
���������������	

�����	�
���������

Notice
This software program is a proprietary product of Cardiff Software, Inc. and is protected by copyright laws
and international treaty. Use of this software is subject to acceptance of the Cardiff Software End User
License Agreement included in this software package.
Information in this manual is subject to change without notice and does not represent a commitment on the
part of Cardiff Software, