l& = SQLRetrieve (id&,c)
For x = 0 To Ubound(c)

For y = 0 To l& - 1
MsgBox c(x,y)

Next y
Next x
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError(a)
If (rc%) Then

For x = 0 To (rc% - 1)
MsgBox "The SQLState returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

See Also SQLOpen (function); SQLExecQuery (function); SQLClose (function); SQLBind
(function); SQLRetrieveToFile (function).

Platform(s) Windows, Win32.

SQLRetrieveToFile (function)

Syntax SQLRetrieveToFile(connectionnum, destination [, [colnameslogical] [,
columndelimiter]])

Description Retrieves the results of a query and writes them to the specified file.

Comments The following table describes the named parameters to the SQLRetrieveToFile
function:

Named Parameter Description

connectionnum Long specifying a valid connection ID.

destination String specifying the file where the results are written.

colnameslogical Optional Boolean specifying whether the first row of results
returned are the bound column names. By default, the column
names are not returned.

columndelimiter Optional String specifying the column separator. A tab
(Chr$(9)) is used as the default.

460 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 460 of 475 Printed: 9/25/96

Before you can retrieve the results from a query, you must (1) initiate a query by calling
the SQLExecQuery function and (2) specify the fields to retrieve by calling the
SQLBind function.

This function returns the number of rows written to the file. A runtime error is generated
if there are no pending results or if BasicScript is unable to open the specified file.

BasicScript generates a runtime error if SQLRetrieveToFile fails. Additional error
information may be placed in memory for later use with the SQLError function.

Example 'This example opens a connection, runs a query, binds columns,
'and writes the results to a file.
Sub Main()

Dim a() As Variant
Dim b() As Variant
On Error Goto Trap
id& = SQLOpen("DSN=SAMPLE;UID=RICH",,4)
t& = SQLExecQuery(id&, "Select * From c:\sample.dbf"")
i% = SQLBind(id&,b,3)
i% = SQLBind(id&,b,1)
i% = SQLBind(id&,b,2)
i% = SQLBind(id&,b,6)
l& = SQLRetrieveToFile (id&,"c:\results.txt",True,",")
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError(a)
If (rc%) Then

For x = 0 To (rc-1)
MsgBox "The SQLState returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

See Also SQLOpen (function); SQLExecQuery (function); SQLClose (function); SQLBind
(function); SQLRetrieve (function).

Platform(s) Windows, Win32.

Sqr (function)

Syntax Sqr(number)

Description Returns a Double representing the square root of number.

Comments The number parameter is a Double greater than or equal to 0.

Stop (statement) 461

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 461 of 475 Printed: 9/25/96

Example 'This example calculates the square root of the numbers from 1
'to 10 and displays them.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

For x = 1 To 10
sx# = Sqr (x)
message = message & Format(x,"Fixed") & " - " _

& Format(sx#,"Fixed") & crlf
Next x
MsgBox message

End Sub

Platform(s) All.

Stop (statement)

Syntax Stop

Description Suspends execution of the current script, returning control to a debugger if one is
present. If a debugger is not present, this command will have the same effect as End.

Example 'The Stop statement can be used for debugging. In this example,
'it is used to stop execution when Z is randomly set to 0.
Sub Main()

For x = 1 To 10
z = Random(0,10)
If z = 0 Then Stop
y = x / z

Next x
End Sub

See Also Exit For (statement); Exit Do (statement); Exit Function (statement); Exit Sub
(statement); End (statement).

Platform(s) All.

Str, Str$ (functions)

Syntax Str[$](number)

Description Returns a string representation of the given number.

Comments The number parameter is any numeric expression or expression convertible to a number.
If number is negative, then the returned string will contain a leading minus sign. If
number is positive, then the returned string will contain a leading space.

462 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 462 of 475 Printed: 9/25/96

Singles are printed using only 7 significant digits. Doubles are printed using 15–16
significant digits.

These functions only output the period as the decimal separator and do not output
thousands separators. Use the CStr, Format, or Format$ function for this purpose.

Example 'In this example, the Str$ function is used to display the
'value of a numeric variable.
Sub Main()

x# = 100.22
MsgBox "The string value is: " + Str (x#)

End Sub

See Also Format, Format$ (functions); CStr (function).

Platform(s) All.

StrComp (function)

Syntax StrComp(string1, string2 [, compare])

Description Returns an Integer indicating the result of comparing the two string arguments.

Comments One of the following values is returned:

0 string1 = string2

1 string1 > string2

–1 string1 < string2

Null string1 or string2 is Null

The StrComp function accepts the following parameters:

Parameter Description

string1 First string to be compared, which can be any expression
convertible to a String.

string2 Second string to be compared, which can be any expression
convertible to a String.

compare Optional Integer specifying how the comparison is to be
performed. It can be either of the following values:

0 Case-sensitive comparison

1 Case-insensitive comparison

StrConv (function) 463

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 463 of 475 Printed: 9/25/96

Example 'This example compares two strings and displays the results. It
'illustrates that the function compares two strings to the
'length of the shorter string in determining equivalency.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a$ = "This string is UPPERCASE and lowercase"
b$ = "This string is uppercase and lowercase"
c$ = "This string"
d$ = "This string is uppercase and lowercase characters"
abc = StrComp (a$,b$,0)
message = message & "a and c (sensitive) : " & _

Format(abc,"True/False") & crlf
abi = StrComp (a$,b$,1)
message = message & "a and b (insensitive): " & _

Format(abi,"True/False") & crlf
aci = StrComp (a$,c$,1)
message = message & "a and c (insensitive): " & _

Format(aci,"True/False") & crlf
bdi = StrComp (b$,d$,1)
message = message & "b and d (sensitive) : " & _

Format(bdi,"True/False") & crlf
MsgBox message

End Sub

See Also Comparison Operators (topic); Like (operator); Option Compare (statement).

Platform(s) All.

StrConv (function)

Syntax StrConv(string, conversion)

Description Converts a string based on a conversion parameter.

Comments The StrConv function takes the following named parameters:

If compare is not specified, then the current Option Compare
setting is used. If no Option Compare statement has been
encountered, then Binary is used (i.e., string comparison is
case-sensitive).

Parameter Description

Named Parameter Description

string A String expression specifying the string to be converted.

conversion An Integer specifying the types of conversions to be
performed.

464 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 464 of 475 Printed: 9/25/96

The conversion parameter can be any combination of the following constants:

A runtime error is generated when a conversion is requested that is not supported on the
current platform. For example, the ebWide and ebNarrow constants can only be used
on an MBCS platform. (You can determine platform capabilities using the
Basic.Capabilities method.)

The following groupings of constants are mutually exclusive and therefore cannot be
specified at the same time:

ebUpperCase, ebLowerCase, ebProperCase

ebWide, ebNarrow

ebUnicode, ebFromUnicode

Many of the constants can be combined. For example, ebLowerCase Or ebNarrow.

Constant Value Description

ebUpperCase 1 Converts string to uppercase. This constant is
supported on all platforms.

ebLowerCase 2 Converts string to lowercase. This constant is
supported on all platforms.

ebProperCase 3 Capitalizes the first letter of each word and
lower-cases all the letters. This constant is supported
on all platforms.

ebWide 4 Converts narrow characters to wide characters. This
constant is supported on Japanese locales only.

ebNarrow 8 Converts wide characters to narrow characters. This
constant is supported on Japanese locales only.

ebKatakana 16 Converts Hiragana characters to Katakana characters.
This constant is supported on Japanese locales only.

ebHiragana 32 Converts Katakana characters to Hiragana characters.
This constant is supported on Japanese locales only.

ebUnicode 64 Converts string from MBCS to UNICODE. (This
constant can only be used on platforms supporting
UNICODE.)

ebFromUnicode 128 Converts string from UNICODE to MBCS. (This
constant can only be used on platforms supporting
UNICODE.)

String (data type) 465

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 465 of 475 Printed: 9/25/96

When converting to proper case (i.e., the ebProperCase constant), the following are
seen as word delimiters: tab, linefeed, carriage-return, formfeed, vertical tab, space,
null.

Example Sub Main()
a = InputBox("Type any string:")
MsgBox "Upper case: " & StrConv(a,ebUpperCase)
MsgBox "Lower case: " & StrConv(a,ebLowerCase)
MsgBox "Proper case: " & StrConv(a,ebProperCase)
If Basic.Capability(10) And Basic.OS = ebWin16 Then

'This is an MBCS locale
MsgBox "Narrow: " & StrConv(a,ebNarrow)
MsgBox "Wide: " & StrConv(a,ebWide)
MsgBox "Katakana: " & StrConv(a,ebKatakana)
MsgBox "Hiragana: " & StrConv(a,ebHiragana)

End If
End Sub

See Also UCase, UCase$ (functions); LCase, LCase$ (functions); Basic.Capability (method).

Platform(s) All.

String (data type)

Syntax String

Description A data type capable of holding a number of characters.

Comments Strings are used to hold sequences of characters, each character having a value between
0 and 255. Strings can be any length up to a maximum length of 32767 characters.

Strings can contain embedded nulls, as shown in the following example:
s$ = "Hello" + Chr$(0) + "there" 'String with embedded

'null

The length of a string can be determined using the Len function. This function returns
the number of characters that have been stored in the string, including unprintable
characters.

The type-declaration character for String is $.

String variables that have not yet been assigned are set to zero-length by default.

Strings are normally declared as variable-length, meaning that the memory required for
storage of the string depends on the size of its content. The following BasicScript
statements declare a variable-length string and assign it a value of length 5:

Dim s As String

s = "Hello" 'String has length 5.

466 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 466 of 475 Printed: 9/25/96

Fixed-length strings are given a length in their declaration:
Dim s As String * 20

s = "Hello" 'String length = 20 with spaces to

'end of string.

When a string expression is assigned to a fixed-length string, the following rules apply:

• If the string expression is less than the length of the fixed-length string, then the
fixed-length string is padded with spaces up to its declared length.

• If the string expression is greater than the length of the fixed-length string, then the
string expression is truncated to the length of the fixed-length string.

Fixed-length strings are useful within structures when a fixed size is required, such as
when passing structures to external routines.

The storage for a fixed-length string depends on where the string is declared, as
described in the following table:

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Object (data type); Single (data type); Variant (data type); Boolean (data
type); DefType (statement); CStr (function).

Platform(s) All.

String, String$ (functions)

Syntax String[$](number, character)

Description Returns a string of length number consisting of a repetition of the specified filler
character.

Comments String$ returns a String, whereas String returns a String variant.

Strings Declared Are Stored

In structures In the same data area as that of the structure. Local
structures are on the stack; public structures are stored in
the public data space; and private structures are stored in
the private data space. Local structures should be used
sparingly as stack space is limited.

In arrays In the global string space along with all the other array
elements.

In local routines On the stack. The stack is limited in size, so local
fixed-length strings should be used sparingly.

Sub...End Sub (statement) 467

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 467 of 475 Printed: 9/25/96

These functions take the following named parameters:

Example 'This example uses the String function to create a line of "="
'signs the length of another string and then displays the
'character string underlined with the generated string.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a$ = "This string will appear underlined."
b$ = String$ (Len(a$),"=")
MsgBox a$ & crlf & b$

End Sub

See Also Space, Space$ (functions).

Platform(s) All.

Sub...End Sub (statement)

Syntax [Private | Public] [Static] Sub name[(arglist)]
[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are
allowed):
[Optional] [ByVal | ByRef] parameter[()] [As type]

Description Declares a subroutine.

Comments The Sub statement has the following parts:

Named Parameter Description

number Long specifying the number of repetitions.

character Integer specifying the character code to be used as the filler
character. If character is greater than 255 (the largest
character value), then BasicScript converts it to a valid
character using the following formula:

character Mod 256

If character is a string, then the first character of that string is
used as the filler character.

Part Description

Private Indicates that the subroutine being defined cannot be called
from other scripts.

Public Indicates that the subroutine being defined can be called from
other scripts. If the Private and Public keywords are both
missing, then Public is assumed.

468 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 468 of 475 Printed: 9/25/96

A subroutine terminates when one of the following statements is encountered:
End Sub

Exit Sub

Subroutines can be recursive.

Passing Parameters to Subroutines

Parameters are passed to a subroutine either by value or by reference, depending on the
declaration of that parameter in arglist. If the parameter is declared using the ByRef
keyword, then any modifications to that passed parameter within the subroutine change

Static Recognized by the compiler but currently has no effect.

name Name of the subroutine, which must follow BasicScript naming
conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character
(_). Punctuation and type-declaration characters are not
allowed. The exclamation point (!) can appear within the
name as long as it is not the last character.

3. Must not exceed 80 characters in length.

Optional Keyword indicating that the parameter is optional. All optional
parameters must be of type Variant . Furthermore, all
parameters that follow the first optional parameter must also be
optional.

If this keyword is omitted, then the parameter is required.

Note: You can use the IsMissing function to determine whether
an optional parameter was actually passed by the caller.

ByVal Keyword indicating that the parameter is passed by value.

ByRef Keyword indicating that the parameter is passed by reference. If
neither the ByVal nor the ByRef keyword is given, then ByRef
is assumed.

parameter Name of the parameter, which must follow the same naming
conventions as those used by variables. This name can include a
type-declaration character, appearing in place of As type.

type Type of the parameter (i.e., Integer, String, and so on). Arrays
are indicated with parentheses. For example, an array of
integers would be declared as follows

Sub Test(a() As Integer)

End Sub

Part Description

Sub...End Sub (statement) 469

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 469 of 475 Printed: 9/25/96

the value of that variable in the caller. If the parameter is declared using the ByVal
keyword, then the value of that variable cannot be changed in the called subroutine. If
neither the ByRef nor the ByVal keyword is specified, then the parameter is passed by
reference.

You can override passing a parameter by reference by enclosing that parameter within
parentheses. For instance, the following example passes the variable j by reference,
regardless of how the third parameter is declared in the arglist of UserSub:

UserSub 10,12,(j)

Optional Parameters

BasicScript allows you to skip parameters when calling subroutines, as shown in the
following example:

Sub Test(a%,b%,c%)

End Sub

Sub Main

Test 1,,4 'Parameter 2 was skipped.

End Sub

You can skip any parameter with the following restrictions:

1. The call cannot end with a comma. For instance, using the above example, the
following is not valid:
Test 1,,

2. The call must contain the minimum number of parameters as required by the called
subroutine. For instance, using the above example, the following are invalid:
Test ,1 'Only passes two out of three required

'parameters.

Test 1,2 'Only passes two out of three required

'parameters.

When you skip a parameter in this manner, BasicScript creates a temporary variable and
passes this variable instead. The value of this temporary variable depends on the data
type of the corresponding parameter in the argument list of the called subroutine, as
described in the following table:

Value Data Type

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean

470 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 470 of 475 Printed: 9/25/96

Within the called subroutine, you will be unable to determine whether a parameter was
skipped unless the parameter was declared as a variant in the argument list of the
subroutine. In this case, you can use the IsMissing function to determine whether the
parameter was skipped:

Sub Test(a,b,c)

If IsMissing(a) Or IsMissing(b) Then Exit Sub

End Sub

Example 'This example uses a subroutine to calculate the area of a circle.
Sub Main()

r! = 10
PrintArea r!

End Sub
Sub PrintArea(r as single)

area! = (r! ^ 2) * Pi
MsgBox "The area of a circle with radius " & r! & " = " & area!

End Sub

See Also Main (statement); Function...End Function (statement).

Platform(s) All.

Switch (function)

Syntax Switch(condition1, expression1 [, condition2, expression2 ...
[, condition7, expression7]])

Description Returns the expression corresponding to the first True condition.

Comments The Switch function evaluates each condition and expression, returning the expression
that corresponds to the first condition (starting from the left) that evaluates to True. Up
to seven condition/expression pairs can be specified.

A runtime error is generated it there is an odd number of parameters (i.e., there is a
condition without a corresponding expression).

The Switch function returns Null if no condition evaluates to True.

Example 'This code fragment displays the current operating platform. If
'the platform is unknown, then the word "Unknown" is displayed.
Sub Main()

Dim a As Variant
a = Switch (Basic.OS = 0,"Windows 3.1", _

Basic.OS = 2,"Win32",Basic.OS = 11,"OS/2")
MsgBox "The current platform is: " & _

IIf(IsNull(a),"Unknown",a)
End Sub

SYD (function) 471

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 471 of 475 Printed: 9/25/96

See Also Choose (function); IIf (function); If...Then...Else (statement); Select...Case
(statement).

Platform(s) All.

SYD (function)

Syntax SYD(cost, salvage, life, period)

Description Returns the sum of years' digits depreciation of an asset over a specific period of time.

Comments The SYD of an asset is found by taking an estimate of its useful life in years, assigning
values to each year, and adding up all the numbers.

The formula used to find the SYD of an asset is as follows:
(Cost – Salvage_Value) * Remaining_Useful_Life / SYD

The SYD function requires the following named parameters:

To receive accurate results, the parameters life and period must be expressed in the same
units. If life is expressed in terms of months, for example, then period must also be
expressed in terms of months.

Example 'In this example, an asset that cost $1,000.00 is depreciated
'over ten years. The salvage value is $100.00, and the sum of
'the years' digits depreciation is shown for each year.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

For x = 1 To 10
dep# = SYD(1000,100,10,x)
message = message & "Year: " & x & " Dep: " _

& Format(dep#,"Currency") & crlf
Next x
MsgBox message

End Sub

See Also Sln (function); DDB (function).

Platform(s) All.

Named Parameter Description

cost Double representing the initial cost of the asset.

salvage Double representing the estimated value of the asset at the end
of its useful life.

life Double representing the length of the asset's useful life.

period Double representing the period for which the depreciation is to
be calculated. It cannot exceed the life of the asset.

472 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 472 of 475 Printed: 9/25/96

System.Exit (method)

Syntax System.Exit

Description Exits the operating environment.

Example 'This example asks whether the user would like to restart
'Windows after exiting.
Sub Main

button = MsgBox("Restart Windows on exit?" _
,ebYesNo,"Exit Windows")

If button = ebYes Then System.Restart 'Yes button selected.
If button = ebNo Then System.Exit'No button selected.

End Sub

See Also System.Restart (method).

Platform(s) Windows, Win32.

System.FreeMemory (property)

Syntax System.FreeMemory

Description Returns a Long indicating the number of bytes of free memory.

Example 'The following example gets the free memory and converts it to
'kilobytes.
Sub Main()

FreeMem& = System.FreeMemory
FreeKBytes$ = Format(FreeMem& / 1000,"##,###")
MsgBox FreeKbytes$ & " Kbytes of free memory"

End Sub

See Also System.TotalMemory (property); System.FreeResources (property);
Basic.FreeMemory (property).

Platform(s) Windows, Win32.

System.FreeResources (property)

Syntax System.FreeResources

Description Returns an Integer representing the percentage of free system resources.

Comments The returned value is between 0 and 100.

Example 'This example gets the percentage of free resources.

System.MouseTrails (method) 473

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 473 of 475 Printed: 9/25/96

Sub Main()
FreeRes% = System.FreeResources
MsgBox FreeRes% & "% of memory resources available."

End Sub

See Also System.TotalMemory (property); System.FreeMemory (property);
Basic.FreeMemory (property).

Platform(s) Windows.

System.MouseTrails (method)

Syntax System.MouseTrails isOn

Description Toggles mouse trails on or off.

Comments If isOn is True, then mouse trails are turned on; otherwise, mouse trails are turned off.

A runtime error is generated if mouse trails is not supported on your system.

Example 'This example turns on mouse trails.
Sub Main

System.MouseTrails 1
End Sub

Platform(s) Windows.

Platform Notes Windows: Under Windows, the setting is saved in the INI file permanently. Setting
isOn to True restores the mouse trails setting as configured by the system (i.e., if your
mouse trails is set to 4, then setting isOn to True sets the mouse trails to 4).

Win32: Under Win32, the setting is saved in the system registry. Setting isOn to True
sets the mouse trails to 7. Setting isOn to False turns mouse trails off. Setting isOn to
any value between 1 and 7 sets the mouse trails to that number of trails.

System.Restart (method)

Syntax System.Restart

Description Restarts the operating environment.

Example 'This example asks whether the user would like to restart
'Windows after exiting.
Sub Main

button = MsgBox ("Restart Windows on exit?",ebYesNo, _
"Exit Windows")

If button = ebYes Then System.Restart 'Yes button selected.

474 BasicScript Language Reference

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 474 of 475 Printed: 9/25/96

If button = ebNo Then System.Exit'No button selected.
End Sub

See Also System.Exit (method).

Platform(s) Windows, Win32.

System.TotalMemory (property)

Syntax System.TotalMemory

Description Returns a Long representing the number of bytes of available free memory in Windows.

Example 'This example displays the total system memory.
Sub Main()

TotMem& = System.TotalMemory
TotKBytes$ = Format(TotMem& / 1000,"##,###")
MsgBox TotKbytes$ & " Kbytes of total system memory exist"

End Sub

See Also System.FreeMemory (property); System.FreeResources (property);
Basic.FreeMemory (property).

Platform(s) Windows, Win32.

System.WindowsDirectory$ (property)

Syntax System.WindowsDirectory$

Description Returns the home directory of the operating environment.

Example 'This example displays the Windows directory.
Sub Main

MsgBox "Windows directory = " & System.WindowsDirectory$
End Sub

See Also Basic.HomeDir$ (property).

Platform(s) Windows, Win32.

System.WindowsVersion$ (property)

Syntax System.WindowsVersion$

Description Returns the version of the operating environment, such as "3.0" or "3.1."

Example 'This example sets the UseWin31 variable to True if the Windows

System.WindowsVersion$ (property) 475

Summit Software Confidential
Filename: lrs.fm5 Template: LRprint.FM5
Page: 475 of 475 Printed: 9/25/96

'version is greater than or equal to 3.1; otherwise, it sets the
'UseWin31 variable to False.
Sub Main()

If Val(System.WindowsVersion$) > 3.1 Then
MsgBox "You are running a Windows version later than 3.1"

Else
MsgBox "You are running Windows version 3.1 or earlier"

End If
End Sub

See Also Basic.Version$ (property).

Platform(s) Windows, Win32.

Platform Notes Windows: Under Windows, this property returns a value such as "3.1" or "3.11" .

Win32: On Win32 platforms, this property returns a value in the following format:
major. minor. buildnumber

Where major is the major version number, minor is the minor version number, and
buildnumber is the actual build number.

476 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 476 of 516 Printed: 9/25/96

Tab (function)

Syntax Tab (column)

Description Prints the number of spaces necessary to reach a given column position.

Comments This function can only be used with the Print and Print# statements.

The column parameter is an Integer specifying the desired column position to which to
advance. It can be any value between 0 and 32767 inclusive.

Rule 1: If the current print position is less than or equal to column, then the number of
spaces is calculated as:

column – print_position

Rule 2: If the current print position is greater than column, then column – 1 spaces are
printed on the next line.

If a line width is specified (using the Width statement), then the column position is
adjusted as follows before applying the above two rules:

column = column Mod width

The Tab function is useful for making sure that output begins at a given column
position, regardless of the length of the data already printed on that line.

Example 'This example prints three column headers and three numbers
'aligned below the column headers.
Sub Main()

Viewport.Open
Print "Column1"; Tab(10);"Column2"; Tab(20);"Column3"
Print Tab(3);"1"; Tab(14);"2"; Tab(24);"3"
Sleep(10000) 'Wait 10 seconds.
Viewport.Close

End Sub

See Also Spc (function); Print (statement); Print# (statement).

Platform(s) All.

Tan (function)

Syntax Tan(number)

Description Returns a Double representing the tangent of number.

Comments The number parameter is a Double value given in radians.

Example 'This example computes the tangent of pi/4 radians (45 degrees).
Sub Main()

Text (statement) 477

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 477 of 516 Printed: 9/25/96

c# = Tan(Pi / 4)
MsgBox "The tangent of 45 degrees is: " & c#

End Sub

See Also Sin (function); Cos (function); Atn (function).

Platform(s) All.

Text (statement)

Syntax Text x, y, width, height, title$ [,[.Identifier] [,[FontName$] [,[size]
[, style]]]]

Description Defines a text control within a dialog box template. The text control only displays text;
the user cannot set the focus to a text control or otherwise interact with it.

Comments The text within a text control word-wraps. Text controls can be used to display up to
32K of text.

The Text statement accepts the following parameters:

Parameter Description

x, y Integer positions of the control (in dialog units) relative to the
upper left corner of the dialog box.

width, height Integer dimensions of the control in dialog units.

title$ String containing the text that appears within the text control.
This text may contain an ampersand character to denote an
accelerator letter, such as "&Save" for Save. Pressing this
accelerator letter sets the focus to the control following the Text
statement in the dialog box template.

.Identifier Name by which this control can be referenced by statements in a
dialog function (such as DlgFocus and DlgEnable). If this
parameter is omitted, then the first two words from title$ are
used.

FontName$ Name of the font used for display of the text within the text
control. If this parameter is omitted, then the default font for the
dialog is used.

size Size of the font used for display of the text within the text
control. If this parameter is omitted, then the default size for the
default font of the dialog is used.

478 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 478 of 516 Printed: 9/25/96

Example Begin Dialog UserDialog3 81,64,128,60,"Untitled"
CancelButton 80,32,40,14
OKButton 80,8,40,14
Text 4,8,68,44,"This text is displayed in the dialog box."

End Dialog

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionButton (statement);
OptionGroup (statement); Picture (statement); PushButton (statement); TextBox
(statement); Begin Dialog (statement); PictureButton (statement); HelpButton
(statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes Windows, Win32: Under Windows and Win32, accelerators are underlined, and the
Alt+ letter accelerator combination is used.

OS/2: Under OS/2, accelerators are underlined, and the Alt+letter accelerator
combination is used.

Macintosh: On the Macintosh, accelerators are normal in appearance, and the
Command+letter accelerator combination is used.

TextBox (statement)

Syntax TextBox x, y, width, height, .Identifier [,[isMultiline] [,[FontName$] [,[size]
[, style]]]]

Description Defines a single or multiline text-entry field within a dialog box template.

style Style of the font used for display of the text within the text
control. This can be any of the following values:

ebRegular Normal font (i.e., neither bold nor italic)

ebBold Bold font

ebItalic Italic font

ebBoldItalic Bold-italic font

If this parameter is omitted, then ebRegular is used.

Parameter Description

TextBox (statement) 479

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 479 of 516 Printed: 9/25/96

Comments The TextBox statement requires the following parameters:

If isMultiline is 1, the TextBox statement creates a multiline text-entry field. When the
user types into a multiline field, pressing the Enter key creates a new line rather than
selecting the default button.

The isMultiLine parameter also specifies whether the text box is read-only and whether
the text-box should hide input for password entry. To specify these extra parameters,
you can form the isMultiLine parameter by ORing together the following values:

Parameter Description

x, y Integer position of the control (in dialog units) relative to the
upper left corner of the dialog box.

width, height Integer dimensions of the control in dialog units.

.Identifier Name by which this control can be referenced by statements in
a dialog function (such as DlgFocus and DlgEnable). This
parameter also creates a string variable whose value
corresponds to the content of the text box. This variable can be
accessed using the syntax:

DialogVariable.Identifier

isMultiline Specifies whether the text box can contain more than a single
line (0 = single-line; 1 = multiline).

FontName$ Name of the font used for display of the text within the text
box control. If this parameter is omitted, then the default font
for the dialog is used.

size Size of the font used for display of the text within the text box
control. If this parameter is omitted, then the default size for
the default font of the dialog is used.

style Style of the font used for display of the text within the text box
control. This can be any of the following values:

ebRegular Normal font (i.e., neither bold nor
italic)

ebBold Bold font

ebItalic Italic font

ebBoldItalic Bold-italic font

If this parameter is omitted, then ebRegular is used.

Value Meaning

0 Text box is single-line.

1 Text box is multi-line.

480 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 480 of 516 Printed: 9/25/96

For example, the following statement creates a read-only multiline text box:
TextBox 10,10,80,14,.TextBox1,1 Or &H8000

The TextBox statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

When the dialog box is created, the .Identifier variable is used to set the initial content
of the text box. When the dialog box is dismissed, the variable will contain the new
content of the text box.

A single-line text box can contain up to 256 characters. The length of text in a multiline
text box is not limited by BasicScript; the default memory limit specified by the given
platform is used instead.

Example Begin Dialog UserDialog3 81,64,128,60,"Untitled"
CancelButton 80,32,40,14
OKButton 80,8,40,14
TextBox 4,8,68,44,.TextBox1,1

End Dialog

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
ListBox (statement); OKButton (statement); OptionButton (statement);
OptionGroup (statement); Picture (statement); PushButton (statement); Text
(statement); Begin Dialog (statement); PictureButton (statement); HelpButton
(statement).

Platform(s) Windows, Win32, Macintosh, OS/2, UNIX.

Time, Time$ (functions)

Syntax Time[$][()]

Description Returns the system time as a String or as a Date variant.

Comments The Time$ function returns a string that contains the time in a 24-hour time format,
whereas Time returns a Date variant.

To set the time, use the Time/Time$ statements.

Example 'This example returns the system time and displays it in a
'dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

&H8000 Text box is read-only.

&H4000 Text box is password-entry.

Value Meaning

Time, Time$ (statements) 481

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 481 of 516 Printed: 9/25/96

oldtime$ = Time$
message = "Time was: " & oldtime$ & crlf
Time$ = "10:30:54"
message = message & "Time set to: " & Time$ & crlf
Time$ = oldtime$
message = message & "Time restored to: " & Time$
MsgBox message

End Sub

See Also Time, Time$ (statements); Date, Date$ (functions); Date, Date$ (statements); Now
(function).

Platform(s) All.

Time, Time$ (statements)

Syntax Time[$] = newtime

Description Sets the system time to the time contained in the specified string.

Comments The Time$ statement requres a string variable in one of the following formats:

HH

HH:MM

HH:MM:SS

where HH is between 0 and 23, MM is between 0 and 59, and SS is between 0 and 59.

The Time statement converts any valid expression to a time, including string and
numeric values. Unlike the Time$ statement, Time recognizes many different time
formats, including 12-hour times.

Example 'This example returns the system time and displays it in a
'dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

oldtime$ = Time$
message = "Time was: " & oldtime$ & crlf
Time$ = "10:30:54"
message = message & "Time set to: " & Time$ & crlf
Time$ = oldtime$
message = message & "Time restored to: " & Time$
MsgBox message

End Sub

See Also Time, Time$ (functions); Date, Date$ (functions); Date, Date$ (statements).

Platform(s) All.

482 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 482 of 516 Printed: 9/25/96

Platform Notes UNIX, Win32, OS/2: On all UNIX platforms, Win32, and OS/2, you may not have
permission to change the time, causing runtime error 70 to be generated.

Timer (function)

Syntax Timer

Description Returns a Single representing the number of seconds that have elapsed since midnight.

Example 'This example displays the elapsed time between execution start
'and the time you clicked the OK button on the first message.
Sub Main()

start& = Timer
MsgBox "Click the OK button, please."
total& = Timer - start&
MsgBox "The elapsed time was: " & total& & " seconds."

End Sub

See Also Time, Time$ (functions); Now (function).

Platform(s) All.

TimeSerial (function)

Syntax TimeSerial(hour, minute, second)

Description Returns a Date variant representing the given time with a date of zero.

Comments The TimeSerial function requires the following named parameters:

Example Sub Main()
start# = TimeSerial (10,22,30)
finish# = TimeSerial (10,35,27)
dif# = Abs(start# - finish#)
MsgBox "The time difference is: " & Format(dif#, "hh:mm:ss")

End Sub

See Also DateValue (function); TimeValue (function); DateSerial (function).

Platform(s) All.

Named Parameter Description

hour Integer between 0 and 23.

minute Integer between 0 and 59.

second Integer between 0 and 59.

TimeValue (function) 483

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 483 of 516 Printed: 9/25/96

TimeValue (function)

Syntax TimeValue(time)

Description Returns a Date variant representing the time contained in the specified string argument.

Comments This function interprets the passed time parameter looking for a valid time specification.

The time parameter can contain valid time items separated by time separators such as
colon (:) or period (.).

Time strings can contain an optional date specification, but this is not used in the
formation of the returned value.

If a particular time item is missing, then it is set to 0. For example, the string "10 pm"
would be interpreted as "22:00:00."

Example 'This example calculates the current time and displays it in a
'dialog box.
Sub Main()

t1$ = "10:15"
t2# = TimeValue (t1$)
MsgBox "The TimeValue of " & t1$ & " is: " & t2#

End Sub

See Also DateValue (function); TimeSerial (function); DateSerial (function).

Platform(s) All.

Platform Notes Windows: Under Windows, time specifications vary, depending on the international
settings contained in the [intl] section of the win.ini file.

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions)

Syntax Trim[$](string)
LTrim[$](string)
RTrim[$](string)

Description Returns a copy of the passed string expression (string) with leading and/or trailing
spaces removed.

Comments Trim returns a copy of the passed string expression (string) with both the leading and
trailing spaces removed. LTrim returns string with the leading spaces removed, and
RTrim returns string with the trailing spaces removed.

Trim$, LTrim$, and RTrim$ return a String, whereas Trim , LTrim , and RTrim
return a String variant.

Null is returned if string is Null .

484 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 484 of 516 Printed: 9/25/96

Examples 'This first example uses the Trim$ function to extract the
'nonblank part of a string and display it.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

text$ = " This is text "
tr$ = Trim$ (text$)
MsgBox "Original =>" & text$ & "<=" & crlf & _

"Trimmed =>" & tr$ & "<="
End Sub
'This second example displays a right-justified string and its
'LTrim result.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a$ = " <= This is a right-justified string"
b$ = LTrim$ (a$)
MsgBox a$ & crlf & b$

End Sub
'This third example displays a left-justified string and its
'RTrim result.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

a$ = "This is a left-justified string. "
b$ = RTrim$ (a$)
MsgBox a$ & "<=" & crlf & b$ & "<="

End Sub

Platform(s) All.

Type (statement)

Syntax Type username
variable As type
variable As type
variable As type
:

End Type

Description The Type statement creates a structure definition that can then be used with the Dim
statement to declare variables of that type. The username field specifies the name of the
structure that is used later with the Dim statement.

Comments Within a structure definition appear field descriptions in the format:
variable As type

Type (statement) 485

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 485 of 516 Printed: 9/25/96

where variable is the name of a field of the structure, and type is the data type for that
variable. Any fundamental data type or previously declared user-defined data type can
be used within the structure definition (structures within structures are allowed). Only
fixed arrays can appear within structure definitions.

The Type statement can only appear outside of subroutine and function declarations.

When declaring strings within fixed-size types, it is useful to declare the strings as
fixed-length. Fixed-length strings are stored within the structure itself rather than in the
string space. For example, the following structure will always require 62 bytes of
storage:

Type Person

FirstName As String * 20

LastName As String * 40

Age As Integer

End Type

Example 'This example displays the use of the Type statement to create
'a structure representing the parts of a circle and assign
'values to them.
Type Circ

message As String
rad As Integer
dia As Integer
are As Double
cir As Double

End Type
Sub Main()

Dim circle As Circ
circle.rad = 5
circle.dia = circle.rad * 2
circle.are = (circle.rad ^ 2) * Pi
circle.cir = circle.dia * Pi
circle.message = "The area of the circle is: " & circle.are
MsgBox circle.message

End Sub

See Also Dim (statement); Public (statement); Private (statement).

Platform(s) All.

Note: Fixed-length strings within structures are size-adjusted upward to an even byte
boundary. Thus, a fixed-length string of length 5 will occupy 6 bytes of storage
within the structure.

486 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 486 of 516 Printed: 9/25/96

TypeName (function)

Syntax TypeName(varname)

Description Returns the type name of the specified variable.

Comments The returned string can be any of the following:

If varname is an array, then the returned string can be any of the above strings follows
by a empty parenthesis. For example, "Integer()" would be returned for an array of
integers.

If varname is an expression, then the expression is evaluated and a String representing
the resultant data type is returned.

If varname is an OLE collection, then TypeName returns the name of that object
collection.

Example 'The following example defines a subroutine that only accepts
'Integer variables. If not passed an Integer, it will inform
'the user that there was an error, displaying the actual type
'of variable that was passed.

Returned String Returned if varname is

"String" A String.

objecttype A data object variable. In this case, objecttype is the name of
the specific object type.

"Integer" An integer.

"Long" A long.

"Single" A single.

"Double" A double.

"Currency" A currency value.

"Date" A date value.

"Boolean" A boolean value.

"Error" An error value.

"Empty" An uninitialized variable.

"Null" A variant containing no valid data.

"Object" An OLE automation object.

"Unknown" An unknown type of OLE automation object.

"Nothing" An uninitialized object variable.

class A specific type of OLE automation object. In this case, class
is the name of the object as known to OLE.

TypeOf (function) 487

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 487 of 516 Printed: 9/25/96

Sub Foo(a As Variant)
If VarType(a) <> ebInteger Then

MsgBox "Foo does not support " & TypeName(a) & " variables"
End If

End Sub

See Also TypeOf (function).

Platform(s) All.

TypeOf (function)

Syntax TypeOf objectvariable Is objecttype

Description Returns True if objectvariable the specified typel False otherwise.

Comments This function is used within the If...Then statement to determine if a variable is of a
particular type. This function is particularily useful for determining the type of OLE
automation objects.

Example Sub Main()
Dim a As Object
Set a = CreateObject("Excel.Application")
If TypeOf a Is "Application" Then

MsgBox "We have an Application object."
End If

End Sub

See Also TypeName (function).

Platform(s) All.

UBound (function)

Syntax UBound(ArrayVariable() [, dimension])

Description Returns an Integer containing the upper bound of the specified dimension of the
specified array variable.

Comments The dimension parameter is an integer that specifies the desired dimension. If not
specified, then the upper bound of the first dimension is returned.

The UBound function can be used to find the upper bound of a dimension of an array
returned by an OLE Automation method or property:

UBound(object.property [, dimension])
UBound(object.method [, dimension])

Examples 'This example dimensions two arrays and displays their upper

488 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 488 of 516 Printed: 9/25/96

'bounds.
Sub Main()

Dim a(5 To 12)
Dim b(2 To 100, 9 To 20)
uba = UBound(a)
ubb = UBound(b,2)
MsgBox "The upper bound of a is: " & uba & " The upper bound of

b is: " & ubb
'This example uses Lbound and Ubound to dimension a dynamic
'array to hold a copy of an array redimmed by the FileList
'statement.
Dim fl$()
FileList fl$,"*"
count = Ubound(fl$)
If ArrayDims(a) Then

Redim nl$(Lbound(fl$) To Ubound (fl$))
For x = 1 To count

nl$(x) = fl$(x)
Next x
MsgBox "The last element of the new array is: " & nl$(count)
End If

End Sub

See Also LBound (function); ArrayDims (function); Arrays (topic).

Platform(s) All.

UCase, UCase$ (functions)

Syntax UCase[$](string)

Description Returns the uppercase equivalent of the specified string.

Comments UCase$ returns a String, whereas UCase returns a String variant.

Null is returned if string is Null .

Example 'This example uses the UCase$ function to change a string from
'lowercase to uppercase.
Sub Main()

a1$ = "this string was lowercase, but was converted."
a2$ = UCase$(a1$)
MsgBox a2$

End Sub

See Also LCase, LCase$ (functions).

Platform(s) All.

Unlock (statement) 489

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 489 of 516 Printed: 9/25/96

Unlock (statement)

See Lock, Unlock (statements).

User-Defined Types (topic)

User-defined types (UDTs) are structure definitions created using the Type statement.
UDTs are equivalent to C language structures.

Declaring Structures

The Type statement is used to create a structure definition. Type declarations must
appear outside the body of all subroutines and functions within a script and are therefore
global to an entire script.

Once defined, a UDT can be used to declare variables of that type using the Dim,
Public, or Private statement. The following example defines a rectangle structure:

Type Rect

left As Integer

top As Integer

right As Integer

bottom As Integer

End Type

:

Sub Main()

Dim r As Rect

:

r.left = 10

End Sub

Any fundamental data type can be used as a structure member, including other
user-defined types. Only fixed arrays can be used within structures.

Copying Structures

UDTs of the same type can be assigned to each other, copying the contents. No other
standard operators can be applied to UDTs.

Dim r1 As Rect

Dim r2 As Rect

:

r1 = r2

When copying structures of the same type, all strings in the source UDT are duplicated
and references are placed into the target UDT.

490 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 490 of 516 Printed: 9/25/96

The LSet statement can be used to copy a UDT variable of one type to another:
LSet variable1 = variable2

LSet cannot be used with UDTs containing variable-length strings. The smaller of the
two structures determines how many bytes get copied.

Passing Structures

UDTs can be passed both to user-defined routines and to external routines, and they can
be assigned. UDTs are always passed by reference.

Since structures are always passed by reference, the ByVal keyword cannot be used
when defining structure arguments passed to external routines (using Declare). The
ByVal keyword can only be used with fundamental data types such as Integer and
String.

Passing structures to external routines actually passes a far pointer to the data structure.

Size of Structures

The Len function can be used to determine the number of bytes occupied by a UDT:
Len(udt_variable_name)

Since strings are stored in BasicScript's data space, only a reference (currently, 2 bytes)
is stored within a structure. Thus, the Len function may seem to return incorrect
information for structures containing strings.

Val (function)

Syntax Val(string)

Description Converts a given string expression to a number.

Comments The string parameter can contain any of the following:

• Leading minus sign (for nonhex or octal numbers only)

• Hexadecimal number in the format &Hhexdigits

• Octal number in the format &Ooctaldigits

• Floating-point number, which can contain a decimal point and an optional exponent

Spaces, tabs, and line feeds are ignored.

If string does not contain a number, then 0 is returned.

The Val function continues to read characters from the string up to the first nonnumeric
character.

The Val function always returns a double-precision floating-point value. This value is
forced to the data type of the assigned variable.

Variant (data type) 491

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 491 of 516 Printed: 9/25/96

Example 'This example inputs a number string from an InputBox and
'converts it to a number variable.
Sub Main()

a$ = InputBox$("Enter anything containing a number", _
"Enter Number")

b# = Val (a$)
MsgBox "The value is: " & b#

End Sub

See Also CDbl (function); Str, Str$ (functions).

Platform(s) All.

Variant (data type)

Syntax Variant

Description A data type used to declare variables that can hold one of many different types of data.

Comments During a variant's existence, the type of data contained within it can change. Variants
can contain any of the following types of data:

There is no type-declaration character for variants.

The number of significant digits representable by a variant depends on the type of data
contained within the variant.

Variant is the default data type for BasicScript. If a variable is not explicitly declared
with Dim, Public, or Private, and there is no type-declaration character (i.e., #, @, !, %,
or &), then the variable is assumed to be Variant .

Type of Data BasicScript Data Types

Numeric Integer, Long, Single, Double, Boolean, Date, Currency.

Logical Boolean.

Dates and times Date.

String String.

Object Object.

No valid data A variant with no valid data is considered Null .

Uninitialized An uninitialized variant is considered Empty.

492 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 492 of 516 Printed: 9/25/96

Determining the Subtype of a Variant

The following functions are used to query the type of data contained within a variant:

Assigning to Variants

Before a Variant has been assigned a value, it is considered empty. Thus, immediately
after declaration, the VarType function will return ebEmpty. An uninitialized variant is
0 when used in numeric expressions and is a zero-length string when used within string
expressions.

A Variant is Empty only after declaration and before assigning it a value. The only
way for a Variant to become Empty after having received a value is for that variant to
be assigned to another Variant containing Empty, for it to be assigned explicitly to the
constant Empty, or for it to be erased using the Erase statement.

When a variant is assigned a value, it is also assigned that value's type. Thus, in all
subsequent operations involving that variant, the variant will behave like the type of data
it contains.

Operations on Variants

Normally, a Variant behaves just like the data it contains. One exception to this rule is
that, in arithmetic operations, variants are automatically promoted when an overflow
occurs. Consider the following statements:

Function Description

VarType Returns a number representing the type of data contained within
the variant.

IsNumeric Returns True if a variant contains numeric data. The following
are considered numeric:

Integer, Long, Single, Double, Date, Boolean,
Currency

If a variant contains a string, this function returns True if the
string can be converted to a number.

If a variant contains an Object whose default property is
numeric, then IsNumeric returns True.

IsObject Returns True if a variant contains an object.

IsNull Returns True if a variant contains no valid data.

IsEmpty Returns True if a variant is uninitialized.

IsDate Returns True if a variant contains a date. If the variant contains
a string, then this function returns True if the string can be
converted to a date. If the variant contains an Object, then this
function returns True if the default property of that object can
be converted to a date.

Variant (data type) 493

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 493 of 516 Printed: 9/25/96

Dim a As Integer,b As Integer,c As Integer
Dim x As Variant,y As Variant,z As Variant
a% = 32767
b% = 1
c% = a% + b% 'This will overflow.
x = 32767
y = 1
z = x + y 'z becomes a Long because of Integer

'overflow.

In the above example, the addition involving Integer variables overflows because the
result (32768) overflows the legal range for integers. With Variant variables, on the
other hand, the addition operator recognizes the overflow and automatically promotes
the result to a Long.

Adding Variants

The + operator is defined as performing two functions: when passed strings, it
concatenates them; when passed numbers, it adds the numbers.

With variants, the rules are complicated because the types of the variants are not known
until execution time. If you use +, you may unintentionally perform the wrong
operation.

It is recommended that you use the & operator if you intend to concatenate two String
variants. This guarantees that string concatenation will be performed and not addition.

Variants That Contain No Data

A Variant can be set to a special value indicating that it contains no valid data by
assigning the Variant to Null :

Dim a As Variant

a = Null

The only way that a Variant becomes Null is if you assign it as shown above.

The Null value can be useful for catching errors since its value propagates through an
expression.

Variant Storage

Variants require 16 bytes of storage internally:

• A 2-byte type

• A 2-byte extended type for data objects

• 4 bytes of padding for alignment

• An 8-byte value

494 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 494 of 516 Printed: 9/25/96

Unlike other data types, writing variants to Binary or Random files does not write 16
bytes. With variants, a 2-byte type is written, followed by the data (2 bytes for Integer
and so on).

Disadvantages of Variants

The following list describes some disadvantages of variants:

1. Using variants is slower than using the other fundamental data types (i.e., Integer,
Long, Single, Double, Date, Object, String, Currency, and Boolean). Each
operation involving a Variant requires examination of the variant's type.

2. Variants require more storage than other data types (16 bytes as opposed to 8 bytes
for a Double, 2 bytes for an Integer, and so on).

3. Unpredictable behavior. You may write code to expect an Integer variant. At
runtime, the variant may be automatically promoted to a Long variant, causing
your code to break.

Passing Nonvariant Data to Routines Taking Variants

Passing nonvariant data to a routine that is declared to receive a variant by reference
prevents that variant from changing type within that routine. For example:

Sub Foo(v As Variant)

v = 50 'OK.

v = "Hello, world." 'Get a type-mismatch error here!

End Sub

Sub Main()

Dim i As Integer

Foo i 'Pass an integer by reference.

End Sub

In the above example, since an Integer is passed by reference (meaning that the caller
can change the original value of the Integer), the caller must ensure that no attempt is
made to change the variant's type.

Passing Variants to Routines Taking Nonvariants

Variant variables cannot be passed to routines that accept nonvariant data by reference,
as demonstrated in the following example:

Sub Foo(i as Integer)

End Sub

Sub Main()

Dim a As Variant

Foo a 'Compiler gives type-mismatch error here.

End Sub

VarType (function) 495

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 495 of 516 Printed: 9/25/96

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Object (data type); Single (data type); String (data type); Boolean (data
type); DefType (statement); CVar (function); VarType (function).

Platform(s) All.

VarType (function)

Syntax VarType(varname)

Description Returns an Integer representing the type of data in varname.

Comments The varname parameter is the name of any Variant .

The following table shows the different values that can be returned by VarType:

When passed an object, the VarType function returns the type of the default property of
that object. If the object has no default property, then either ebObject or ebDataObject
is returned, depending on the type of variable.

Example Sub Main()
Dim v As Variant
v = 5& 'Set v to a Long.
If VarType (v) = ebInteger Then

Msgbox "v is an Integer."
ElseIf VarType (v) = ebLong Then

Value Constant Data Type

0 ebEmpty Uninitialized

1 ebNull No valid data

2 ebInteger Integer

3 ebLong Long

4 ebSingle Single

5 ebDouble Double

6 ebCurrency Currency

7 ebDate Date

8 ebString String

9 ebObject Object (OLE Automation object)

10 ebError User-defined error

11 ebBoolean Boolean

12 ebVariant Variant (not returned by this function)

13 ebDataObject Non–OLE Automation object

496 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 496 of 516 Printed: 9/25/96

Msgbox "v is a Long."
End If

End Sub

See Also Variant (data type).

Platform(s) All.

Viewport.Clear (method)

Syntax Viewport.Clear

Description Clears the open viewport window.

Comments The method has no effect if no viewport is open.

Example Sub Main()
Viewport.Open
Print "This will be displayed in the viewport window."
Sleep 2000
Viewport.Clear
Print "This will replace the previous text."
Sleep 2000
Viewport.Close

End Sub

See Also Viewport.Close (method); Viewport.Open (method).

Platform(s) Windows, Win32.

Viewport.Close (method)

Syntax Viewport.Close

Description This method closes an open viewport window.

Comments The method has no effect if no viewport is opened.

Example Sub Main()
Viewport.Open
Print "This will be displayed in the viewport window."
Sleep 2000
Viewport.Close

End Sub

See Also Viewport.Open (method).

Platform(s) Windows, Win32.

Viewport.Open (method) 497

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 497 of 516 Printed: 9/25/96

Viewport.Open (method)

Syntax Viewport.Open [title [, XPos, YPos [, width, height]]]

Description Opens a new viewport window or switches the focus to the existing viewport window.

Comments The Viewport.Open method accepts the following named :

If a viewport window is already open, then it is given the focus. Otherwise, a new
viewport window is created.

Combined with the Print statement, a viewport window is a convenient place to output
debugging information.

The viewport window is closed when the BasicScript host application is terminated.

The following keys work within a viewport window:

Up Scrolls up by one line.

Down Scrolls down by one line.

Home Scrolls to the first line in the viewport window.

End Scrolls to the last line in the viewport window.

PgDn Scrolls the viewport window down by one page.

PgUp Scrolls the viewport window up by one page.

Ctrl+PgUp Scrolls the viewport window left by one page.

Ctrl+PgDn Scrolls the viewport window right by one page.

Only one viewport window can be open at any given time. Any scripts with Print
statements will output information into the same viewport window.

When printing to viewports, the end-of-line character can be any of the following: a
carriage return, a line feed, or a carriage-return/line-feed pair. Embedded null characters
are printed as spaces.

Example Sub Main()
Viewport.Open "BasicScript Viewport",100,100,500,500
Print "This will be displayed in the viewport window."

Named Parameter Description

title Specifies a String containing the text to appear in the viewport's
caption.

XPos, YPos Specifies Integer coordinates given in twips indicating the
initial position of the upper left corner of the viewport.

width,height Specifies Integer values indicating the initial width and height
of the viewport.

498 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 498 of 516 Printed: 9/25/96

Sleep 2000
Viewport.Close

End Sub

See Also Viewport.Close (method).

Platform(s) Windows, Win32.

Platform Notes Windows: The buffer size for the viewport is 32K. Information from the start of the
buffer is removed to make room for additional information being appended to the end of
the buffer.

VLine (statement)

Syntax VLine [lines]

Description Scrolls the window with the focus up or down by the specified number of lines.

Comments The lines parameter is an Integer specifying the number of lines to scroll. If this
parameter is omitted, then the window is scrolled down by one line.

Example 'This example prints a series of lines to the viewport, then
'scrolls back up the lines to the top using VLine.
Sub Main()

Viewport.Open "BasicScript Viewport",100,100,500,200
For i = 1 to 50

Print "This will be displayed on line#: " & i
Next i
MsgBox "We will now go back 40 lines..."
VLine -40
MsgBox "...and here we are!"
Viewport.Close

End Sub

See Also VPage (statement); VScroll (statement).

Platform(s) Windows, Win32.

VPage (statement)

Syntax VPage [pages]

Description Scrolls the window with the focus up or down by the specified number of pages.

Comments The pages parameter is an Integer specifying the number of lines to scroll. If this
parameter is omitted, then the window is scrolled down by one page.

Example 'This example scrolls the viewport window up five pages.

VScroll (statement) 499

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 499 of 516 Printed: 9/25/96

Sub Main()
Viewport.Open "BasicScript Viewport",100,100,500,200
For i = 1 to 500

Print "This will be displayed on line#: " & i
Next i
MsgBox "We will now go back 5 pages..."
VLine -5
MsgBox "...and here we are!"
Viewport.Close

End Sub

See Also VLine (statement); VScroll (statement).

Platform(s) Windows, Win32.

VScroll (statement)

Syntax VScroll percentage

Description Sets the thumb mark on the vertical scroll bar attached to the current window.

Comments The position is given as a percentage of the total range associated with that scroll bar.
For example, if the percentage parameter is 50, then the thumb mark is positioned in the
middle of the scroll bar.

Example 'This example prints a bunch of lines to the viewport, then
'scrolls back to the top using VScroll.
Sub Main()

Viewport.Open "BasicScript Viewport",100,100,500,200
For i = 1 to 50

Print "This will be displayed on line#: " & i
Next i
MsgBox "We will now go to the 0% thumb mark poisiton (the

top)..."
VScroll 0
MsgBox "...and here we are!"
Viewport.Close

End Sub

See Also VLine (statement); VPage (statement).

Platform(s) Windows, Win32.

Weekday (function)

Syntax Weekday(date [, firstdayofweek])

500 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 500 of 516 Printed: 9/25/96

Description Returns an Integer value representing the day of the week given by date. Sunday is 1,
Monday is 2, and so on.

The Weekday function takes the following named parameters:

The firstdayofweek parameter, if specified, can be any of the following constants:

Example 'This example gets a date in an input box and displays the day
'of the week and its name for the date entered.
Sub Main()

Dim a$(7)
a$(1) = "Sunday"
a$(2) = "Monday"
a$(3) = "Tuesday"
a$(4) = "Wednesday"
a$(5) = "Thursday"
a$(6) = "Friday"
a$(7) = "Saturday"

Reprompt:
bd = InputBox$("Please enter your birthday.","Enter Birthday")
If Not(IsDate(bd)) Then Goto Reprompt
dt = DateValue(bd)
dw = WeekDay(dt)
Msgbox "You were born on day " & dw & ", which was a " & a$(dw)

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year
(function); Hour (function); DatePart (function).

Platform(s) All.

Named Parameter Description

date Any expression representing a valid date.

firstdayofweek Indicates the first day of the week. If omitted, then sunday is
assumed (i.e., the constant ebSunday described below).

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

While...Wend (statement) 501

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 501 of 516 Printed: 9/25/96

While...Wend (statement)

Syntax While condition
 [statements]
Wend

Description Repeats a statement or group of statements while a condition is True.

Comments The condition is initially and then checked at the top of each iteration through the loop.

Example 'This example executes a While loop until the random number
'generator returns a value of 1.
Sub Main()

x% = 0
count% = 0
While x% <> 1 And count% < 500

x% = Rnd(1)
If count% > 1000 Then

Exit Sub
Else

count% = count% + 1
End If

Wend
MsgBox "The loop executed " & count% & " times."

End Sub

See Also Do...Loop (statement); For...Next (statement).

Platform(s) All.

Platform Notes Windows, Win32: Due to errors in program logic, you can inadvertantly create infinite
loops in your code. Under Windows and Win32, you can break out of infinite loops
using Ctrl+Break.

UNIX: Due to errors in program logic, you can inadvertantly create infinite loops in
your code. Under UNIX, you can break out of infinite loops using Ctrl+C.

Macintosh: Due to errors in program logic, you can inadvertantly create infinite loops
in your code. On the Macintosh, you can break out of infinite loops using
Command+Period.

OS/2: Due to errors in program logic, you can inadvertantly create infinite loops in your
code. Under OS/2, you can break out of infinite loops using Ctrl+C or Ctrl+Break.

Width# (statement)

Syntax Width# filenumber, width

502 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 502 of 516 Printed: 9/25/96

Description Specifies the line width for sequential files opened in either Output or Append mode.

Comments The Width# statement requires the following named parameters:

When a file is initially opened, there is no limit to line length. This command forces all
subsequent output to the specified file to use the specified value as the maximum line
length.

The Width statement affects output in the following manner: if the column position is
greater than 1 and the length of the text to be written to the file causes the column
position to exceed the current line width, then the data is written on the next line.

The Width statement also affects output of the Print command when used with the Tab
and Spc functions.

Example 'This statement sets the maximum line width for file number 1
'to 80 columns.
Sub Main()

Width #1,80
End Sub

See Also Print (statement); Print# (statement); Tab (function); Spc (function).

Platform(s) All.

WinActivate (statement)

Syntax WinActivate [window_name$ | window_object] [, timeout]

Description Activates the window with the given name or object value.

Named Parameter Description

filenumber Integer used by BasicScript to refer to the open file—the
number passed to the Open statement.

width Integer between 0 to 255 inclusive specifying the new width. If
width is 0, then no maximum line length is used.

WinClose (statement) 503

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 503 of 516 Printed: 9/25/96

Comments The WinActivate statement requires the following parameters:

If window_name$ and window_object are omitted, then no action is performed.

Example 'This example runs the clock.exe program by activating the Run
'File dialog box from within Program Manager.
Sub Main()

WinActivate "Program Manager"
Menu "File.Run"
WinActivate "Program Manager|Run"
SendKeys "clock.exe{ENTER}"

End Sub

See Also AppActivate (statement).

Platform(s) Windows, Win32.

WinClose (statement)

Syntax WinClose [window_name$ | window_object]

Description Closes the given window.

Parameter Description

window_name$ String containing the name that appears on the desired
application's title bar. Optionally, a partial name can be used,
such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a
window whose title contains the word "Notepad". If found,
the windows owned by the top level window are searched for
one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This
can be used in place of the window_name$ parameter to
indicate a specific window to activate.

timeout Integer specifying the number of milliseconds for which to
attempt activation of the specified window. If not specified (or
0), then only one attempt will be made to activate the
window. This value is handy when you are not certain that the
window you are attempting to activate has been created.

504 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 504 of 516 Printed: 9/25/96

Comments The WinClose statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
closed.

This command differs from the AppClose command in that this command operates on
the current window rather than the current top-level window (or application).

Example 'This example closes Microsoft Word if its object reference is
'found.
Sub Main()

Dim WordHandle As HWND
Set WordHandle = WinFind("Word")
If (WordHandle Is Not Nothing) Then WinClose WordHandle

End Sub

See Also WinFind (function).

Platform(s) Windows, Win32.

Platform Notes Windows, Win32: On all Windows platforms, the current window can be an MDI child
window, a pop-up window, or a top-level window.

WinFind (function)

Syntax WinFind(name$) As HWND

Description Returns an object variable referencing the window having the given name.

Parameter Description

window_name$ String containing the name that appears on the desired
application's title bar. Optionally, a partial name can be used,
such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a
window whose title contains the word "Notepad". If found, the
windows owned by the top level window are searched for one
whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This
can be used in place of the window_name$ parameter to
indicate a specific window to activate.

WinList (statement) 505

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 505 of 516 Printed: 9/25/96

Comments The name$ parameter is specified using the same format as that used by the
WinActivate statement.

Example 'This example closes Microsoft Word if its object reference is
'found.
Sub Main()

Dim WordHandle As HWND
Set WordHandle = WinFind ("Word")
If (WordHandle Is Not Nothing) Then WinClose WordHandle

End Sub

See Also WinActivate (statement).

Platform(s) Windows, Win32.

WinList (statement)

Syntax WinList ArrayOfWindows()

Description Fills the passed array with references to all the top-level windows.

Comments The passed array must be declared as an array of HWND objects.

The ArrayOfWindows parameter must specify either a zero- or one-dimensioned
dynamic array or a single-dimensioned fixed array. If the array is dynamic, then it will
be redimensioned to exactly hold the new number of elements. For fixed arrays, each
array element is first erased, then the new elements are placed into the array. If there are
fewer elements than will fit in the array, then the remaining elements are unused. A
runtime error results if the array is too small to hold the new elements.

After calling this function, use the LBound and UBound functions to determine the
new size of the array.

Example 'This example minimizes all top-level windows.
Sub Main()

Dim a() As HWND
WinList a
For i = 1 To UBound(a)

WinMinimize a(i)
Next i

End Sub

See Also WinFind (function).

Platform(s) Windows, Win32.

506 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 506 of 516 Printed: 9/25/96

WinMaximize (statement)

Syntax WinMaximize [window_name$ | window_object]

Description Maximizes the given window.

Comments The WinMaximize statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
maximized.

This command differs from the AppMaximize command in that this command operates
on the current window rather than the current top-level window.

Example 'This example maximizes all top-level windows.
Sub Main()

Dim a() As HWND
WinList a
For i = 1 To UBound(a)

WinMaximize a(i)
Next i

End Sub

See Also WinMinimize (statement); WinRestore (statement).

Platform(s) Windows, Win32.

Platform Notes Windows, Win32: On all Windows platforms, the current window can be an MDI child
window, a pop-up window, or a top-level window.

Parameter Description

window_name$ String containing the name that appears on the desired
application's title bar. Optionally, a partial name can be used,
such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a
window whose title contains the word "Notepad". If found, the
windows owned by the top level window are searched for one
whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This
can be used in place of the window_name$ parameter to
indicate a specific window to activate.

WinMinimize (statement) 507

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 507 of 516 Printed: 9/25/96

WinMinimize (statement)

Syntax WinMinimize [window_name$ | window_object]

Description Minimizes the given window.

Comments The WinMinimize statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
minimized.

This command differs from the AppMinimize command in that this command operates
on the current window rather than the current top-level window.

Example See example for WinList (statement).

See Also WinMaximize (statement); WinRestore (statement).

Platform(s) Windows, Win32.

Platform Notes Windows, Win32: On all Windows platforms, the current window can be an MDI child
window, a pop-up window, or a top-level window.

WinMove (statement)

Syntax WinMove x, y [window_name$ | window_object]

Description Moves the given window to the given x,y position.

Parameter Description

window_name$ String containing the name that appears on the desired
application's title bar. Optionally, a partial name can be used,
such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a
window whose title contains the word "Notepad". If found, the
windows owned by the top level window are searched for one
whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This
can be used in place of the window_name$ parameter to
indicate a specific window to activate.

508 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 508 of 516 Printed: 9/25/96

Comments The WinMove statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
moved.

This command differs from the AppMove command in that this command operates on
the current window rather than the current top-level window. When moving child
windows, remember that the x and y coordinates are relative to the client area of the
parent window.

Example 'This example moves Program Manager to upper left corner of the
'screen.
WinMove 0,0,"Program Manager"

See Also WinSize (statement).

Platform(s) Windows, Win32.

Platform Notes Windows, Win32: On all Windows platforms, the current window can be an MDI child
window, a pop-up window, or a top-level window.

WinRestore (statement)

Syntax WinRestore [window_name$ | window_object]

Description Restores the specified window to its restore state.

Parameter Description

x,y Integer coordinates given in twips that specify the new location
for the window.

window_name$ String containing the name that appears on the desired
application's title bar. Optionally, a partial name can be used,
such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a
window whose title contains the word "Notepad". If found, the
windows owned by the top level window are searched for one
whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This
can be used in place of the window_name$ parameter to
indicate a specific window to activate.

WinRestore (statement) 509

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 509 of 516 Printed: 9/25/96

Comments Restoring a minimized window restores that window to it screen position before it was
minimized. Restoring a maximized window resizes the window to its size previous to
maximizing.

The WinRestore statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
restored.

This command differs from the AppRestore command in that this command operates
on the current window rather than the current top-level window.

Example 'This example minimizes all top-level windows except for Program
'Manager.
Sub Main()

Dim a() As HWND
WinList a
For i = 0 To UBound(a)
 WinMinimize a(i)
Next I
WinRestore "Program Manager"

End Sub

See Also WinMaximize (statement); WinMinimize (statement).

Platform(s) Windows, Win32.

Platform Notes Windows, Win32: On all Windows platforms, the current window can be an MDI child
window, a pop-up window, or a top-level window.

Parameter Description

window_name$ String containing the name that appears on the desired
application's title bar. Optionally, a partial name can be used,
such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a
window whose title contains the word "Notepad". If found, the
windows owned by the top level window are searched for one
whose title contains the string "Find"

window_object HWND object specifying the exact window to activate. This can
be used in place of the window_name$ parameter to indicate a
specific window to activate.

510 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 510 of 516 Printed: 9/25/96

WinSize (statement)

Syntax WinSize width, height [, window_name$ | window_object]

Description Resizes the given window to the specified width and height.

Comments The WinSize statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
resized.

This command differs from the AppSize command in that this command operates on
the current window rather than the current top-level window.

Example 'This example runs and resizes Notepad.
Sub Main()

Dim NotepadApp As HWND
id = Shell("Notepad.exe")
set NotepadApp = WinFind("Notepad")
WinSize 4400,8500,NotepadApp

End Sub

See Also WinMove (statement).

Platform(s) Windows, Win32.

Platform Notes Windows, Win32: On all Windows platforms, the current window can be an MDI child
window, a pop-up window, or a top-level window.

Parameter Description

width,height Integer coordinates given in twips that specify the new size of
the window.

window_name$ String containing the name that appears on the desired
application's title bar. Optionally, a partial name can be used,
such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a
window whose title contains the word "Notepad". If found, the
windows owned by the top level window are searched for one
whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This
can be used in place of the window_name$ parameter to
indicate a specific window to activate.

Word$ (function) 511

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 511 of 516 Printed: 9/25/96

Word$ (function)

Syntax Word$(text$, first[, last])

Description Returns a String containing a single word or sequence of words between first and last.

Comments The Word$ function requires the following parameters:

Words are separated by any nonalphanumeric characters such as spaces, tabs,
end-of-lines, and punctuation. On multi-byte and wide character platforms, double-byte
spaces are treated as separators as well. Embedded null characters are treated as regular
characters.

If first is greater than the number of words in text$, then a zero-length string is returned.

If last is greater than the number of words in text$, then all words from first to the end of
the text are returned.

Example 'This example finds the name "Stuart" in a string and then
'extracts two words from the string.
Sub Main()

s$ = "My last name is Williams; Stuart is my surname."
c$ = Word$(s$,5,6)
MsgBox "The extracted name is: " & c$

End Sub

See Also Item$ (function); ItemCount (function); Line$ (function); LineCount (function);
WordCount (function).

Platform(s) All.

WordCount (function)

Syntax WordCount(text$)

Description Returns an Integer representing the number of words in the specified text.

Parameter Description

text$ String from which the sequence of words will be extracted.

first Integer specifying the index of the first word in the sequence to
return. If last is not specified, then only that word is returned.

last Integer specifying the index of the last word in the sequence to
return. If last is specified, then all words between first and last
will be returned, including all spaces, tabs, and end-of-lines that
occur between those words.

512 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 512 of 516 Printed: 9/25/96

Comments Words are separated by spaces, tabs, and end-of-lines. Embedded null characters are
treated as regular characters.

Example 'This example counts the number of words in a particular string.
Sub Main()

s$ = "My last name is Williams; Stuart is my surname."
i% = WordCount (s$)
MsgBox "'" & s$ & "' has " & i% & " words."

End Sub

See Also Item$ (function); ItemCount (function); Line$ (function); LineCount (function);
Word$ (function).

Platform(s) All.

Write# (statement)

Syntax Write [#] filenumber [, expressionlist]

Description Writes a list of expressions to a given sequential file.

Comments The file referenced by filenumber must be opened in either Output or Append mode.

The filenumber parameter is an Integer used by BasicScript to refer to the open file—
the number passed to the Open statement.

The following summarizes how variables of different types are written:

The Write statement outputs variables separated with commas. After writing each
expression in the list, Write outputs an end-of-line.

The Write statement can only be used with files opened in Output or Append mode.

Data Type Description

Any numeric type Written as text. There is no leading space, and the period is
always used as the decimal separator.

String Written as text, enclosed within quotes.

Empty No data is written.

Null Written as #NULL# .

Boolean Written as #TRUE# or #FALSE#.

Date Written using the universal date format:

#YYYY-MM-DD HH:MM:SS#

User-defined errors Written as #ERROR ErrorNumber#, where ErrorNumber
is the value of the user-defined error. The word ERROR is
not translated.

WriteIni (statement) 513

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 513 of 516 Printed: 9/25/96

Example 'This example opens a file for sequential write, then writes ten
'records into the file with the values 10...50. Then the file is
'closed and reopened for read, and the records are read with the
'Input statement. The results are displayed in a dialog box.
Sub Main()

Open "test.dat" For Output Access Write As #1
For x = 1 To 10

r% = x * 10
 Write #1,x,r%
Next x
Close
Open "test.dat" For Input Access Read As #1
For x = 1 To 10

Input #1,a%,b%
message = message & "Record " & a% & ": " & b% & Basic.Eoln$

Next x
MsgBox message
Close

End Sub

See Also Open (statement); Put (statement); Print# (statement).

Platform(s) All.

WriteIni (statement)

Syntax WriteIni section$, ItemName$, value$[, filename$]

Description Writes a new value into an ini file.

Comments The WriteIni statement requires the following parameters:

Example 'This example sets the txt extension to be associated with
'Notepad.

Parameter Description

section$ String specifying the section that contains the desired variables,
such as "Windows." Section names are specified without the
enclosing brackets.

ItemName$ String specifying which item from within the given section you
want to change. If ItemName$ is a zero-length string (""), then
the entire section specified by section$ is deleted.

value$ String specifying the new value for the given item. If value$ is a
zero-length string (""), then the item specified by ItemName$ is
deleted from the ini file.

filename$ String specifying the name of the ini file.

514 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 514 of 516 Printed: 9/25/96

Sub Main()
WriteIni "Extensions","txt", _

"c:\windows\notepad.exe ^.txt","win.ini"
End Sub

See Also ReadIni$ (function); ReadIniSection (statement).

Platform(s) Windows, Win32, OS/2.

Platform Notes Windows, Win32: Under Windows and Win32, if filename$ is not specified, the win.ini
file is used.

If the filename$ parameter does not include a path, then this statement looks for ini files
in the Windows directory.

Xor (operator)

Syntax result = expression1 Xor expression2

Description Performs a logical or binary exclusion on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
exclusion is performed as follows:

If either expression is Null , then Null is returned.

Binary Exclusion

If the two expressions are Integer, then a binary exclusion is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to
Long, and a binary exclusion is then performed, returning a Long result.

Binary exclusion forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

If expression1 is and expression2 is then the result is

True True False

True False True

False True True

False False False

If bit in expression1 is and bit in expression2 is the result is

1 1 0

0 1 1

1 0 1

0 0 0

Year (function) 515

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 515 of 516 Printed: 9/25/96

Example 'This example builds a logic table for the XOR function and
'displays it.
Sub Main()

For x = -1 To 0
For y = -1 To 0

z = x Xor y
message = message & Format(x,"True/False") & " Xor "
message = message & Format(y,"True/False") & " = "
message = message & Format(z,"True/False") & Basic.Eoln$

Next y
Next x
MsgBox message

End Sub

See Also Operator Precedence (topic); Or (operator); Eqv (operator); Imp (operator); And
(operator).

Platform(s) All.

Year (function)

Syntax Year(date)

Description Returns the year of the date encoded in the specified date parameter. The value returned
is between 100 and 9999 inclusive.

The date parameter is any expression representing a valid date.

Example 'This example returns the current year in a dialog box.
Sub Main()

tdate$ = Date$
tyear! = Year (DateValue(tdate$))
MsgBox "The current year is: " & tyear$

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) All.

516 BasicScript Language Reference

Summit Software Confidential
Filename: lrt-z.fm5 Template: LRprint.FM5
Page: 516 of 516 Printed: 9/25/96

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 517 of 534 Printed: 9/25/96

A P P E N D I X A

Language Elements by Platform

The following table lists all BasicScript language elements and specifies the platforms
on which these language elements are supported.

BasicScript Language Elements by Platform

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
p

en
V

M
S

#Const ■ ■ ■ ■ ■ ■ ■

#If...Then...#Else ■ ■ ■ ■ ■ ■ ■

& ■ ■ ■ ■ ■ ■ ■

' ■ ■ ■ ■ ■ ■ ■

() ■ ■ ■ ■ ■ ■ ■

* ■ ■ ■ ■ ■ ■ ■

+ ■ ■ ■ ■ ■ ■ ■

- ■ ■ ■ ■ ■ ■ ■

/ ■ ■ ■ ■ ■ ■ ■

< ■ ■ ■ ■ ■ ■ ■

<= ■ ■ ■ ■ ■ ■ ■

<> ■ ■ ■ ■ ■ ■ ■

= (assignment) ■ ■ ■ ■ ■ ■ ■

= (operator) ■ ■ ■ ■ ■ ■ ■

> ■ ■ ■ ■ ■ ■ ■

>= ■ ■ ■ ■ ■ ■ ■

\ ■ ■ ■ ■ ■ ■ ■

^ ■ ■ ■ ■ ■ ■ ■

_ ■ ■ ■ ■ ■ ■ ■

518 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 518 of 534 Printed: 9/25/96

Abs ■ ■ ■ ■ ■ ■ ■

ActivateControl ■ ❒ ❒ ❒ ❒ ❒ ❒

And ■ ■ ■ ■ ■ ■ ■

Any ■ ■ ■ ■ ■ ■ ■

AnswerBox ■ ■ ■ ■ ❒ ■ ❒

AppActivate ■ ■ ❒ ■ ❒ ■ ❒

AppClose ■ ■ ❒ ■ ❒ ❒ ❒

AppFileName$ ■ ❒ ❒ ■ ❒ ❒ ❒

AppFind, AppFind$ ■ ■ ❒ ■ ❒ ❒ ❒

AppGetActive$ ■ ■ ❒ ■ ❒ ❒ ❒

AppGetPosition ■ ■ ❒ ■ ❒ ❒ ❒

AppGetState ■ ■ ❒ ■ ❒ ❒ ❒

AppHide ■ ■ ❒ ■ ❒ ❒ ❒

AppList ■ ■ ❒ ■ ❒ ❒ ❒

AppMaximize ■ ■ ❒ ■ ❒ ❒ ❒

AppMinimize ■ ■ ❒ ■ ❒ ❒ ❒

AppMove ■ ■ ❒ ■ ❒ ❒ ❒

AppRestore ■ ■ ❒ ■ ❒ ❒ ❒

AppSetState ■ ■ ❒ ■ ❒ ❒ ❒

AppShow ■ ■ ❒ ■ ❒ ❒ ❒

AppSize ■ ■ ❒ ■ ❒ ❒ ❒

AppType ■ ■ ❒ ❒ ❒ ❒ ❒

ArrayDims ■ ■ ■ ■ ■ ■ ■

ArraySort ■ ■ ■ ■ ■ ■ ■

Asc, AscB, AscW ■ ■ ■ ■ ■ ■ ■

AskBox, AskBox$ ■ ■ ■ ■ ❒ ■ ❒

AskPassword, AskPassword$ ■ ■ ■ ■ ❒ ■ ❒

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

519

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 519 of 534 Printed: 9/25/96

Atn ■ ■ ■ ■ ■ ■ ■

Basic.Architecture ■ ■ ■ ■ ■ ■ ■

Basic.Capability ■ ■ ■ ■ ■ ■ ■

Basic.CodePage ■ ■ ■ ■ ■ ■ ■

Basic.Eoln$ ■ ■ ■ ■ ■ ■ ■

Basic.FreeMemory ■ ■ ■ ■ ■ ■ ■

Basic.HomeDir$ ■ ■ ■ ■ ■ ■ ■

Basic.Locale$ ■ ■ ■ ■ ■ ■ ■

Basic.OperatingSystem$ ■ ■ ■ ■ ■ ■ ■

Basic.OperatingSystemVendor$ ■ ■ ■ ■ ■ ■ ■

Basic.OperatingSystemVersion$ ■ ■ ■ ■ ■ ■ ■

Basic.OS ■ ■ ■ ■ ■ ■ ■

Basic.PathSeparator$ ■ ■ ■ ■ ■ ■ ■

Basic.Processor$ ■ ■ ■ ■ ■ ■ ■

Basic.ProcessorCount$ ■ ■ ■ ■ ■ ■ ■

Basic.Version$ ■ ■ ■ ■ ■ ■ ■

Beep ■ ■ ■ ■ ■ ■ ■

Begin Dialog ■ ■ ■ ■ ❒ ■ ❒

Boolean ■ ■ ■ ■ ■ ■ ■

ButtonEnabled ■ ❒ ❒ ❒ ❒ ❒ ❒

ButtonExists ■ ❒ ❒ ❒ ❒ ❒ ❒

Call ■ ■ ■ ■ ■ ■ ■

CancelButton ■ ■ ■ ■ ❒ ■ ❒

CBool ■ ■ ■ ■ ■ ■ ■

CCur ■ ■ ■ ■ ■ ■ ■

CDate, CVDate ■ ■ ■ ■ ■ ■ ■

CDbl ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

520 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 520 of 534 Printed: 9/25/96

ChDir ■ ■ ■ ■ ■ ■ ■

ChDrive ■ ■ ❒ ■ ■ ❒ ❒

CheckBox ■ ■ ■ ■ ❒ ■ ❒

CheckBoxEnabled ■ ❒ ❒ ❒ ❒ ❒ ❒

CheckBoxExists ■ ❒ ❒ ❒ ❒ ❒ ❒

Choose ■ ■ ■ ■ ■ ■ ■

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ ■ ■ ■ ■ ■ ■ ■

CInt ■ ■ ■ ■ ■ ■ ■

Clipboard$ (function) ■ ■ ❒ ■ ❒ ■ ❒

Clipboard$ (statement) ■ ■ ❒ ■ ❒ ■ ❒

Clipboard.Clear ■ ■ ❒ ■ ❒ ■ ❒

Clipboard.GetFormat ■ ■ ❒ ■ ❒ ■ ❒

Clipboard.GetText ■ ■ ❒ ■ ❒ ■ ❒

Clipboard.SetText ■ ■ ❒ ■ ❒ ■ ❒

CLng ■ ■ ■ ■ ■ ■ ■

Close ■ ■ ■ ■ ■ ■ ■

ComboBox ■ ■ ■ ■ ❒ ■ ❒

ComboBoxEnabled ■ ❒ ❒ ❒ ❒ ❒ ❒

ComboBoxExists ■ ❒ ❒ ❒ ❒ ❒ ❒

Command, Command$ ■ ■ ■ ■ ■ ■ ■

Const ■ ■ ■ ■ ■ ■ ■

Cos ■ ■ ■ ■ ■ ■ ■

CreateObject ■ ■ ❒ ❒ ❒ ■ ❒

CSng ■ ■ ■ ■ ■ ■ ■

CStr ■ ■ ■ ■ ■ ■ ■

CurDir, CurDir$ ■ ■ ■ ■ ■ ■ ■

Currency ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

521

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 521 of 534 Printed: 9/25/96

CVar ■ ■ ■ ■ ■ ■ ■

CVErr ■ ■ ■ ■ ■ ■ ■

Date (data type) ■ ■ ■ ■ ■ ■ ■

Date, Date$ (functions) ■ ■ ■ ■ ■ ■ ■

Date, Date$ (statements) ■ ■ ■ ■ ■ ■ ■

DateAdd ■ ■ ■ ■ ■ ■ ■

DateDiff ■ ■ ■ ■ ■ ■ ■

DatePart ■ ■ ■ ■ ■ ■ ■

DateSerial ■ ■ ■ ■ ■ ■ ■

DateValue ■ ■ ■ ■ ■ ■ ■

Day ■ ■ ■ ■ ■ ■ ■

DDB ■ ■ ■ ■ ■ ■ ■

DDEExecute ■ ■ ❒ ■ ❒ ❒ ❒

DDEInitiate ■ ■ ❒ ■ ❒ ❒ ❒

DDEPoke ■ ■ ❒ ■ ❒ ❒ ❒

DDERequest, DDERequest$ ■ ■ ❒ ■ ❒ ❒ ❒

DDESend ■ ■ ❒ ■ ❒ ❒ ❒

DDETerminate ■ ■ ❒ ■ ❒ ❒ ❒

DDETerminateAll ■ ■ ❒ ■ ❒ ❒ ❒

DDETimeOut ■ ■ ❒ ■ ❒ ❒ ❒

Declare ■ ■ ■ ■ ■ ■ ■

DefBool ■ ■ ■ ■ ■ ■ ■

DefCur ■ ■ ■ ■ ■ ■ ■

DefDate ■ ■ ■ ■ ■ ■ ■

DefDbl ■ ■ ■ ■ ■ ■ ■

DefInt ■ ■ ■ ■ ■ ■ ■

DefLng ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

522 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 522 of 534 Printed: 9/25/96

DefObj ■ ■ ■ ■ ■ ■ ■

DefSng ■ ■ ■ ■ ■ ■ ■

DefStr ■ ■ ■ ■ ■ ■ ■

DefVar ■ ■ ■ ■ ■ ■ ■

DeleteSetting ■ ■ ❒ ■ ❒ ❒ ❒

Desktop.ArrangeIcons ■ ❒ ❒ ❒ ❒ ❒ ❒

Desktop.Cascade ■ ❒ ❒ ❒ ❒ ❒ ❒

Desktop.SetColors ■ ❒ ❒ ❒ ❒ ❒ ❒

Desktop.SetWallpaper ■ ❒ ❒ ❒ ❒ ❒ ❒

Desktop.Snapshot ■ ❒ ❒ ❒ ❒ ❒ ❒

Desktop.Tile ■ ❒ ❒ ❒ ❒ ❒ ❒

Dialog (function) ■ ■ ■ ■ ❒ ■ ❒

Dialog (statement) ■ ■ ■ ■ ❒ ■ ❒

Dim ■ ■ ■ ■ ■ ■ ■

Dir, Dir$ ■ ■ ■ ■ ■ ■ ■

DiskDrives ■ ■ ❒ ❒ ■ ❒ ❒

DiskFree ■ ■ ❒ ❒ ■ ❒ ❒

DlgCaption ■ ■ ■ ■ ■ ■ ❒

DlgControlId ■ ■ ■ ■ ❒ ■ ❒

DlgEnable (function) ■ ■ ■ ■ ❒ ■ ❒

DlgEnable (statement) ■ ■ ■ ■ ❒ ■ ❒

DlgFocus (function) ■ ■ ■ ■ ❒ ■ ❒

DlgFocus (statement) ■ ■ ■ ■ ❒ ■ ❒

DlgListBoxArray (function) ■ ■ ■ ■ ❒ ■ ❒

DlgListBoxArray (statement) ■ ■ ■ ■ ❒ ■ ❒

DlgProc ■ ■ ■ ■ ❒ ■ ❒

DlgSetPicture ■ ■ ■ ■ ❒ ■ ❒

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

523

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 523 of 534 Printed: 9/25/96

DlgText (statement) ■ ■ ■ ■ ❒ ■ ❒

DlgText$ (function) ■ ■ ■ ■ ❒ ■ ❒

DlgValue (function) ■ ■ ■ ■ ❒ ■ ❒

DlgValue (statement) ■ ■ ■ ■ ❒ ■ ❒

DlgVisible (function) ■ ■ ■ ■ ❒ ■ ❒

DlgVisible (statement) ■ ■ ■ ■ ❒ ■ ❒

Do...Loop ■ ■ ■ ■ ■ ■ ■

DoEvents (function) ■ ■ ■ ■ ■ ■ ■

DoEvents (statement) ■ ■ ■ ■ ■ ■ ■

DoKeys ■ ❒ ❒ ❒ ❒ ❒ ❒

Double ■ ■ ■ ■ ■ ■ ■

DropListBox ■ ■ ■ ■ ❒ ■ ❒

EditEnabled ■ ❒ ❒ ❒ ❒ ❒ ❒

EditExists ■ ❒ ❒ ❒ ❒ ❒ ❒

End ■ ■ ■ ■ ■ ■ ■

Environ, Environ$ ■ ■ ■ ■ ■ ■ ■

Eof ■ ■ ■ ■ ■ ■ ■

Eqv ■ ■ ■ ■ ■ ■ ■

Erase ■ ■ ■ ■ ■ ■ ■

Erl ■ ■ ■ ■ ■ ■ ■

Err.Clear ■ ■ ■ ■ ■ ■ ■

Err.Description ■ ■ ■ ■ ■ ■ ■

Err.HelpContext ■ ■ ■ ■ ■ ■ ■

Err.HelpFile ■ ■ ■ ■ ■ ■ ■

Err.LastDLLError ❒ ■ ❒ ■ ❒ ❒ ❒

Err.Number ■ ■ ■ ■ ■ ■ ■

Err.Raise ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

524 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 524 of 534 Printed: 9/25/96

Err.Source ■ ■ ■ ■ ■ ■ ■

Error ■ ■ ■ ■ ■ ■ ■

Error, Error$ ■ ■ ■ ■ ■ ■ ■

Exit Do ■ ■ ■ ■ ■ ■ ■

Exit For ■ ■ ■ ■ ■ ■ ■

Exit Function ■ ■ ■ ■ ■ ■ ■

Exit Sub ■ ■ ■ ■ ■ ■ ■

Exp ■ ■ ■ ■ ■ ■ ■

FileAttr ■ ■ ■ ■ ■ ■ ■

FileCopy ■ ■ ■ ■ ■ ■ ■

FileDateTime ■ ■ ■ ■ ■ ■ ■

FileDirs ■ ■ ■ ■ ■ ■ ■

FileExists ■ ■ ■ ■ ■ ■ ■

FileLen ■ ■ ■ ■ ■ ■ ■

FileList ■ ■ ■ ■ ■ ■ ■

FileParse$ ■ ■ ■ ■ ■ ■ ■

FileType ■ ❒ ❒ ❒ ❒ ❒ ❒

Fix ■ ■ ■ ■ ■ ■ ■

For...Each ■ ■ ■ ■ ■ ■ ■

For...Next ■ ■ ■ ■ ■ ■ ■

Format, Format$ ■ ■ ■ ■ ■ ■ ■

FreeFile ■ ■ ■ ■ ■ ■ ■

Function...End Function ■ ■ ■ ■ ■ ■ ■

Fv ■ ■ ■ ■ ■ ■ ■

Get ■ ■ ■ ■ ■ ■ ■

GetAllSettings ■ ■ ❒ ■ ❒ ❒ ❒

GetAttr ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

525

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 525 of 534 Printed: 9/25/96

GetCheckBox ■ ❒ ❒ ❒ ❒ ❒ ❒

GetComboBoxItem$ ■ ❒ ❒ ❒ ❒ ❒ ❒

GetComboBoxItemCount ■ ❒ ❒ ❒ ❒ ❒ ❒

GetEditText$ ■ ❒ ❒ ❒ ❒ ❒ ❒

GetListBoxItem$ ■ ❒ ❒ ❒ ❒ ❒ ❒

GetListBoxItemCount ■ ❒ ❒ ❒ ❒ ❒ ❒

GetObject ■ ■ ❒ ❒ ❒ ■ ❒

GetOption ■ ❒ ❒ ❒ ❒ ❒ ❒

GetSetting ■ ■ ❒ ■ ❒ ❒ ❒

Global ■ ■ ■ ■ ■ ■ ■

GoSub ■ ■ ■ ■ ■ ■ ■

Goto ■ ■ ■ ■ ■ ■ ■

GroupBox ■ ■ ■ ■ ❒ ■ ❒

HelpButton ■ ■ ■ ■ ❒ ■ ❒

Hex, Hex$ ■ ■ ■ ■ ■ ■ ■

HLine ■ ■ ❒ ❒ ❒ ❒ ❒

Hour ■ ■ ■ ■ ■ ■ ■

HPage ■ ■ ❒ ❒ ❒ ❒ ❒

HScroll ■ ■ ❒ ❒ ❒ ❒ ❒

HWND ■ ■ ❒ ❒ ❒ ❒ ❒

HWND.Value ■ ■ ❒ ❒ ❒ ❒ ❒

If...Then...Else ■ ■ ■ ■ ■ ■ ■

IIf ■ ■ ■ ■ ■ ■ ■

IMEStatus ■ ■ ■ ■ ❒ ■ ❒

Imp ■ ■ ■ ■ ■ ■ ■

Inline ■ ■ ■ ■ ■ ■ ■

Input# ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

526 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 526 of 534 Printed: 9/25/96

Input, Input$, InputB, InputB$ ■ ■ ■ ■ ■ ■ ■

InputBox, InputBox$ ■ ■ ■ ■ ❒ ■ ❒

InStr, InstrB ■ ■ ■ ■ ■ ■ ■

Int ■ ■ ■ ■ ■ ■ ■

Integer ■ ■ ■ ■ ■ ■ ■

IPmt ■ ■ ■ ■ ■ ■ ■

IRR ■ ■ ■ ■ ■ ■ ■

Is ■ ■ ■ ■ ■ ■ ■

IsDate ■ ■ ■ ■ ■ ■ ■

IsEmpty ■ ■ ■ ■ ■ ■ ■

IsError ■ ■ ■ ■ ■ ■ ■

IsMissing ■ ■ ■ ■ ■ ■ ■

IsNull ■ ■ ■ ■ ■ ■ ■

IsNumeric ■ ■ ■ ■ ■ ■ ■

IsObject ■ ■ ■ ■ ■ ■ ■

Item$ ■ ■ ■ ■ ■ ■ ■

ItemCount ■ ■ ■ ■ ■ ■ ■

Kill ■ ■ ■ ■ ■ ■ ■

LBound ■ ■ ■ ■ ■ ■ ■

LCase, LCase$ ■ ■ ■ ■ ■ ■ ■

Left, Left$, LeftB, LeftB$ ■ ■ ■ ■ ■ ■ ■

Len, LenB ■ ■ ■ ■ ■ ■ ■

Let ■ ■ ■ ■ ■ ■ ■

Like ■ ■ ■ ■ ■ ■ ■

Line Input # ■ ■ ■ ■ ■ ■ ■

Line$ ■ ■ ■ ■ ■ ■ ■

LineCount ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

527

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 527 of 534 Printed: 9/25/96

ListBox ■ ■ ■ ■ ❒ ■ ❒

ListBoxEnabled ■ ❒ ❒ ❒ ❒ ❒ ❒

ListBoxExists ■ ❒ ❒ ❒ ❒ ❒ ❒

Loc ■ ■ ■ ■ ■ ■ ■

Lock ■ ■ ■ ■ ■ ■ ■

Lof ■ ■ ■ ■ ■ ■ ■

Log ■ ■ ■ ■ ■ ■ ■

Long ■ ■ ■ ■ ■ ■ ■

LSet ■ ■ ■ ■ ■ ■ ■

LTrim, LTrim$ ■ ■ ■ ■ ■ ■ ■

MacID ❒ ❒ ❒ ❒ ❒ ■ ❒

MacScript ❒ ❒ ❒ ❒ ❒ ■ ❒

Main ■ ■ ■ ■ ■ ■ ■

Mci ■ ❒ ❒ ❒ ❒ ❒ ❒

Menu ■ ❒ ❒ ❒ ❒ ❒ ❒

MenuItemChecked ■ ❒ ❒ ❒ ❒ ❒ ❒

MenuItemEnabled ■ ❒ ❒ ❒ ❒ ❒ ❒

MenuItemExists ■ ❒ ❒ ❒ ❒ ❒ ❒

Mid, Mid$, MidB, MidB$ (functions) ■ ■ ■ ■ ■ ■ ■

Mid, Mid$, MidB, MidB$ (statements) ■ ■ ■ ■ ■ ■ ■

Minute ■ ■ ■ ■ ■ ■ ■

MIRR ■ ■ ■ ■ ■ ■ ■

MkDir ■ ■ ■ ■ ■ ■ ■

Mod ■ ■ ■ ■ ■ ■ ■

Month ■ ■ ■ ■ ■ ■ ■

Msg.Close ■ ■ ❒ ❒ ❒ ❒ ❒

Msg.Open ■ ■ ❒ ❒ ❒ ❒ ❒

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

528 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 528 of 534 Printed: 9/25/96

Msg.Text ■ ■ ❒ ❒ ❒ ❒ ❒

Msg.Thermometer ■ ■ ❒ ❒ ❒ ❒ ❒

MsgBox (function) ■ ■ ■ ■ ❒ ■ ❒

MsgBox (statement) ■ ■ ■ ■ ❒ ■ ❒

Name ■ ■ ■ ■ ■ ■ ■

Net.AddCon$ ■ ■ ❒ ❒ ❒ ❒ ❒

Net.Browse$ ■ ■ ❒ ❒ ❒ ❒ ❒

Net.CancelCon ■ ■ ❒ ❒ ❒ ❒ ❒

Net.Dialog ■ ❒ ❒ ❒ ❒ ❒ ❒

Net.GetCaps ■ ■ ❒ ❒ ❒ ❒ ❒

Net.GetCon$ ■ ■ ❒ ❒ ❒ ❒ ❒

Net.User$ ■ ■ ❒ ❒ ❒ ❒ ❒

Not ■ ■ ■ ■ ■ ■ ■

Now ■ ■ ■ ■ ■ ■ ■

NPer ■ ■ ■ ■ ■ ■ ■

Npv ■ ■ ■ ■ ■ ■ ■

Object ■ ■ ❒ ❒ ❒ ■ ❒

Oct, Oct$ ■ ■ ■ ■ ■ ■ ■

OKButton ■ ■ ■ ■ ❒ ■ ❒

On Error ■ ■ ■ ■ ■ ■ ■

Open ■ ■ ■ ■ ■ ■ ■

OpenFilename$ ■ ■ ■ ■ ❒ ■ ❒

Option Base ■ ■ ■ ■ ■ ■ ■

Option Compare ■ ■ ■ ■ ■ ■ ■

Option CStrings ■ ■ ■ ■ ■ ■ ■

Option Default ■ ■ ■ ■ ■ ■ ■

Option Explicit ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

529

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 529 of 534 Printed: 9/25/96

OptionButton ■ ■ ■ ■ ❒ ■ ❒

OptionEnabled ■ ❒ ❒ ❒ ❒ ❒ ❒

OptionExists ■ ❒ ❒ ❒ ❒ ❒ ❒

OptionGroup ■ ■ ■ ■ ❒ ■ ❒

Or ■ ■ ■ ■ ■ ■ ■

Picture ■ ■ ■ ■ ❒ ■ ❒

PictureButton ■ ■ ■ ■ ❒ ■ ❒

Pmt ■ ■ ■ ■ ■ ■ ■

PopupMenu ■ ■ ❒ ❒ ❒ ❒ ❒

PPmt ■ ■ ■ ■ ■ ■ ■

Print ■ ■ ■ ■ ■ ■ ■

Print # ■ ■ ■ ■ ■ ■ ■

PrinterGetOrientation ■ ❒ ❒ ❒ ❒ ❒ ❒

PrinterSetOrientation ■ ❒ ❒ ❒ ❒ ❒ ❒

PrintFile ■ ❒ ❒ ❒ ❒ ❒ ❒

Private ■ ■ ■ ■ ■ ■ ■

Public ■ ■ ■ ■ ■ ■ ■

PushButton ■ ■ ■ ■ ❒ ■ ❒

Put ■ ■ ■ ■ ■ ■ ■

Pv ■ ■ ■ ■ ■ ■ ■

QueEmpty ■ ❒ ❒ ❒ ❒ ❒ ❒

QueFlush ■ ❒ ❒ ❒ ❒ ❒ ❒

QueKeyDn ■ ❒ ❒ ❒ ❒ ❒ ❒

QueKeys ■ ❒ ❒ ❒ ❒ ❒ ❒

QueKeyUp ■ ❒ ❒ ❒ ❒ ❒ ❒

QueMouseClick ■ ❒ ❒ ❒ ❒ ❒ ❒

QueMouseDblClk ■ ❒ ❒ ❒ ❒ ❒ ❒

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

530 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 530 of 534 Printed: 9/25/96

QueMouseDblDn ■ ❒ ❒ ❒ ❒ ❒ ❒

QueMouseDn ■ ❒ ❒ ❒ ❒ ❒ ❒

QueMouseMove ■ ❒ ❒ ❒ ❒ ❒ ❒

QueMouseMoveBatch ■ ❒ ❒ ❒ ❒ ❒ ❒

QueMouseUp ■ ❒ ❒ ❒ ❒ ❒ ❒

QueSetRelativeWindow ■ ❒ ❒ ❒ ❒ ❒ ❒

Random ■ ■ ■ ■ ■ ■ ■

Randomize ■ ■ ■ ■ ■ ■ ■

Rate ■ ■ ■ ■ ■ ■ ■

ReadINI$ ■ ■ ❒ ■ ❒ ❒ ❒

ReadINISection ■ ■ ❒ ■ ❒ ❒ ❒

ReDim ■ ■ ■ ■ ■ ■ ■

REM ■ ■ ■ ■ ■ ■ ■

Reset ■ ■ ■ ■ ■ ■ ■

Resume ■ ■ ■ ■ ■ ■ ■

Return ■ ■ ■ ■ ■ ■ ■

Right, Right$, RightB, RightB$ ■ ■ ■ ■ ■ ■ ■

RmDir ■ ■ ■ ■ ■ ■ ■

Rnd ■ ■ ■ ■ ■ ■ ■

RSet ■ ■ ■ ■ ■ ■ ■

RTrim, RTrim$ ■ ■ ■ ■ ■ ■ ■

SaveFileName$ ■ ■ ■ ■ ❒ ■ ❒

SaveSetting ■ ■ ❒ ■ ❒ ❒ ❒

Screen.DlgBaseUnitsX ■ ■ ❒ ❒ ❒ ❒ ❒

Screen.DlgBaseUnitsY ■ ■ ❒ ❒ ❒ ❒ ❒

Screen.Height ■ ■ ❒ ❒ ❒ ❒ ❒

Screen.TwipsPerPixelX ■ ■ ❒ ❒ ❒ ❒ ❒

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

531

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 531 of 534 Printed: 9/25/96

Screen.TwipsPerPixelY ■ ■ ❒ ❒ ❒ ❒ ❒

Screen.Width ■ ■ ❒ ❒ ❒ ❒ ❒

Second ■ ■ ■ ■ ■ ■ ■

Seek (function) ■ ■ ■ ■ ■ ■ ■

Seek (statement) ■ ■ ■ ■ ■ ■ ■

Select...Case ■ ■ ■ ■ ■ ■ ■

SelectBox ■ ■ ■ ■ ❒ ■ ❒

SelectButton ■ ❒ ❒ ❒ ❒ ❒ ❒

SelectComboboxItem ■ ❒ ❒ ❒ ❒ ❒ ❒

SelectListboxItem ■ ❒ ❒ ❒ ❒ ❒ ❒

SendKeys ■ ■ ❒ ❒ ❒ ❒ ❒

Set ■ ■ ■ ■ ■ ■ ■

SetAttr ■ ■ ■ ■ ■ ■ ■

SetCheckbox ■ ❒ ❒ ❒ ❒ ❒ ❒

SetEditText ■ ❒ ❒ ❒ ❒ ❒ ❒

SetOption ■ ❒ ❒ ❒ ❒ ❒ ❒

Sgn ■ ■ ■ ■ ■ ■ ■

Shell ■ ■ ■ ■ ■ ■ ■

Sin ■ ■ ■ ■ ■ ■ ■

Single ■ ■ ■ ■ ■ ■ ■

Sleep ■ ■ ■ ■ ■ ■ ■

Sln ■ ■ ■ ■ ■ ■ ■

Space, Space$ ■ ■ ■ ■ ■ ■ ■

Spc ■ ■ ■ ■ ■ ■ ■

SQLBind ■ ■ ❒ ❒ ❒ ❒ ❒

SQLClose ■ ■ ❒ ❒ ❒ ❒ ❒

SQLError ■ ■ ❒ ❒ ❒ ❒ ❒

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

532 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 532 of 534 Printed: 9/25/96

SQLExecQuery ■ ■ ❒ ❒ ❒ ❒ ❒

SQLGetSchema ■ ■ ❒ ❒ ❒ ❒ ❒

SQLOpen ■ ■ ❒ ❒ ❒ ❒ ❒

SQLRequest ■ ■ ❒ ❒ ❒ ❒ ❒

SQLRetrieve ■ ■ ❒ ❒ ❒ ❒ ❒

SQLRetrieveToFile ■ ■ ❒ ❒ ❒ ❒ ❒

Sqr ■ ■ ■ ■ ■ ■ ■

Stop ■ ■ ■ ■ ■ ■ ■

Str, Str$ ■ ■ ■ ■ ■ ■ ■

StrComp ■ ■ ■ ■ ■ ■ ■

StrConv ■ ■ ■ ■ ■ ■ ■

String ■ ■ ■ ■ ■ ■ ■

String, String$ ■ ■ ■ ■ ■ ■ ■

Sub...End Sub ■ ■ ■ ■ ■ ■ ■

Switch ■ ■ ■ ■ ■ ■ ■

SYD ■ ■ ■ ■ ■ ■ ■

System.Exit ■ ❒ ❒ ❒ ❒ ❒ ❒

System.FreeMemory ■ ■ ❒ ❒ ❒ ❒ ❒

System.FreeResources ■ ❒ ❒ ❒ ❒ ❒ ❒

System.MouseTrails ■ ■ ❒ ❒ ❒ ❒ ❒

System.Restart ■ ■ ❒ ❒ ❒ ❒ ❒

System.TotalMemory ■ ■ ❒ ❒ ❒ ❒ ❒

System.WindowsDirectory$ ■ ■ ❒ ❒ ❒ ❒ ❒

System.WindowsVersion$ ■ ■ ❒ ❒ ❒ ❒ ❒

Tab ■ ■ ■ ■ ■ ■ ■

Tan ■ ■ ■ ■ ■ ■ ■

Text ■ ■ ■ ■ ❒ ■ ❒

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

533

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 533 of 534 Printed: 9/25/96

TextBox ■ ■ ■ ■ ❒ ■ ❒

Time, Time$ (functions) ■ ■ ■ ■ ■ ■ ■

Time, Time$ (statements) ■ ■ ■ ■ ■ ■ ■

Timer ■ ■ ■ ■ ■ ■ ■

TimeSerial ■ ■ ■ ■ ■ ■ ■

TimeValue ■ ■ ■ ■ ■ ■ ■

Trim, Trim$ ■ ■ ■ ■ ■ ■ ■

Type ■ ■ ■ ■ ■ ■ ■

TypeName ■ ■ ■ ■ ■ ■ ■

TypeOf ■ ■ ■ ■ ■ ■ ■

UBound ■ ■ ■ ■ ■ ■ ■

UCase, UCase$ ■ ■ ■ ■ ■ ■ ■

UnLock ■ ■ ■ ■ ■ ■ ■

Val ■ ■ ■ ■ ■ ■ ■

Variant ■ ■ ■ ■ ■ ■ ■

VarType ■ ■ ■ ■ ■ ■ ■

Viewport.Clear ■ ❒ ❒ ❒ ❒ ❒ ❒

Viewport.Close ■ ❒ ❒ ❒ ❒ ❒ ❒

Viewport.Open ■ ❒ ❒ ❒ ❒ ❒ ❒

VLine ■ ■ ❒ ❒ ❒ ❒ ❒

VPage ■ ■ ❒ ❒ ❒ ❒ ❒

VScroll ■ ■ ❒ ❒ ❒ ❒ ❒

Weekday ■ ■ ■ ■ ■ ■ ■

While...Wend ■ ■ ■ ■ ■ ■ ■

Width# ■ ■ ■ ■ ■ ■ ■

WinActivate ■ ■ ❒ ❒ ❒ ❒ ❒

WinClose ■ ■ ❒ ❒ ❒ ❒ ❒

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

534 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_a.fm5 Template: LRprint.FM5
Page: 534 of 534 Printed: 9/25/96

WinFind ■ ■ ❒ ❒ ❒ ❒ ❒

WinList ■ ■ ❒ ❒ ❒ ❒ ❒

WinMaximize ■ ■ ❒ ❒ ❒ ❒ ❒

WinMinimize ■ ■ ❒ ❒ ❒ ❒ ❒

WinMove ■ ■ ❒ ❒ ❒ ❒ ❒

WinRestore ■ ■ ❒ ❒ ❒ ❒ ❒

WinSize ■ ■ ❒ ❒ ❒ ❒ ❒

Word$ ■ ■ ■ ■ ■ ■ ■

WordCount ■ ■ ■ ■ ■ ■ ■

Write # ■ ■ ■ ■ ■ ■ ■

WriteIni ■ ■ ❒ ■ ❒ ❒ ❒

Xor ■ ■ ■ ■ ■ ■ ■

Year ■ ■ ■ ■ ■ ■ ■

BasicScript Language Elements by Platform (Continued)

Language Element W
in

W
in

32

U
N

IX

O
S

/2

N
et

W
ar

e

M
ac

in
to

sh

O
pe

nV
M

S

Summit Software Confidential
Filename: lrapp_b.fm5 Template: LRprint.FM5
Page: 535 of 540 Printed: 9/25/96

A P P E N D I X B

Runtime Error Messages

This section contains lists of all the error messages that BasicScript may display at
runtime. It is divided into two subsections, the first describing errors messages
compatible with “standard” Basic as implemented by Microsoft Visual Basic and the
second describing error messages specific to BasicScript.

A few error messages contain placeholders, which get replaced by the runtime when
forming the completed runtime error message. These placeholders appear in the
following list as the italicized word placeholder.

536 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_b.fm5 Template: LRprint.FM5
Page: 536 of 540 Printed: 9/25/96

Visual Basic–Compatible Error Messages
Error
Number Error Message

3 Return without GoSub
5 Invalid procedure call
6 Overflow
7 Out of memory
9 Subscript out of range
10 This array is fixed or temporarily locked
11 Division by zero
13 Type mismatch
14 Out of string space
18 User interrupt occurred
20 Resume without error
26 Dialog needs End Dialog or push button
28 Out of stack space
35 Sub or Function not defined
48 Error in loading DLL
49 Bad DLL calling convention
51 Internal error
52 Bad file name or number
53 File not found
54 Bad file mode
55 File already open
57 Device I/O error
58 File already exists
59 Bad record length
61 Disk full
62 Input past end of file
63 Bad record number
67 Too many files
68 Device unavailable
70 Permission denied
71 Disk not ready
74 Can’t rename with different drive
75 Path/File access error
76 Path not found
91 Object variable or With block variable not set
92 For loop not initialized

537

Summit Software Confidential
Filename: lrapp_b.fm5 Template: LRprint.FM5
Page: 537 of 540 Printed: 9/25/96

93 Invalid pattern string
94 Invalid use of Null
139 Only one user dialog may be up at any time
140 Dialog control identifier does not match any current control
141 The placeholder statement is not available on this dialog control type
143 The dialog control with the focus may not be disabled or hidden
144 Focus may not be set to a hidden or disabled control
150 Dialog control identifier is already defined
163 This statement can only be used when a user dialog is active
260 No timer available
281 No more DDE channels
282 No foreign application responded to a DDE initiate
283 Multiple applications responded to a DDE initiate
285 Foreign application won’t perform DDE method or operation
286 Timeout while waiting for DDE response
287 User pressed Escape key during DDE operation
288 Destination is busy
289 Data not provided in DDE operation
290 Data in wrong format
291 Foreign application quit
292 DDE conversation closed or changed
295 Message queue filled; DDE message lost
298 DDE requires ddeml.dll
380 Invalid property value
423 Property or method not found
424 Object required
429 OLE Automation server can’t create object
430 Class doesn’t support OLE Automation
431 OLE Automation server cannot load file
432 File name or class name not found during OLE Automation operation
438 Object doesn’t support this property or method
440 OLE Automation error
442 Connection to type library or object library for remote process has been

lost. Press OK for dialog to remove reference.
443 Object does not have a default value
445 Object doesn’t support this action
446 Object doesn’t support named arguments
447 Object doesn’t support current locale setting

Error
Number Error Message

538 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_b.fm5 Template: LRprint.FM5
Page: 538 of 540 Printed: 9/25/96

BasicScript-Specific Error Messages

448 Named argument not found
449 Argument not optional
450 Wrong number of arguments or invalid property assignment
451 Object not a collection
452 Invalid ordinal
453 Specified DLL function not found
454 Code resource not found
455 Code resource lock error
460 Invalid Clipboard format
481 Invalid picture
520 Can’t empty clipboard
521 Can’t open clipboard
600 Set value not allowed on collections
601 Get value not allowed on collections
603 ODBC - SQLAllocEnv failure
604 ODBC - SQLAllocConnect failure
608 ODBC - SQLFreeConnect error
610 ODBC - SQLAllocStmt failure
3129 Invalid SQL statement; expected 'DELETE', 'INSERT', 'PROCEDURE',

'SELECT', or 'UPDATE'
3146 ODBC -- call failed.
3148 ODBC -- connection failed.
3276 Invalid database ID

Error Number Error Message

800 Incorrect Windows version

801 Too many dimensions

802 Can’t find window

803 Can’t find menu item

804 Another queue is being flushed

805 Can’t find control

806 Bad channel number

807 Requested data not available

Error
Number Error Message

539

Summit Software Confidential
Filename: lrapp_b.fm5 Template: LRprint.FM5
Page: 539 of 540 Printed: 9/25/96

808 Can’t create popup menu

810 Command failed

811 Network error

812 Network function not supported

813 Bad password

814 Network access denied

815 Network function busy

816 Queue overflow

817 Too many dialog controls

818 Can’t find listbox/combobox item

819 Control is disabled

820 Window is disabled

821 Can’t write to INI file

822 Can’t read from INI file

823 Can’t copy file onto itself

824 OLE Automation unknown object name

825 Redimension of a fixed array

826 Can’t load and initialize extension

827 Can’t find extension

828 Unsupported function or statement

829 Can’t find ODBC libraries

830 OLE Automation Lbound or Ubound on non-Array value

831 Incorrect definition for dialog procedure

832 Incorrect number of arguments for intermodule call

833 OLE Automation object does not exist

834 Access to OLE Automation object denied

835 OLE initialization error

836 OLE Automation method returned unsupported type

837 OLE Automation method did not return a value

838 OLE automation error - the remote procedure call connection
terminated

839 OLE automation error - the RPC server is unavailable

Error Number Error Message

540 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_b.fm5 Template: LRprint.FM5
Page: 540 of 540 Printed: 9/25/96

840 OLE automation error - the RPC server is too busy to
complete this operation

841 OLE automation error - the remote procedure call failed

842 OLE automation error - the remove procedure call failed and
did not execute

Error Number Error Message

Summit Software Confidential
Filename: lrapp_c.fm5 Template: LRprint.FM5
Page: 541 of 546 Printed: 9/25/96

A P P E N D I X C

Compiler Error Messages

The following table contains a list of all the errors that may be generated by the
BasicScript compiler. With some errors, the compiler changes placeholders within the
error to text from the script being compiled. These placeholders are represented in this
table by the italicized word placeholder.

Error
Number Error Message

1 Variable Required - Can't assign to this expression
2 Letter range must be in ascending order
3 Redefinition of default type
4 Out of storage for variables
5 Type-declaration character doesn't match defined type
6 Expression too complex
7 Cannot assign whole array
8 Assignment variable and expression are different types
9 Type-declaration character not allowed for function with explicit type
10 Array type mismatch in parameter
11 Array type expected for parameter
12 Array type unexpected for parameter
13 Integer expression expected for an array index
14 Integer expression expected
15 String expression expected
16 Identifier is already a user defined type
17 Property value is the incorrect type
18 Left of "." must be an object, structure, or dialog
19 Invalid string operator
20 Can't apply operator to array type
21 Operator type mismatch
22 "placeholder" is not a variable
23 "placeholder" is not an array variable or a function
24 Unknown placeholder "placeholder"
25 Out of memory
26 placeholder: Too many parameters encountered

542 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_c.fm5 Template: LRprint.FM5
Page: 542 of 546 Printed: 9/25/96

27 placeholder: Missing parameter(s)
28 placeholder: Type mismatch in parameter placeholder
29 Missing label "placeholder"
30 Too many nested statements
31 Encountered new-line in string
32 Overflow in decimal value
33 Overflow in hex value
34 Overflow in octal value
35 Expression is not constant
36 Not inside a Do statement
37 Type-declaration character not allowed for parameter with explicit type
39 Can't pass an array by value
40 "placeholder" is already declared as a parameter
41 Variable name used as label name
42 Duplicate label
43 Not inside a function
44 Not inside a sub
46 Can't assign to function
47 Identifier is already a variable
48 Unknown type
49 Variable is not an array type
50 Can't redimension an array to a different type
51 Identifier is not a string array variable
52 0 expected
54 placeholder is not an assignable property of the object
56 placeholder is not a method of the object
57 placeholder is not a property of the object
58 Expecting 0 or 1
59 Boolean expression expected
60 Numeric expression expected
61 Numeric type For variable expected
62 For...Next variable mismatch
63 Out of string storage space
64 Out of identifier storage space
68 Division by zero
69 Overflow in expression
70 Floating-point expression expected
72 Invalid floating-point operator

Error
Number Error Message

543

Summit Software Confidential
Filename: lrapp_c.fm5 Template: LRprint.FM5
Page: 543 of 546 Printed: 9/25/96

74 Single character expected
75 Subroutine identifier can't have a type-declaration character
76 Script is too large to be compiled
77 Variable type expected
78 Types and dialog variables can’t be passed by value
79 Can't assign to user or dialog type variable
80 Maximum string length exceeded
81 Identifier name already in use as a variable
84 Operator cannot be used on an object
85 placeholder is not a property or method of the object
86 Label cannot contain type-declaration character
87 Type-declaration character mismatch in placeholder
88 Destination name is already a constant
89 Can't assign to constant
91 Identifier too long
92 Expecting string or structure expression
93 Can't assign to expression
94 Dialog and Object types are not supported in this context
95 Array expression not supported as parameter
96 Dialogs, objects, and structure expressions are not supported as a

parameter
97 Invalid numeric operator
98 Invalid structure element name following "."
99 Access value can't be used with specified mode
101 Invalid operator for object
102 Can't LSet a type with a variable-length string
103 Syntax error
105 No members defined
106 Duplicate type member
107 Set is for object assignments
109 Invalid character in octal number
110 Invalid numeric prefix: expecting &H or &O
111 End of script encountered in comment: expecting */
112 Misplaced line continuation
113 Invalid escape sequence
114 Missing End Inline
115 Statement expected
116 ByRef argument mismatch

Error
Number Error Message

544 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_c.fm5 Template: LRprint.FM5
Page: 544 of 546 Printed: 9/25/96

117 Integer overflow
118 Long overflow
119 Single overflow
120 Double overflow
121 Currency overflow
122 Optional argument must be Variant
123 Parameter must be optional
124 Parameter is not optional
125 Expected: Lib
126 Illegal external function return type
127 Illegal function return type
128 Variable not defined
129 No default property for the object
130 The object does not have an assignable default property
131 Parameters cannot be fixed length strings
132 Invalid length for a fixed length string
133 Return type is different from a prior declaration
134 Private variable too large. Storage space exceeded
135 Public variables too large. Storage space exceeded
136 Type-declaration character not allowed for variable with explicit type
137 Missing parameters are not allowed when using named parameters
138 An unnamed parameter was found following a named parameter
139 Unknown parameter name: placeholder
140 Duplicate parameter name: placeholder
141 Expecting: #If, #ElseIf, #Else, #End If, or #Const
142 Invalid preprocessor directive
143 Expecting preprocessor variable
144 Expecting: =
145 Expecting: [end of line]
146 Expecting: <expression>
148 Expecting:)
149 Unexpected value
150 Expecting: #End If
151 Expecting: Then
152 Missing #End If
153 #Else encountered without #If
154 #ElseIf encountered without #If
155 #End If encountered without #If

Error
Number Error Message

545

Summit Software Confidential
Filename: lrapp_c.fm5 Template: LRprint.FM5
Page: 545 of 546 Printed: 9/25/96

156 Invalid use of Null
157 Type mismatch
158 Not a number
159 Duplicate subroutine definition
160 Duplicate function definition
161 MBCS characters not allowed in identifiers
162 Out of range
163 Invalid date
164 Date overflow
165 Expecting: <identifier>
166 Constant type and expression are different types
167 Invalid use of New
168 Encountered: placeholder

Expecting: placeholder
169 For Each control variable on arrays must be a variant
170 For Each control variable on collections must be a variant or an object
171 For Each may not be used on an array of user-defined types or fixed-length

strings
172 For Each may only iterate over an object collection or an array
173 Not inside a For...Next statement
174 Invalid use of parenthesis with property
175 Object does not support For Each
176 Improper use of method that does not return a value
177 Improper use of method that returns a value
178 Sub or Function not allowed
179 Overflow in binary value
180 Private statement not allowed

Error
Number Error Message

546 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_c.fm5 Template: LRprint.FM5
Page: 546 of 546 Printed: 9/25/96

Summit Software Confidential
Filename: lrapp_d.fm5 Template: LRprint.FM5
Page: 547 of 550 Printed: 9/25/96

A P P E N D I X D

BasicScript Limitations

The following list contains important BasicScript limitations:

• Line numbers are not supported. Labels can be used in place of line numbers as
targets for the Goto statement.

• Variable-length strings are limited in size to 65,528 bytes. This includes local,
public, and private variable-length strings, as well as variable-length strings
contained in structures and arrays.

This byte limitation translates to 32,764 characters on Win32 platforms where each
character requires 2-bytes of storage (BasicScript uses UNICODE for its internal
string format on Win32 platforms). On multi-byte character platforms where
variable-length strings can contain both 1 and 2 byte characters, the character limit
depends on the number of 2-byte characters in the string. On single-byte character
platforms, the character limit is the same as the byte limit.

When appearing within structures and arrays, variable-length strings only require 2
bytes of storage, as their content is contained in a different data area called string
space.

• The initial size of the string space is 8K, which expands automatically up to a
maximum as determined by the application hosting BasicScript. Unless otherwise
changed by the hosting application, the maximum size of the string space is 64K.

String space contains all variable-length strings and arrays regardless of their
scope.

• The default stack size for executing scripts is 2,048 bytes. This space contains all
local variables and passed parameters (arrays and variable-length strings only
require 2-bytes of stack, as their contents are contained in string space).

The stack is also used by the runtime for storage of intermediate values, so the
actual stack space available for storage of local variables may be slightly less.

Calls made to subroutines or functions in other scripts use the stack of the caller.

Note: The application hosting BasicScript may increase or decrease the
maximum size of string space. Even so, under Windows 3.1, the maximum size
of string space cannot exceed 1 MB regardless of the size set by the hosting
application.

548 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_d.fm5 Template: LRprint.FM5
Page: 548 of 550 Printed: 9/25/96

• The data area that holds each script’s private variables is limited to 16K per script.
This data space contains all private variables defined within the script
(variable-length strings and arrays require only 2 bytes of storage in the private
variable space, as their contents are stored in the string space).

• The data area that holds public variables is limited to 16K. This data space contains
all public variables defined by all scripts (variable-length strings and arrays require
only 2 bytes of storage in the public variable space, as their contents are stored in
the string space).

• Fixed-length strings have the same maximum size as variable-length strings, but
have a practical limit which is imposed by the data area from which they are
allocated.

Local fixed-length strings: If the maximum size of the stack is 2,048 bytes, then
the largest local fixed-length string will be slightly less than 2,048 bytes. On Win32
platforms, since each character is 2 bytes, this translates to slightly less than 1,024
characters.

Private and Public fixed-length strings: Since the maximum size of the storage
for private and public variables is 16K, this means that the largest fixed-length
string stored in either of these data areas is 16,384 characters. On Win32 platforms,
this translates to 8192 characters, since each character is 2 bytes. Considering that
there is likely to be other variables contained in these data areas, the actual limit
may be much less.

Fixed-length strings contained in arrays and structures are stored along with the
other members of these compound data items, and are thus restricted in size to the
limits from which their containing data items are allocated.

• The Visual Basic declaration modifiers Static and Shared are not supported.

• The size of a source script is limited to 65,534 characters under Windows 3.1. This
limitation can be avoided by breaking up large scripts into smaller ones.

On all other platforms, script size is limited by available memory.

• The maximum number of lines in a script is limited to 65,535 lines.

• A compiled script consists of p-code, constant initialized data, and symbolic
information. On all platforms, the maximum size of the constant data is limited to
65,535 bytes. Similarly, the maximum size of the symbolic information is 65,535
bytes. (These limitations are rarely encountered, if ever.)

Under Windows, the maximum size of the code is 65,535 bytes. On all other
platforms, the maximum size of the code is limited only by available memory.

Note: The application hosting BasicScript may increase the size of the stack up
to a maximum of 8K.

549

Summit Software Confidential
Filename: lrapp_d.fm5 Template: LRprint.FM5
Page: 549 of 550 Printed: 9/25/96

The 64K limitations under Windows can be avoided by breaking up large scripts
into smaller ones, which is rarely necessary.

• Arrays can have up to 60 dimensions.

• Variable names are limited to 80 characters.

• Labels are limited to 80 characters.

• Each executing script contains a table of structures that track calls made to external
routines. Each structure is approximately 88 bytes with an overall size limited to
64K.

• The number of open DDE channels is not fixed; rather, it is limited only by
available memory and system resources.

• The number of open files is limited to 512 or the operating system limit, whichever
is less.

• The maximum size of a string literal (a string enclosed within quotation marks) is
limited to 1,024 bytes. (Strings can be concatenated using the concatenation [&]
operator with the normal string limit of 32,764 bytes.)

On wide-character systems (i.e., UNICODE on Win32 platforms), 1024 bytes
ranslates to 512 characters. On single-byte, this translates to 1,024 characters. On
multibyte systems, the maximum length depends on the number of 2-byte
characters.

• The number of nesting levels (i.e., loops within loops) is limited by compiler
memory.

• Queue playback buffer size is limited to 64K. With 10 bytes per event, this allows
for 6,553 events.

• Each GoSub requires 4 bytes of the BasicScript runtime stack.

• Arrays and user-defined types cannot be passed to a method of an OLE Automation
object.

• Arrays and user-defined types cannot be set as the value of a property of an OLE
Automation object.

• Arrays and user-defined types cannot be returned from a method or property of an
OLE Automation object.

• Array indexes must be in the following range:

-32,768 <= array-index <=32,767

• The size of an array cannot exceed 32K. For example, an array of integers, each of
which requires 2 bytes of storage, is limited to the following maximum number of
elements:

max_num_elements = (32,767 - overhead) / 2

550 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_d.fm5 Template: LRprint.FM5
Page: 550 of 550 Printed: 9/25/96

where overhead is currently approximately 16 bytes.

• A maximum of 128 fonts can be used within a single user dialog, although the
practical limitation imposed by the operating system may be less.

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 549 of 560 Printed: 9/25/96

550 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 550 of 560 Printed: 9/25/96

551

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 551 of 560 Printed: 9/25/96

A P P E N D I X E

BasicScript/Visual Basic
Differences

This appendix describes the differences between Visual Basic 4.0 and BasicScript
version 2.2.

The following topics are covered:

• Arrays

• Constants

• Data Types

• Debugging

• Declarations

• Declare Statement

• Error Handling

• Floating-Point Numbers

• Currency Numbers

• Language Element Differences

• Natural Language Support

• Objects

• Parameter Passing

• Strings

• Variants

• Stack Size

• Expression Evaluation

• File Searching

552 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 552 of 560 Printed: 9/25/96

Arrays
Visual Basic supports huge arrays, BasicScript does not.

BasicScript and Visual Basic differ in the way that elements are stored in memory.
Visual Basic stores elements in column-major order such as FORTRAN, meaning that
the leftmost dimension changes first. For example, consider the following statement:

Dim a(1 To 3,1 To 2)

In Visual Basic, the elements are stored in memory as follows:

a(1,1)
a(2,1)
a(3,1)
a(1,2)
a(2,2)
a(3,2)

BasicScript uses the same element ordering as C where the lower dimension changes
first, as shown below:

a(1,1)
a(1,2)
a(2,1)
a(2,2)
a(3,1)
a(3,2)

This difference impacts code that passes arrays to external routines using Declare and
the use of the For...Each statement.

Constants
Visual Basic supports shared constants (using the Public keyword). In BasicScript,
constants must be repeated within each script in which they are used.

Visual Basic does not allow the concatenation of constant elements. For example, the
following script compiles in BasicScript but not in Visual Basic:

Const t$ = "Hello" & Chr$(9) & "there."

Sub Main()
MsgBox t$

End Sub

Visual Basic allows a user to redefine global constants at the subroutine/function level
without affecting their global values; BasicScript does not. For example, the following
script will compile and execute in Visual Basic but not in BasicScript:

Const t$ = "Hello"

553

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 553 of 560 Printed: 9/25/96

Sub Main()
Const t$ = "Good-bye"
MsgBox t$

End Sub

Declarations
Visual Basic supports the Static keyword as a modifier for the Sub and Function
statements. BasicScript supports use of this keyword with these statements syntactically,
but has no effect symantecally.

A variable used in a comparison expression that hasn't been declared will be implicitly
declared in Visual Basic. In BasicScript, this will be seen as an unresolved function:

Sub Main
If a$ = "Hello" Then Beep

End Sub

In BasicScript, the above script will compile, but it gives a Sub or Function not defined
error when executed. In Visual Basic, this will automatically declare a variable called a$
as a String.

Debugging
While debugging, the trace function will execute a single-line If...Then statement as
multiple units, requiring two presses of the F8 key. The first trace will execute the
condition and the second will execute one of the statements.

Declare Statements
Visual Basic supports shared Declare statements (using the Public keyword). In
BasicScript, these must be declared in every script in which they are used.

BasicScript supports a superset of that functionality available in Visual Basic—namely,
the additional calling conventions.

BasicScript and Visual Basic pass values to external routines in the same manner, with
the following exceptions:

• BasicScript passes True or False as Boolean values (signed short in C). Visual Basic
passes these as Boolean variants.

• Arrays are passed to external routines as OLE safearrays. BasicScript passes arrays
as a pointer to the first array element.

554 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 554 of 560 Printed: 9/25/96

• Variants are passed as internal variant structures in both BasicScript and Visual
Basic. For all numeric values, the types are the same.

The variant structure in both systems is a 4-byte type (a 32-bit integer—the same
value as returned by the VarType function), followed by 4 bytes of slop, followed by
the value of the variable, as shown below:

Error Handling
The On Error Resume Next statement causes execution to continue on the next line
rather than at the next statement. This difference is only visible when you have placed
more than one statement on the same line, separated with a colon. For example, the
following code displays nothing in BasicScript, while, in Visual Basic, will display a
dialog:

Sub Main
On Error Resume Next
Error 10 : MsgBox "Hello, world."

End Sub

Floating-Point Numbers
In Visual Basic, floating-point numbers are interpreted as doubles unless they are
explicitly accompanied by a type-declaration character. Thus, the following line assigns
a Double in Visual Basic, whereas in BasicScript, it assigns a Single:

a = 0.00001

In BasicScript, additional checking is performed to determine whether a floating-point
number can be accurately represented as a Single. If so, then the number is stored as a
Single, requiring 4 bytes rather than 8.

The implications of this difference can be seen in the following code:

Dim a As Variant,b As Variant

a = 1000
b = .00001
a = a + b

MsgBox a

Bytes 0–3 Bytes 4–7 Bytes 8–15

VarType Alignment slop Value

555

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 555 of 560 Printed: 9/25/96

In Visual Basic, since the variables a and b are assigned Double values, the addition is
performed between two doubles, resulting in the value 1000.00001. In BasicScript, on
the other hand, a and b are assigned Single values, resulting in an addition between two
singles. When these two singles are added, there is a loss of precision resulting in the
value 1000.

In situations such as this, you should explicitly force the types using type-declaration
characters. The above code can be rewritten as follows:

Dim a As Variant,b As Variant

a = 1000#
b = .00001#
a = a + b

MsgBox a 'BasicScript displays 1000.00001.

Currency Numbers
In Visual Basic, Double numbers do not convert to Currency numbers the same way. In
Visual Basic, for example, the following script will fail:

Sub Main
result = CCur("-1.401298E-45")

End Sub

The above fails in Visual Basic because the number being converted is known to be a
Double. In BasicScript, any number between the valid range supported by Currency is
convertible to Currency, even if the number is expressed in scientific notation or is
extremely small (approaching zero).

Language Element Differences
Visual Basic and BasicScript use a slightly different syntax for the following SQL
functions (due to BasicScript's lack of support for variant arrays):

SQLError
SQLGetSchema
SQLRetrieve
SQLRequest

In Visual Basic, the GetAllSettings function returns a variant containing an array.
BasicScript does not support arrays within variants, and therefore takes an array
variable as its last parameter.

The Visual Basic Write statement accepts commas, semi-colons, and spaces as
parameter separators, much like the Print statement. In BasicScript, the Write statement

556 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 556 of 560 Printed: 9/25/96

cannot accept semi-colons as space separators, nor will it accept trailing commas or
semi-colons. Both the Print and Write statements in BasicScript reject spaces as
parameters separators.

The Const statement in BasicScript can only be used outside the scope of any subroutine
or function declaration. In Visual Basic, Const statements appearing within the
definition of a subroutine or function have scope local to that routine.

BasicScript does not support any of the following Visual Basic language elements:

Objects
BasicScript does not support any of Visual Basic's objects (except Clipboard , Screen,
and a few others).

Language Element Type

Array Function

Exit Property Statement

For Each...Next Statement

LoadPicture Function

On...Gosub Statement

On...Goto Statement

Option Private Statement

Property Get...End Property Statement

Property Let...End Property Statement

Property Set...End Property Statement

SavePicture Statement

Screen.MousePointer Property

Static Statement

With...End With Statement

557

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 557 of 560 Printed: 9/25/96

Strings
In BasicScript, variable-length strings within structures require 2 bytes of storage. In
Visual Basic, variable-length strings within structures require 4 bytes of storage.

The implications of this difference can be seen in the following code:

Type Sample
LastName As String

End Type

Sub Main
Dim a As Sample
MsgBox Len(a)

End Sub

In the above code, Visual Basic displays 4, whereas BasicScript displays 2.

In BasicScript, variable-length strings are limited to 32K in length. In Visual Basic,
variable-length strings have no limits on their lengths.

Visual Basic will not accept strings in some functions expecting numbers such as Int and
Fix. BasicScript allows strings as long as they are convertible to numbers.

Dim A As Variant
Abs(19) 'OK.
A = "10"
Abs(A) 'OK.
Abs("10") 'Works in BasicScript, not in Visual Basic

In BasicScript, these functions will accept any data type convertible to a number. If the
data type is a String, BasicScript converts it to a Double.

Fixed-length strings within structures are size-adjusted upward to an even size. Thus,
structures in BasicScript are always even-sized. Visual Basic allows fixed-length strings
within structures to maintain an odd size.

Variants
Passing variants either by value or by reference to external routines (using the Declare
statement) passes either the entire variant structure (ByVal) or a pointer to a variant
structure (ByRef) used internally by BasicScript. This means that passing variants to an
externally declared routine can only be done if that routine is aware of the internal
variant structure used by BasicScript.

Visual Basic supports variant arrays; BasicScript does not. This includes use of the
Array function.

558 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 558 of 560 Printed: 9/25/96

Passing Variants by Reference
In Visual Basic, variants cannot be passed by reference to user-defined routines
accepting nonvariant parameters. For example, the following will not work in Visual
Basic:

Sub Test(ByRef a As Integer)
End Sub

Sub Main
Dim v As Variant
v = 5
Test v 'Visual Basic gives error here

End Sub

In BasicScript, the above example works as expected. BasicScript actually performs a
conversion of the Variant v to a temporary Integer value and passes this temporary value
by reference. Upon return from the call to Test, BasicScript converts the temporary
Integer back to a Variant.

Passing Optional Variants to
Forward-Declared Routines
BasicScript does not catch the following error:

Declare Sub Test(Optional v As Variant) 'LINE 1
Sub Main

Test
End Sub

Sub Test(v As Variant) 'LINE 5
End Sub

In the above script, the Declare statement on line 1 defines a prototype for the Test
function that is incompatible with the actual declaration on line 5.

Stack Size
BasicScript uses a default stack of 2K, expandable to 8K. Visual Basic use a much
larger stack size (approximately 48K).

559

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 559 of 560 Printed: 9/25/96

Since the stack for BasicScript is smaller, you may have to be more attentive when
using local variables, especially fixed-length strings and structures, since storage for all
local variables comes from the stack.

Expression Evaluation
With Boolean expressions (i.e., expressions involving And, Or, Xor, Eqv, and Imp), if one
operand is Null and the other argument is numeric, then Null is returned regardless of the
value of the other operand. For example, the following expression returns Null:

Null And 300000

Despite the fact that the expression returns Null, Visual Basic evaluates the numeric
operand anyway, converting it to a Long. If an overflow occurs during conversion, a
trappable runtime error is generated. In BasicScript, the expression returns Null
regardless of the value of the numeric operand. For example, the following expression
will overflow in Visual Basic but not in BasicScript:

Null And 5E200

File Searching
The filename-matching algorithm used by BasicScript is different from that used by
Visual Basic. This affects commands that perform directory searching, such as Dir, Kill ,
and FileList. The following differences exist:

• In Visual Basic, an asterisk within the filename matches any characters up to the
end of the filename or up to the period, whichever comes first.

• In Visual Basic, the period is a separator between the filename and the extension. In
BasicScript, the period is treated as a normal filename character.

The following table describes the meaning of some common file specifications.:

Note: Variable-length strings only require 2 bytes of storage on the stack. Wherever
possible, use variable-length strings in place of fixed-length strings.

Specification Meaning in Visual Basic Meaning in BasicScript

* All files. All files.

. All files. All files that have an extension.

560 BasicScript Language Reference

Summit Software Confidential
Filename: lrapp_e.fm5 Template: LRprint.FM5
Page: 560 of 560 Printed: 9/25/96

This filename-matching algorithm is the same across all platforms that support
BasicScript.

s*e All files that begin with "s". All files that begin with "s" and
end with "e".

s*.* All files that begin with "s". All files that begin with "s" and
have an extension.

test. The file "test" with no
extension.

The file called "test.".
BasicScript will never find this
file under Windows or DOS.

test.* All files having the root name
"test" with any extension, such
as "test", "test.txt", and so on.

All files having the root name
"test" with an extension. The
file "test" with no extension will
not be found.

Specification Meaning in Visual Basic Meaning in BasicScript

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 561 of 584 Printed: 9/25/96

Index

Special Characters

! (exclamation point)
activating parts of files 264
used within user-defined formats 245

(number sign)
as delimiter for

date literals 132, 315
parsing input 282–284

used
to specify ordinal values 159, 160, 161
within user-defined formats 243

wildcard used with Like (operator) 308
#FALSE#, writing to sequential files 512
#NULL#, writing to sequential files 512
#TRUE#, writing to sequential files 512
& (ampersand)

concatenation operator 30
octal/hexadecimal formats 315
used within user-defined formats 245

& (operator), versus addition 36
' (apostrophe), used with comments 25
() (parentheses), used to pass parameters by value 31
* (asterisk)

multiplication operator 32
wildcard used with Like (operator) 308

+ (plus sign), addition operator 36–37
, (comma), used

with Print 384
within user-defined formats 243

- (minus sign), subtraction operator 25–26
- (operator) 25
. (period), used

to separate object from property 32–33
with structures 32–33
within filenames 127
within user-defined formats 243

/ (slash)

division operator 33–34
used within

filenames 126
user-defined formats 244

: (colon), used within user-defined formats 244
; (semicolon), used with Print 384, 386
< (less than)

comparison operator. See Comparison Operators
used within user-defined formats 245

<= (less than or equal), comparison operator. See
Comparison Operators

= (equal sign)
assignment statement 38
comparison operator. See Comparison Operators

> (greater than)
comparison operator. See Comparison Operators
used within user-defined formats 245

>= (greater than or equal), comparison operator. See
Comparison Operators

? (question mark), wildcard used with Like (operator) 308
@ (at sign), used within user-defined formats 245
\ (backslash)

integer division operator 34
used

with escape characters 369–370
within filenames 126
within user-defined formats 244

^ (caret), exponentiation operator 34–35
_ (underscore), line-continuation character 35–36
__stdcall calling convention 150
0 (digit), used within user-defined formats 243

A

Abs (function) 40
absolute value 40
actions, dialog 185
ActivateControl (statement) 40–41
activating

562 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 562 of 584 Printed: 9/25/96

applications 45–47
windows 502–503

aliases, used with external subroutines and functions 151
alignment, considerations for cross-platform scripting 125
And (operator) 42–43
annuities

future values of 252–253
interest rates of 408–409
number of periods for 352–353
payments for 381
present value of 353–355, 396–397
principal payments for 382–383

AnswerBox (function) 43–44
antilogarithm function (Exp) 224
Any (data type) 44–45
AppActivate (statement) 45–47
AppClose (statement) 47
Append (keyword) 362–364
AppFilename$ (function) 48
AppFind, AppFind$ (functions) 48–49
AppGetActive$ (function) 49–50
AppGetPosition (statement) 50–51
AppGetState (function) 51–52
AppHide (statement) 52–53
AppleScript, executing 322–323
applications

activating 45–47
changing size of 59–60
closing 47
finding 48–49

active 49–50
getting

position of 50–51
state of 51–52
type of 60–61

hiding 52–53
listing 53
maximizing 53–54
minimizing 54–55
moving 55–56
restoring 56–57
retrieving filenames of 48
running 440–442
selecting menu commands from 325–326
setting state of 57–58
showing 58–59

AppList (statement) 53
AppMaximize (statement) 53–54

AppMinimize (statement) 54–55
AppMove (statement) 55–56
AppRestore (statement) 56–57
AppSetState (statement) 57–58
AppShow (statement) 58–59
AppSize (statement) 59–60
AppType (function) 60–61
arctangent function (Atn) 68–69
arguments

parentheses use 31–32
passed to

functions 251
subroutines 468

to external routines 86, 152, 157
arranging

icons 165
windows

cascading 165
tiling 168

ArrayDims (function) 61–62
arrays 62–63

ArrayDims (function) 61–62
declaring 62
declaring, as

local 171–174
private 389–390
public 391–392

Dim (statement) 171–174
dimensions

getting bounds of 63
getting lower bound 303–304
getting number of 61–62, 63
getting upper bound 487–488
LBound (function) 303–304
maximum number of 172
reestablishing 411–412
UBound (function) 487–488

dynamic 63, 172, 389, 391, 411–412
erasing 208–209
filling

combo boxes from 183–184
drop list boxes from 183–184
list boxes from 183–184

filling with
application names 53
disk names 177–178
query results 457–459
window objects 505

Index 563

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 563 of 584 Printed: 9/25/96

fixed-sized, declaring 62
operations on 63
passing 63
Private (statement) 389–390
Public (statement) 391–392
selecting items of 428–429
setting default lower bound of 367–368
size, changing while running 411–412
sorting 64–65
total size of 172, 389, 391

ArraySort (statement) 64–65
Asc (function) 65–66
AskBox, AskBox$ (functions) 66–67
AskPassword, AskPassword$ (functions) 67–68
assigning, objects 435–436
assignment

= (statement) 38
Let (statement) 307–308
LSet (statement) 320–321
overflow during 38, 307
rounding during 225
RSet (statement) 417–418

Atn (function) 68–69
used to calculate Pi 117

B

Basic.Capability (method) 69–70, 123
Basic.Eoln$ (property) 71
Basic.FreeMemory (property) 71–72
Basic.HomeDir$ (property) 72
Basic.OS (property) 77–78, 123
Basic.PathSeparator$ (property) 78
Basic.Version$ (property) 80
BasicScript

differences between BasicScript and Visual
Basic 551

free memory of 71–72
home directory of 72
limitations of 547
version of 80

BasicScript language elements, by platform 517
Beep (statement) 80
Begin Dialog (statement) 81–83
Binary (keyword) 362–364
binary data

reading 254–256
writing 394–396

binary files
opening 362–364
reading from 254–256
writing to 394–396

binary operators
And (operator) 42–43
Eqv (operator) 207–208
Imp (operator) 280–281
Not (operator) 351–352
Or (operator) 374–376
Xor (operator) 514–515

bitmaps, used in dialog boxes 378, 379
Boolean (data type) 83–84

converting to 89–90
range of values 83
storage requirements 83

Boolean constants, True (constant) 113
Bourne shell 441
bugs (error trapping) 219–220, 360–362
ButtonEnabled (function) 84
ButtonExists (function) 85
by value, forcing parameters 251, 469
ByRef (keyword) 85–86, 152, 251, 468
byte ordering, with

files 124
structures 124

ByVal (keyword) 31, 86–87, 151, 152, 251, 468

C

Call (statement) 88
calling

external routines 149–162
other routines 88

calling conventions
__stdcall 150
CDecl 150
Pascal 150
System 150
under Win32 159

Cancel buttons
adding to dialog template 88–89
getting label of 191
setting label of 190

capabilities, of
network 345–348
platform 69–70

capturing

564 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 564 of 584 Printed: 9/25/96

active
application 167–168
window 167–168

entire screen 167–168
cascading desktop windows 165
Case Else (statement) 427
case sensitivity, when comparing strings 368–369
case statement 426–428
CBool (function) 89–90
CCur (function) 90–91
cd audio, Mci (function) 323–325
CDate, CVDate (functions) 91
CDbl (function) 91–92
CDecl (keyword) 149–162
CDecl calling convention 150
character

codes 65–66
converting to number 65–66

ChDir (statement) 92–93
ChDrive (statement) 93–94
check boxes

adding to dialog template 94–95
checking

for existence of 96
if enabled 95–96

getting state of 259
setting state of 193, 437

CheckBox (statement) 94–95
CheckBoxEnabled (function) 95–96
CheckBoxExists (function) 96
Choose (function) 96–97
Chr, Chr$ (functions) 97–99
CInt (function) 99–100
Clipboard

erasing 101
getting

contents of 100, 102
type of data in 101–102

placing snapshots into 167–168
setting contents of 100–101, 103

Clipboard$ (function) 100
Clipboard$ (statement) 100–101
Clipboard.Clear (method) 101
Clipboard.GetFormat (method) 101–102
Clipboard.GetText (method) 102
Clipboard.SetText (method) 103
CLng (function) 103–104
Close (statement) 104

closing
all files 413
applications 47
files 104
windows 503–504

collections
defined 358
elements, identifying 358
indexing 358
methods of 358
properties of 358

colors, changing desktop 165–166
combo boxes

adding to dialog template 104–106
checking

for existence of 107–108
if enabled 106–107

getting
number of items in 261
selection of 260

selecting item from 430–431
setting

edit field of 190
items in 183–184

ComboBox (statement) 104–106
ComboBoxEnabled (function) 106–107
ComboBoxExists (function) 107–108
command line, retrieving 108
Command, Command$ (functions) 108
comments 108–109

' (apostrophe) 25
Rem (statement) 412–413

common dialogs, file open 365–366
comparing strings 462–463
comparison operators 109–111

table of 109
used with

mixed types 109
numbers 110
strings 110
variants 110

compatibility mode, opening files in 363
compiler errors 541
concatenation operator (&) 30
conditionals

Choose (function) 96–97
If...Then...Else (statement) 276–277
IIf (function) 278

Index 565

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 565 of 584 Printed: 9/25/96

Switch (function) 470–471
conjunction operator (And) 42–43
Const (statement) 111–112
constants

declaring 111–112
ebBold (constant) 116
ebBoldItalic (constant) 116
ebBoolean (constant) 121
ebCurrency (constant) 121
ebDate (constant) 121
ebDirectory (constant) 116
ebDos (constant) 116
ebDouble (constant) 121
ebEmpty (constant) 120
ebExclamation (constant) 117
ebHidden (constant) 116
ebIgnore (constant) 118
ebInformation (constant) 117
ebInteger (constant) 121
ebItalic (constant) 116
ebLandscape (constant) 119
ebLeftButton (constant) 119
ebLong (constant) 121
ebMaximized (constant) 113
ebMinimized (constant) 113
ebNo (constant) 118
ebNone (constant) 116
ebNormal (constant) 116
ebNull (constant) 120
ebObject (constant) 121
ebOK (constant) 118
ebOKCancel (constant) 117
ebOKOnly (constant) 117
ebPortrait (constant) 119
ebQuestion (constant) 117
ebReadOnly (constant) 116
ebRegular (constant) 116
ebRestored (constant) 113
ebRetry (constant) 118
ebRetryCancel (constant) 117
ebRightButton (constant) 119
ebSingle (constant) 121
ebString (constant) 121
ebSystem (constant) 116
ebSystemModal (constant) 118
ebVariant (constant) 121
ebVolume (constant) 116
ebWindows (constant) 116

ebWin16 (constant) 77, 118
ebWin32 (constant) 118
ebYes (constant) 118
ebYesNo (constant) 117
ebYesNoCancel (constant) 117
Empty (constant) 113
folding 315
giving explicit type to 111
list of 113–121
naming conventions of 111
Nothing (constant) 113
Null (constant) 113
Pi (constant) 117
scoping of 112
True (constant) 113

control IDs, retrieving 179–180
control structures 205–206

Do...Loop (statement) 197–198
Exit Do (statement) 221–222
Exit For (statement) 222
Exit Function (statement) 222–223
Exit Sub (statement) 223
For...Each (statement) 236–237
For...Next (statement) 238–239
Function...End Function (statement) 248–252
GoSub (statement) 267–268, 414–415
Goto (statement) 268–269
If...Then...Else (statement) 276–277
Select...Case (statement) 426–428
Sub...End Sub (statement) 467–470
While...Wend (statement) 501

control.ini file 166
controlling applications

Menu (statement) 325–326
QueEmpty (statement) 397–398
QueFlush (statement) 398
QueKeyDn (statement) 398–399
QueKeys (statement) 399–400
QueKeyUp (statement) 400–401
QueMouseClick (statement) 401–402
QueMouseDblClk (statement) 402–403
QueMouseDblDn (statement) 403
QueMouseDn (statement) 404
QueMouseMove (statement) 404–405
QueMouseMoveBatch (statement) 405–406
QueMouseUp (statement) 406–407
QueSetRelativeWindow (statement) 407

coordinate systems

566 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 566 of 584 Printed: 9/25/96

dialog base units 421–422, 422
pixels 422–423, 424
twips per pixel 423, 423

copying
data, using

= (statement) 38
Let (statement) 307–308
LSet (statement) 320–321
RSet (statement) 417–418

files 227–228
user-defined types 321

Cos (function) 121–122
cosine 121–122
counters, used with For...Next (statement) 239
counting

items in
combo box 261
list box 263–264
string 299

lines in string 311
words 511–512

CreateObject (function) 122–123
creating new objects 173, 350–351
cross-platform scripting 123–127

alignment 125
byte ordering, with

files 124
structures 124

determining
capabilities of platform 123
platform 69–70, 123

end-of-line character 125
getting

end-of-line character 71
path separator 78
platform 77–78

path separators 126
portability, of

compiled code 125
drive letters 127

relative paths 127
unsupported language elements 125

CSng (function) 127–128
CStr (function) 128–129
CurDir, CurDir$ (functions) 129
Currency (data type) 129–130

converting to 90–91
range of values 129

storage requirements 130
custom controls, activating 41
CVar (function) 130–131
CVDate (function) 91
CVErr (function) 131

D

data conversion
character to number 65–66
during expression evaluation 224
number to

character 97–99
hex string 272
octal string 358–359

string to number 490–491
testing for numbers 296–297
to

Boolean 89–90
Currency 90–91
Date 91, 141, 293–294, 483
Double 91–92
error 131
Integer 99–100
Long 103–104
Single 127–128
String 128–129, 461–462
Variant 130–131

data conversion functions
Asc (function) 65–66
CBool (function) 89–90
CCur (function) 90–91
CDate, CVDate (functions) 91
CDbl (function) 91–92
Chr, Chr$ (functions) 97–99
CInt (function) 99–100
CLng (function) 103–104
CSng (function) 127–128
CStr (function) 128–129
CVar (function) 130–131
CVErr (function) 131
Hex, Hex$ (functions) 272
Oct, Oct$ (functions) 358–359
Str, Str$ (functions) 461–462
Val (function) 490–491

data types
Any (data type) 44–45
Boolean (data type) 83–84

Index 567

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 567 of 584 Printed: 9/25/96

changing default 162–163
Currency (data type) 129–130
Dim (statement) 171–174
Double (data type) 201
Integer (data type) 289
Long (data type) 320
Object (data type) 355–356
Private (statement) 389–390
Public (statement) 391–392
returned from external functions 151
Single (data type) 442–443
String (data type) 465–466
user-defined 489–490
Variant (data type) 491–495

database functions
SQLBind (function) 445–446
SQLClose (function) 447
SQLError (function) 447–449
SQLExecQuery (function) 449–450
SQLGetSchema (function) 450–453
SQLOpen (function) 454–455
SQLRequest (function) 455–457
SQLRetrieve (function) 457–459
SQLRetrieveToFile (function) 459–460

databases
closing 447
opening 454–455
placing data 445–446
querying 449–450, 455–457, 457–459, 459–460
retrieving

errors from 447–449
information about 450–453

Date (data type)
converting to 91, 141, 483
range of values 132
specifying date constants 132
storage requirements 132

Date, Date$ (functions) 133
Date, Date$ (statements) 133–134
date/time functions

Date, Date$ (functions) 133
Date, Date$ (statements) 133–134
DateAdd (function) 134–136
DateDiff (function) 136–138
DatePart (function) 138–140
DateSerial (function) 140–141
Day (function) 141–142
FileDateTime (function) 228

Hour (function) 273
IsDate (function) 293–294
Minute (function) 329
Month (function) 332
Now (function) 352
Second (function) 424
Time, Time$ (functions) 480–481
Time, Time$ (statements) 481–482
Timer (function) 482
Weekday (function) 499–500
Year (function) 515

DateAdd (function) 134–136
DateDiff (function) 136–138
DatePart (function) 138–140
dates

adding 134–136
converting to 140–141, 293–294
current 133, 352
day of

month 141–142
week 499–500

file
creation 228
modification 228

month of year 332
parts of 138–140
setting 133–134
subtracting 136–138
year 515

DateSerial (function) 140–141
DateValue (function) 141
Day (function) 141–142
DDB (function) 142–143
DDE

AppActivate (statement) 45–47
changing timeout 149
DoEvents (function) 198–199
DoEvents (statement) 199–200
ending conversation 147–148
executing remote command 143
getting

text 145–146
value from another application 145–146

initiating conversation 144
sending text 145
setting

data in another application 146–147
value in another application 145

568 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 568 of 584 Printed: 9/25/96

Shell (function) 440–442
starting conversation 144
terminating conversation 147–148, 148

DDEExecute (statement) 143
DDEInitiate (function) 144
DDEPoke (statement) 145
DDERequest, DDERequest$ (functions) 145–146
DDESend (statement) 146–147
DDETerminate (statement) 147–148
DDETerminateAll (statement) 148
DDETimeout (statement) 149
debugger, invoking 461
decision making

Choose (function) 96–97
If...Then...Else (statement) 276–277
IIf (function) 278
Select...Case (statement) 426–428
Switch (function) 470–471

Declare (statement) 44, 149–162
declaring

implicit variables 173
object variables 173, 350–351, 355, 356
with

Dim (statement) 171–174
Private (statement) 389–390
Public (statement) 391–392

default data type, changing 162–163
default properties 225
DefType (statement) 162–163
degrees, converting to radians 68
DELETE (SQL statement) 457
delimited files, reading 282–284
depreciation

calculated using double-declining balance
method 142–143

straight-line 443–444
sum of years' digits 471

Desktop.ArrangeIcons (method) 165
Desktop.Cascade (method) 165
Desktop.SetColors (method) 165–166
Desktop.SetWallpaper (method) 166–167
Desktop.Snapshot (method) 167–168
Desktop.Tile (method) 168
Dialog (function) 168–170
Dialog (statement) 170
dialog actions 185
dialog controls

activating 40–41

Cancel buttons
adding to dialog template 88–89
getting label of 191
setting label of 190

changing focus of 182–183
changing text of 190–191
check boxes

adding to dialog template 94–95
checking existence of 96
checking if enabled 95–96
getting state of 259
setting state of 193, 437

combo boxes
adding to dialog template 104–106
checking for existence of 107–108
checking if enabled 106–107
getting

number of items in 261
getting selection of 260
selecting item from 430–431
setting edit field of 190
setting items in 183–184

disabling 181–182
drop list boxes

adding to dialog template 201–203
getting selection of 191
setting items in 183–184

enabling 181–182
getting

enabled state of 180–181
focus of 182
text of 191–192
value of 192–193
visibility of 194

group boxes
adding to dialog template 270–271
getting label of 191

list boxes
adding to dialog template 312–313
checking

for existence of 314–315
checking if enabled 313–314
getting number of items in 263–264
getting selection of 191, 262–263
selecting item from 431–432
setting items in 183–184

OK buttons

Index 569

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 569 of 584 Printed: 9/25/96

adding to dialog template 359–360
getting label of 191
setting label of 190

option buttons
adding to dialog template 371–372
checking existence of 373
checking if enabled 372–373
getting label of 191
getting state of 265–266
grouping within dialog template 373–374
setting label of 190
setting state of 438–439

picture button controls, adding to dialog
template 379–380

picture controls
adding to dialog template 377–379
setting image of 188–190

push buttons
adding to dialog template 393–394
checking for existence of 85
checking if enabled 84
getting label of 191
selecting 429–430
setting label of 190

retrieving ID of 179–180
setting

value of 193–194
visibility of 194–197

text boxes
adding to dialog template 478–480
getting content of 191, 261–262
setting content of 190, 438

text controls
adding to dialog template 477–478
getting label of 191
setting label of 190

dialog procedures 185–188
actions sent to 185

dialog units, calculating 421–422, 422
dialogs, built-in

AnswerBox (function) 43–44
AskBox, AskBox$ (functions) 66–67
AskPassword, AskPassword$ (functions) 67–68
InputBox, InputBox$ (functions) 285–286
Msg.Open (method) 333–334
Msg.Text (property) 334–335
Msg.Thermometer (property) 335–336
MsgBox (function) 336–338

MsgBox (statement) 338–339
MsgClose (statement) 333
PopupMenu (function) 382
SelectBox (function) 428–429
user-defined 81–83

Dim (statement) 171–174
Dir, Dir$ (functions) 175–177
directories

changing 92–93
containing

BasicScript 72
Windows 474

creating 331
getting

list of 228–229
path separator 78

parsing names of 233–234
retrieving 129

filenames from 175–177, 231–233
disabling, dialog controls 181–182
disjunction operator (Or) 374–376
disk drives

changing 93–94
getting free space of 178
platform support 127
retrieving

current directory of 129
list of 177–178

DiskDrives (statement) 177–178
DiskFree (function) 178
displaying messages 336–338, 338–339

breaking text across lines 338
DlgControlId (function) 179–180
DlgEnable (function) 180–181
DlgEnable (statement) 181–182
DlgFocus (function) 182
DlgFocus (statement) 182–183
DlgListBoxArray (function) 183–184
DlgProc (function) 185–188
DlgSetPicture (statement) 188–190
DlgText (statement) 190–191
DlgText$ (function) 191–192
DlgValue (function) 192–193
DlgValue (statement) 193–194
DlgVisible (function) 194
DlgVisible (statement) 194–197
DLLs

calling 149–162

570 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 570 of 584 Printed: 9/25/96

Declare (statement) 149–162
search rules for, under Windows 158

Do...Loop (statement) 197–198
exiting Do loop 221–222

DoEvents (function) 198–199
DoEvents (statement) 199–200
DOS, BasicScript language elements supported on 517
Double (data type) 201

converting to 91–92
internal format 201
range of values 201
storage requirements 201

double-declining balance method, used to calculate
depreciation 142–143

drop list boxes
adding to dialog template 201–203
getting selection of 191
setting items in 183–184

DropListBox (statement) 201–203
dynamic arrays 63

E

Each (keyword) 236–237
ebBold (constant) 116
ebBoldItalic (constant) 116
ebBoolean (constant) 121
ebCurrency (constant) 121
ebDirectory (constant) 116
ebDOS (constant) 116
ebDouble (constant) 121
ebEmpty (constant) 120
ebExclamation (constant) 117
ebHidden (constant) 116
ebIgnore (constant) 118
ebInformation (constant) 117
ebInteger (constant) 121
ebItalic (constant) 116
ebLandscape (constant) 119
ebLeftButton (constant) 119
ebLong (constant) 121
ebMaximized (constant) 113
ebMinimized (constant) 113
ebNo (constant) 118
ebNone (constant) 116
ebNormal (constant) 116
ebNull (constant) 120
ebObject (constant) 121

ebOK (constant) 118
ebOKCancel (constant) 117
ebOKOnly (constant) 117
ebPortrait (constant) 119
ebQuestion (constant) 117
ebReadOnly (constant) 116
ebRegular (constant) 116
ebRestored (constant) 113
ebRetry (constant) 118
ebRetryCancel (constant) 117
ebRightButton (constant) 119
ebSingle (constant) 121
ebString (constant) 121
ebSystem (constant) 116
ebSystemModal (constant) 118
ebVariant (constant) 121
ebVolume (constant) 116
ebWindows (constant) 116
ebWin16 (constant) 77, 118
ebWin32 (constant) 118
ebYes (constant) 118
ebYesNo (constant) 117
ebYesNoCancel (constant) 117
EditEnabled (function) 204
EditExists (function) 204–205
Else (keyword) 276–277
ElseIf (keyword) 276–277
Empty (constant) 113
Empty, testing for 294
enabling, dialog controls 181–182
End (statement) 205–206
end of file, checking for 206–207
end-of-line, in sequential files 283
entry points, Main (statement) 323
Environ, Environ$ (functions) 206
environment variables, getting 206
EOF (function) 206–207
equivalence operator (Eqv) 207–208
Eqv (operator) 207–208
Erase (statement) 208–209
Erl (function) 209–210
Err.Number (property) 215–216
Error (statement) 218–219
error handlers

cascading 219
nesting 219, 361
removing 360
resetting 215, 361

Index 571

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 571 of 584 Printed: 9/25/96

resuming 360, 413–414
error messages

BasicScript-specific 538
compatible with Visual Basic 536
compiler 541
runtime 535

error trapping 219–220, 360–362
Error, Error$ (functions) 220–221
errors

BasicScript-specific 220
cascading 219
Erl (function) 209–210
Err.Number (property) 215–216
Error (statement) 218–219
Error, Error$ (functions) 220–221
generating 218–219
getting

error number of 215–216
line number of 209–210
text of 220–221

handling 219–220
On Error (statement) 360–362
resetting state of 215
Resume (statement) 413–414
resuming control after 220
SQL 447–449
Stop (statement) 461
trapping 360–362
user-defined 220

converting to 131
testing for 294–295

Visual Basic, compatibility with 220
escape characters, table of 369–370
exclusive or operator (Xor) 514–515
Exit Do (statement) 197, 221–222
Exit For (statement) 222, 236, 238
Exit Function (statement) 222–223
Exit Sub (statement) 223
exiting operating environment 472
Exp (function) 224
exponentiation operator (^) 34–35
expressions

evaluation of 224–225
promotion of operands within 224
propagation of Null through 113

external routines
calling 149–162
calling conventions of 153

passing parameters 152
data formats 155
null pointers 154
strings 153
using ByVal (keyword) 86, 157

specified with ordinal numbers 159, 160, 161
under

Macintosh 160
Windows 158
Win32 159

F

file I/O
Close (statement) 104
EOF (function) 206–207
Get (statement) 254–256
Input# (statement) 282–284
Line Input# (statement) 309–310
Loc (function) 316
Lock, Unlock (statements) 317–318
Lof (function) 319
Open (statement) 362–364
Print# (statement) 385–387
Put (statement) 394–396
Reset (statement) 413
Seek (function) 425
Seek (statement) 425–426
Spc (function) 445
Unlock (statement). See Lock, Unlock (statements)
Width# (statement) 501–502
Write# (statement) 512–513

file numbers, finding available 248
file open dialog box 365–366
FileAttr (function) 226–227
FileCopy (statement) 227–228
FileDateTime (function) 228
FileDirs (statement) 228–229
FileExists (function) 229–230
FileLen (function) 230
FileList (statement) 231–233
FileParse$ (function) 233–234
files

attributes of
ebArchive (constant) 116
ebDirectory (constant) 116
ebHidden (constant) 116
ebNone (constant) 116

572 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 572 of 584 Printed: 9/25/96

ebNormal (constant) 116
ebReadOnly (constant) 116
ebSystem (constant) 116
ebVolume (constant) 116
getting 257–259
setting 436–437
used with Dir, Dir$ (functions) 176
used with FileList (statement) 232
used with GetAttr (function) 257

attributes, used with SetAttr (statement) 436
checking

existence of 229–230
for end of 206–207

closing 104
all 413

copying 227–228
deleting 301–303
end-of-line character 125
getting

date and time of 228
length of 230
list of 175–177, 231–233
mode of 226–227
next available file number 248
position within 316, 425
size of 319

locking regions in 317–318
opening 362–364

access capabilities 363
modes 363
setting another process's access rights 363
setting record length 364
truncating to zero length 363

printing 388–389
reading 282–284

binary data from 254–256
lines from 309–310

renaming 340–341
setting read/write position in 425–426
sharing 363
splitting names of 233–234
types of

ebDOS (constant) 116
ebWindows (constant) 116
FileType (function) 234–235
getting 234–235

unlocking regions in 317–318
writing

binary data to 394–396
query results to 459–460

writing to 385–387, 512–513
FileType (function) 234–235
financial functions

DDB (function) 142–143
Fv (function) 252–253
IPmt (function) 289–291
IRR (function) 291–292
MIRR (function) 329–331
NPer (function) 352–353
Npv (function) 353–355
Pmt (function) 381
PPmt (function) 382–383
Pv (function) 396–397
Rate (function) 408–409
Sln (function) 443–444
SYD (function) 471

finding
applications 48–49
files 175–177
strings 287–288
windows 504–505

Fix (function) 235
fixed arrays 62
fixed-length strings

conversion between variable-length 466
declaring 172, 390, 391
passing to external routines 153, 157
within structures 485

floating-point values
Double (data type) 201
Single (data type) 442–443

focus, of dialog controls
getting 182
setting 182–183

fonts, within user dialogs 83
For...Each (statement) 236–237
For...Next (statement) 238–239

exiting For loop 222
formatting data

built-in 241
built-in formats, date/time 241, 242
in files

Spc (function) 445
Width# (statement) 501–502

user-defined formats 242
forward referencing, with Declare (statement) 44, 149–

Index 573

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 573 of 584 Printed: 9/25/96

162
FreeFile (function) 248
Function...End Function (statement) 248–252
Function...End Sub (statement), exiting function 222–223
functions

defining 248–252
exiting function 222–223
returning values from 250

future value of annuity, calculating 252–253
fuzzy string comparisons 308–309
Fv (function) 252–253

G

generating random numbers 407–408
Get (statement) 254–256
GetAttr (function) 257–259
GetCheckBox (function) 259
GetComboBoxItem$ (function) 260
GetComboBoxItemCount (function) 261
GetEditText$ (function) 261–262
GetListBoxItem$ (function) 262–263
GetListBoxItemCount (function) 263–264
GetOption (function) 265–266
global (public) variables 391–392
Global (statement) (Public [statement]) 391–392
GoSub (statement) 267–268

returning from 414–415
Goto (statement) 268–269
grep (Like [operator]) 308–309
group boxes

adding to dialog template 270–271
getting label of 191

GroupBox (statement) 270–271
grouping option buttons 373–374

H

handles, getting operating system file handles 226–227
height, of screen 422–423
Hex, Hex$ (functions) 272
hexadecimal characters, in strings 369–370
hexadecimal strings

converting to 272
converting to numbers 490–491

hiding
applications 52–53
dialog controls 194–197

HLine (statement) 273
home directory 72
Hour (function) 273
HPage (statement) 274
HScroll (statement) 274
HWND (object) 274–275

getting value of 275–276

I

icons, arranging on desktop 165
idle loops

DoEvents (function) 198–199
DoEvents (statement) 199–200

If...Then...Else (statement) 276–277
If...Then...End If (statement), shorthand for IIf 278
IIf (function) 278
Imp (operator) 280–281
implication operator (Imp) 280–281
implicit variable declaration, with DefType

(statement) 162–163
indexing collections 358
infinite loops, breaking out of 198, 237, 239, 501
ini files

reading
items from 409–410
section names from 410–411

writing items to 513–514
Inline (statement) 281
Input (keyword) 362–364
Input# (statement) 282–284
InputBox, InputBox$ (functions) 285–286
INSERT (SQL statement) 457
instantiation of OLE objects 122–123
InStr (function) 287–288
Int (function) 288–289
Integer (data type) 289

converting to 99–100
range of values for 289
storage requirements of 289

integer division operator (\) 34
intercepting (trapping) errors 219–220, 360–362
interest payments, calculating 289–291
internal rate of return, calculating 291–292, 329–331
IPmt (function) 289–291
IRR (function) 291–292
Is (operator) 292–293
IsDate (function) 293–294

574 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 574 of 584 Printed: 9/25/96

IsEmpty (function) 294
IsError (function) 294–295
IsMissing (function) 252, 295–296, 470
IsNull (function) 296
IsNumeric (function) 296–297
IsObject (function) 297
Item$ (function) 298–299
ItemCount (function) 299
iterating through collections 358

J

jumps
GoSub (statement) 267–268
Goto (statement) 268–269
Return (statement) 414–415

K

keystrokes, sending
DoEvents (function) 198–199
DoEvents (statement) 199–200
QueKeyDn (statement) 398–399
restrictions 400
special characters 433
to applications 398–399

keywords, restrictions for 301
Kill (statement) 301–303

L

labels
in place of line numbers 310
naming conventions of 269
used with

GoSub (statement) 268
Goto (statement) 269

LBound (function) 303–304
used with OLE arrays 303

LCase, LCase$ (functions) 304
least precise operand 367
Left, Left$ (functions) 305
Len (function) 305–307
Len (keyword), specifying record length 362–364
Let (statement) 307–308
Lib (keyword) 149–162
Like (operator) 308–309

limitations of BasicScript 547
line breaks, in MsgBox (statement) 338
line continuation 35–36
Line Input# (statement) 309–310
line numbers 310
Line$ (function) 310–311
LineCount (function) 311
list boxes

adding to dialog template 312–313
checking

for existence of 314–315
if enabled 313–314

getting
number of items in 263–264
selection of 191, 262–263

selecting item from 431–432
setting items in 183–184

ListBox (statement) 312–313
ListBoxEnabled (function) 313–314
ListBoxExists (function) 314–315
literals 315–316
Loc (function) 316
local variables, declaring 171–174
Lock, Unlock (statements) 317–318
locking file regions 317–318
Lof (function) 319
Log (function) 319–320
logarithm function (Log) 319–320
logarithms

Exp (function) 224
Log (function) 319–320

logical constants, True (constant) 113
logical negation 351–352
logical operators

And (operator) 42–43
Eqv (operator) 207–208
Imp (operator) 280–281
Not (operator) 351–352
Or (operator) 374–376
Xor (operator) 514–515

Long (data type) 320
converting to 103–104
range of values 320
storage requirements for 320

looping
Do...Loop (statement) 197–198
exiting

Do loop 221–222

Index 575

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 575 of 584 Printed: 9/25/96

For loop 222
For...Each (statement) 236–237
For...Next (statement) 238–239

lowercasing strings 304
LSet (statement) 320–321
LTrim, LTrim$ (functions). See Trim, Trim$, LTrim,

LTrim$, RTrim, RTrim$ (functions)

M

MacID (function) 47, 177, 303, 322, 441
Macintosh, BasicScript language elements supported

on 517
Macintosh, MacID (function) 322
MacScript (statement) 322–323
Main (statement) 323
matching strings 308–309
math functions

Abs (function) 40
Atn (function) 68–69
Cos (function) 121–122
Exp (function) 224
Fix (function) 235
Int (function) 288–289
Log (function) 319–320
Randomize (statement) 408
Rnd (function) 416–417
Sgn (function) 439–440
Sin (function) 442
Sqr (function) 460–461
Tan (function) 476–477

maximizing
applications 53–54
windows 506

Mci (function) 323–325
memory

available 472
resources 472–473
within BasicScript 71–72

total 474
total size for arrays 172

Menu (statement) 325–326
MenuItemChecked (function) 326
MenuItemEnabled (function) 326
MenuItemExists (function) 326–327
menus

determining
existence of 326–327

if checked 326
if enabled 326

pop-up 382
selecting 325–326

message dialog
changing text of 334–335
closing 333
creating 333–334
setting thermometer 335–336

messages, runtime error 535
metafiles, used

in dialog boxes 378, 379
with picture controls 189, 378, 380

methods
defined 356
invoking 357
with OLE Automation 355

Mid, Mid$ (functions) 327–328
Mid, Mid$ (statements) 328–329
minimizing

applications 54–55
windows 507

Minute (function) 329
MIRR (function) 329–331
MkDir (statement) 331
Mod (operator) 331–332
modeless message dialog 334
modes, for open files 226–227
Month (function) 332
most precise operand 367
mouse

clicking button 401–402
double-clicking button 402–403
double-pressing button 403
moving 404–405

in batch 405–406
pressing button 404
releasing button 406–407
setting coordinates relative to window 407
trails, setting 473

moving
applications 55–56
windows 507–508

Msg.Open (method) 333–334
Msg.Text (property) 334–335
Msg.Thermometer (property) 335–336
MsgBox (function) 336–338
MsgBox (statement) 338–339

576 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 576 of 584 Printed: 9/25/96

MsgBox (statement), constants used with
ebExclamation (constant) 117
ebIgnore (constant) 118
ebInformation (constant) 117
ebNo (constant) 118
ebOK (constant) 118
ebOKCancel (constant) 117
ebOKOnly (constant) 117
ebQuestion (constant) 117
ebRetry (constant) 118
ebRetryCancel (constant) 117
ebSystemModal (constant) 118
ebYes (constant) 118
ebYesNo (constant) 117
ebYesNoCancel (constant) 117

MsgClose (statement) 333

N

Name (statement) 340–341
naming conventions, of

constants 111
labels 269
variables 174

negation
logical 351–352
unary minus operator 25–26

nesting, For...Next (statement) 236, 238
net present value, calculating 353–355
Net.AddCon (method) 342–343
Net.Browse$ (method) 343–344
Net.CancelCon (method) 344
Net.Dialog (method) 345
Net.GetCaps (method) 345–348
Net.GetCon$ (method) 349–350
Net.User$ (property) 350
NetWare, BasicScript language elements supported

on 517
networks

canceling connection 344
capabilities of 345–348
getting

name of connection 349–350
user name 350

invoking
browse dialog box 343–344
network dialog 345

redirecting local device 342–343

New (keyword) 173, 350–351, 435–436
Next (keyword) 236–237, 238–239
NLMs

file extension for, default 160
search rules for 160

Not (operator) 351–352
Nothing (constant) 113

used with Is (operator) 292
Now (function) 352
NPer (function) 352–353
Npv (function) 353–355
Null

checking for 296
propagation of 113
versus Empty 113

Null (constant) 113
nulls, embedded within strings 465
numbers

adding 37
converting

from strings 490–491
to strings 461–462

floating-point 201, 442–443
getting sign of 439–440
IsNumeric (function) 296–297
octal representation 315
printing 384–385
reading from

binary/random files 254–256
sequential files 282–284

testing for 296–297
truncating 235, 288–289
writing to

binary/random files 394–396
sequential files 385–387, 512–513

numeric operators
* (operator) 32
+ (operator) 36–37
- (operator) 25–26
/ (operator) 33–34
\ (operator) 34
^ (operator) 34–35

O

Object (data type) 355–356
storage requirements for 355

objects 356–358

Index 577

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 577 of 584 Printed: 9/25/96

accessing
methods of 357
properties of 355, 357

assigning 435–436
values to 357

automatic destruction 355
collections of 358
comparing 292–293, 357
creating 435–436

new 173, 350–351
declaring 171–174, 355, 356, 389–390

as public 391–392
defined 356
instantiating 355
invoking methods of 355
OLE, creating 122–123
predefined, table of 358
testing for 297
testing if uninitialized 292
using dot separator 355

Oct, Oct$ (functions) 358–359
octal characters, in strings 369–370
octal strings

converting to 358–359
converting to numbers 490–491

OK buttons
adding to dialog template 359–360
getting label of 191
setting label of 190

OKButton (statement) 359–360
OLE Automation

CreateObject (function) 122–123
creating objects 122–123
default properties of 225
Object (data type) 355–356
Set (statement) 435–436

On Error (statement) 219, 360–362
Open (statement) 362–364
operating environment

exiting 472
free

memory of 472
resources of 472–473

restarting 473–474
total memory in 474

operators
& (operator) 30
* (operator) 32

+ (operator) 36–37
- (operator) 25–26
/ (operator) 33–34
< (operator). See Comparison Operators
<= (operator). See Comparison Operators
= operator. See Comparison Operators
> (operator). See Comparison Operators
>= (operator). See Comparison Operators
\ (operator) 34
^ (operator) 34–35
And (operator) 42–43
Eqv (operator) 207–208
Imp (operator) 280–281
Is (operator) 292–293
Like (operator) 308–309
Mod (operator) 331–332
Not (operator) 351–352
Or (operator) 374–376
precedence of 366–367
precision of 367
Xor (operator) 514–515

Option Base (statement) 172, 367–368, 389, 391
option buttons

adding to dialog template 371–372
checking

existence of 373
if enabled 372–373

getting
label of 191
state of 265–266

grouping within dialog template 373–374
setting

label of 190
state of 438–439

Option Compare (statement) 368–369
effect on

Like (operator) 308
string comparisons 110, 463

Option CStrings (statement) 369–370
Optional (keyword) 151, 468
optional parameters

checking for 295–296
passed to

functions 251
subroutines 469

passing to
external routines 151
subroutines 468

578 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 578 of 584 Printed: 9/25/96

OptionButton (statement) 371–372
OptionEnabled (function) 372–373
OptionExists (function) 373, 373–374
OptionGroup (statement) 373–374
Or (operator) 374–376
ordinal values 159, 160, 161
OS/2, BasicScript language elements supported on 517
Output (keyword) 362–364
overflow, in assignment 38, 307

P

parameters
passing, by

reference 85–86
value 31–32, 86–87

to external routines 86, 152, 157
parentheses, used in expressions 31–32
parsing

filenames 233–234
strings

by item 298–299
by line 310–311
by words 511
counting items within 299
counting lines within 311
counting words within 511–512

Pascal calling convention 150
password, requesting from user 67–68
path separator

getting 78
on different platforms 126

paths
extracting from filenames 233–234
specifying relative 127

pausing script execution 443
period (.), used

to separate object from property 32–33
with structures 32–33

Pi (constant) 117
PICT files, on Macintosh 189, 378, 380
Picture (statement) 377–379
picture button controls, adding to dialog template 379–380
picture controls

adding to dialog template 377–379
automatic loading of images into 195
caching 195
deleting image of 189

setting image of 188–190
PictureButton (statement) 379–380
platform constants, ebWin16 (constant) 77
Pmt (function) 381
PopupMenu (function) 382
portability of compiled code 125
PPmt (function) 382–383
precedence of operators 366–367
precision

loss of 38
of operators 367

predefined objects, table of 358
present value, calculating 396–397
Preserve (keyword) 411–412
preserving elements while redimensioning arrays 411–412
Print (statement) 384–385
print zones 384, 386
Print# (statement) 385–387
printer orientation

constants used with
ebLandscape (constant) 119
ebPortrait (constant) 119

getting 387–388
setting 388

PrinterGetOrientation (function) 387–388
PrinterSetOrientation (statement) 388
PrintFile (function) 388–389
printing

files 388–389
to stdout 384–385
to viewports 384–385

Private (keyword) 248, 467
Private (statement) 389–390
private variables, declaring 389–390
promotion

automatic 367
of operands in expressions 224

properties
accessing 357
defined 356
with OLE Automation 355

Public (keyword) 249, 467
Public (statement) 391–392
public variables, declaring 391–392
push buttons

adding to dialog template 393–394
checking

for existence of 85

Index 579

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 579 of 584 Printed: 9/25/96

if enabled 84
getting label of 191
selecting 429–430
setting label of 190

PushButton (statement) 393–394, 394–396
Put (statement) 394–396
Pv (function) 396–397

Q

QueEmpty (statement) 397–398
QueFlush (statement) 398
QueKeyDn (statement) 398–399
QueKeys (statement) 399–400
QueKeyUp (statement) 400–401
QueMouseClick (statement) 401–402
QueMouseDblClk (statement) 402–403
QueMouseDblDn (statement) 403
QueMouseDn (statement) 404
QueMouseMove (statement) 404–405
QueMouseMoveBatch (statement) 405–406
QueMouseUp (statement) 406–407
QueSetRelativeWindow (statement) 407
queues

constants used with
ebLeftButton (constant) 119
ebRightButton (constant) 119

emptying 397–398
playing back 398
waiting for playback of 198–199, 199–200

R

radians, converting to degrees 68
Random (function) 407–408
Random (keyword) 362–364
random files

opening 362–364
reading 254–256
setting record length 364
writing to 394–396

random numbers
generating

between 0 and 1 416–417
within range 407–408

initializing random number generator 408
Randomize (statement) 408
Rate (function) 408–409

Read (keyword) 362–364
ReadIni$ (function) 409–410
ReadIniSection (statement) 410–411
recursion 250, 468
Redim (statement) 411–412
redimensioning arrays 411–412
reference counting 355
regular expressions, with Like (operator) 308–309
relaxed type checking 44–45
Rem (statement) 412–413
remainder, calculating 331–332
remote execution, with DDEExecute (statement) 143
renaming files 340–341
Reset (statement) 413
resetting error handler 361
resizing

applications 59–60
windows 510

resolution, of screen 422–423, 424
resources, of operating environment 472–473
restoring

applications 56–57
windows 508–509

Resume (statement) 220, 360–362, 413–414
Return (statement) 414–415
Right, Right$ (functions) 415
Rnd (function) 416–417
rounding 225
RSet (statement) 417–418
RTrim, RTrim$ (functions). See Trim, Trim$, LTrim,

LTrim$, RTrim, RTrim$ (functions)
running other programs 440–442
runtime errors 535

S

scoping, of
constants 112
object variables 435

Screen.DlgBaseUnitsX (property) 421–422
Screen.DlgBaseUnitsY (property) 422
Screen.Height (property) 422–423
Screen.TwipsPerPixelX (property) 423
Screen.TwipsPerPixelY (property) 423
Screen.Width (property) 424
scrolling

HLine (statement) 273
HPage (statement) 274

580 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 580 of 584 Printed: 9/25/96

HScroll (statement) 274
VLine (statement) 498
VPage (statement) 498–499
VScroll (statement) 499

Second (function) 424
seed, for random number generator 408
Seek (function) 425
Seek (statement) 425–426
SELECT (SQL statement) 456
Select...Case (statement) 426–428
SelectBox (function) 428–429
SelectButton (statement) 429–430
SelectComboBoxItem (statement) 430–431
SelectListBoxItem (statement) 431–432
sending keystrokes 398–399
SendKeys (statement) 199
separator lines, in dialog boxes 270
sequential files

opening 362–364
reading 282–284

lines from 309–310
writing to 385–387, 512–513

Set (statement) 435–436
SetAttr (statement) 436–437, 437
SetCheckBox (statement) 437
SetEditText (statement) 438
SetOption (statement) 438–439
Sgn (function) 439–440
Shared (keyword) 362–364
sharing

files 363
variables 392

Shell (function) 440–442
showing

applications 58–59
dialog controls 194–197

sign, of numbers 439–440
Sin (function) 442
sine function (Sin) 442
Single (data type) 442–443

conversion to 127–128
range of values 442
storage requirements 443

Sleep (statement) 443
Sln (function) 443–444
sounds

Beep (statement) 80
Mci (function) 323–325

Space, Space$ (functions) 444–445
Spc (function) 385, 386, 445
special characters 98, 433

escape characters 369–370
SQLBind (function) 445–446
SQLClose (function) 447
SQLError (function) 447–449
SQLExecQuery (function) 449–450
SQLGetSchema (function) 450–453
SQLOpen (function) 454–455, 455–457
SQLRequest (function) 455–457
SQLRetrieve (function) 457–459
SQLRetrieveToFile (function) 459–460
Sqr (function) 460–461
square root function (Sqr) 460–461
Static (keyword) 468
stdout, printing to 384–385
Step (keyword) 238–239
Stop (statement) 461
stopping script execution 205–206, 461
storage, for fixed-length strings 466
Str, Str$ (functions) 461–462
straight-line depreciation 443–444
StrComp (function) 462–463
String (data type) 465–466
string functions

Item$ (function) 298–299
LCase, LCase$ (functions) 304
Left, Left$ (functions) 305
Len (function) 305–307
Line$ (function) 310–311
LTrim, LTrim$ (functions). See Trim, Trim$, LTrim,

LTrim$, RTrim, RTrim$ (functions)
Mid, Mid$ (functions) 327–328
Option Compare (statement) 368–369
Right, Right$ (functions) 415
RTrim, RTrim$ (functions). See Trim, Trim$, LTrim,

LTrim$, RTrim, RTrim$ (functions)
Space, Space$ (functions) 444–445
StrComp (function) 462–463
String, String$ (functions) 466–467
Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$

(functions) 483–484
UCase, UCase$ (functions) 488
Word$ (function) 511

string operators
& (operator) 30
+ (operator) 36–37

Index 581

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 581 of 584 Printed: 9/25/96

Like (operator) 308–309
String, String$ (functions) 466–467
strings

comparing 110, 308–309, 368–369, 462–463
concatenation 30, 36–37

versus addition 30, 36
converting from numbers 461–462
converting to 128–129

lowercase 304
numbers 490–491
uppercase 488

copying 320–321, 417–418
counting

items within 299
lines within 311
words within 511–512

escape characters in 369–370
finding one within another 287–288
fixed-length

declaring 172, 390, 391
versus variable-length 465

getting
leftmost characters from 305
length of 305–307
rightmost characters from 415
substrings from 327–328

of same characters 466–467
of spaces 444–445
parsing by item 298–299
printing 384–385
reading from sequential files 282–284, 284–285,

309–310
requesting from user 66–67, 285–286
retrieving

items from 298–299
lines from 310–311
words from 511

setting substrings in 328–329
String (data type) 465–466
trimming

leading and trailing spaces from 483–484
leading spaces from 483–484
trailing spaces from 483–484

writing to sequential files 385–387, 512–513
Sub...End Sub (statement) 467–470

exiting subroutine 223
subroutines

defining 467–470

exiting subroutine 223
substrings

finding 287–288
getting 327–328

leftmost characters from 305
rightmost characters from 415

setting 328–329
sum of years' digits depreciation 471
Switch (function) 470–471
SYD (function) 471
System calling convention 150
System.Exit (method) 472
System.FreeMemory (property) 472
System.FreeResources (property) 472–473
System.MouseTrails (method) 473
System.Restart (method) 473–474
System.TotalMemory (property) 474
System.WindowsDirectory$ (property) 474
System.WindowsVersion$ (property) 474–475

T

Tab (function) 385, 386
Tan (function) 476–477
tangent function (Tan) 476–477
task list, filling array with 53
Text (statement) 477–478
text boxes

adding to dialog template 478–480
checking

existence of 204–205
if enabled 204

getting content of 191, 261–262
setting content of 190, 438

text controls
adding to dialog template 477–478
getting label of 191
setting label of 190

TextBox (statement) 478–480
thermometers, in message dialogs 335–336
tiling desktop windows 168
time

forming from components 482
getting current time 352, 480–481
hours 273
minutes 329
seconds 424

since midnight 482

582 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 582 of 584 Printed: 9/25/96

setting current time 481–482
Time, Time$ (functions) 480–481
Time, Time$ (statements) 481–482
Timer (function) 482, 482
TimeSerial (function) 482
TimeValue (function) 483
trigonometric functions

Atn (function) 68–69
Cos (function) 121–122
Sin (function) 442
Tan (function) 476–477

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$
(functions) 483–484

trimming, leading spaces from strings 483–484
True (constant) 113
truncating numbers 235, 288–289
twips per pixel, calculating 423, 423
Type (statement) 484–485
type checking, relaxed, with Declare (statement) 44–45
type coercion 224
type-declaration characters

effect on interpretation when reading numbers from
sequential files 282

for
Currency 130
Double 201
Integer 289
Long 320
Single 443
String 465

used
when converting to number 296
when declaring literals 315–316
with Dim (statement) 173
with external subroutines and functions 150

U

UBound (function) 487–488
UCase, UCase$ (functions) 488
unary minus operator 25–26
underflow 38
uninitialized objects 355, 356

Nothing (constant) 113
testing for with Is (operator) 292

universal date format
reading 282
used with literals 132, 315

UNIX, BasicScript language elements supported on 517
Unlock (statement). See Lock, Unlock (statements)
unlocking file regions 317–318
unsupported language elements 125
UPDATE (SQL statement) 457
uppercasing strings 488
user dialogs

automatic timeout for 169
available controls in 81
Begin Dialog (statement) 81–83
CheckBox (statement) 94–95
ComboBox (statement) 104–106
control outside bounds of 186
creating 81–83
default button for 169
Dialog (function) 168–170
Dialog (statement) 170
dialog procedures of 185–188
DlgControlId (function) 179–180
DlgEnable (function) 180–181
DlgEnable (statement) 181–182
DlgFocus (function) 182
DlgFocus (statement) 182–183
DlgListBoxArray (function) 183–184
DlgProc (function) 185–188
DlgSetPicture (statement) 188–190
DlgText (statement) 190–191
DlgText$ (function) 191–192
DlgValue (function) 192–193
DlgValue (statement) 193–194
DlgVisible (function) 194
DlgVisible (statement) 194–197
DropListBox (statement) 201–203
expression evaluation within 82
GroupBox (statement) 270–271
idle processing for 187
invoking 168–170, 170
ListBox (statement) 312–313
nesting capabilities of 187
OKButton (statement) 359–360
OptionButton (statement) 371–372
OptionGroup (statement) 373–374
Picture (statement) 377–379
PictureButton (statement) 379–380
pressing Enter within 359
pressing Esc within 88
PushButton (statement) 393–394
required statements within 82

Index 583

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 583 of 584 Printed: 9/25/96

showing 186
Text (statement) 477–478
TextBox (statement) 478–480

user-defined errors
converting to 131
generating 218–219
testing for 294–295

user-defined types 489–490
copying 489
declaring 489
defining 484–485
getting size of 305–307, 490
passing 490

V

Val (function) 490–491
Value (property) 275–276
variables

assigning objects 435–436
declaring

as local 171–174
as private 389–390
as public 391–392
with Dim 171–174
with Private (statement) 389–390
with Public (statement) 391–392

getting storage size of 305–307
implicit declaration of 173
initial values of 173, 390
naming conventions of 174

Variant (data type) 491–495
variants

adding 37, 493
assigning 492
automatic promotion of 367
containing no data 113, 493
converting to 130–131
disadvantages 494
Empty (constant) 113
getting

length of 305–307
types of 492, 495–496

Null (constant) 113
operations on 492
passing

nonvariant data to routines taking variants 494
to routines taking nonvariants 494

printing 384–385
reading from sequential files 282–284
storage requirements of 493
testing for

Empty 294
Error 294–295
Null 296
objects 297

types of 491, 495
ebBoolean (constant) 121
ebCurrency (constant) 121
ebDate (constant) 121
ebDouble (constant) 121
ebEmpty (constant) 120
ebError (constant) 121
ebInteger (constant) 121
ebLong (constant) 121
ebNull (constant) 120
ebObject (constant) 121
ebSingle (constant) 121
ebString (constant) 121
ebVariant (constant) 121

Variant (data type) 491–495
writing to sequential files 385–387, 512–513

VarType (function) 495–496
version, of

BasicScript 80
Windows 474–475

Viewport.Clear (method) 496
Viewport.Close (method) 496
Viewport.Open (method) 497–498
viewports

clearing 496
closing 496
keys used in 497
opening 497–498
printing to 384–385

Visual Basic
differences between BasicScript and Visual

Basic 551
error messages 536

VLine (statement) 498
VPage (statement) 498–499
VScroll (statement) 499

W

wallpaper, changing desktop 166–167

584 BasicScript Language Reference

Summit Software Confidential
Filename: lr.ix Template: LRtemp.FM5
Page: 584 of 584 Printed: 9/25/96

waveform audio, Mci (function) 323–325
Weekday (function) 499–500
While...Wend (statement) 501
Width# (statement) 501–502
width, of screen 424
wildcards, used with Dir, Dir$ (functions) 176
win.ini file 141, 167, 248, 388, 410, 411, 483, 514
WinActivate (statement) 502–503
WinClose (statement) 503–504, 504–505
Windows

directory of 474
version of 474–475

windows
activating 502–503
capturing 167–168
closing 503–504
constants used with

ebMaximized (constant) 113
ebMinimized (constant) 113
ebRestored (constant) 113

finding 504–505
getting

list of 505
value of 275–276

maximizing 506
minimizing 507
moving 507–508
resizing 510
restoring 508–509
scrolling 273, 274, 274, 498, 498–499, 499

Windows, BasicScript language elements supported
on 517

WinFind (function) 504–505
WinList (statement) 505, 506
WinMaximize (statement) 506
WinMinimize (statement) 507, 507–508
WinMove (statement) 507–508
WinRestore (statement) 508–509, 510
WinSize (statement) 510
Win32, BasicScript language elements supported on 517
Word$ (function) 511
word-wrapping, in MsgBox (statement) 338
WordCount (function) 511–512
Write (keyword) 362–364
Write# (statement) 512–513
WriteIni (statement) 513–514

X

Xor (operator) 514–515

Y

Year (function) 515
yielding 198–199, 199–200, 443

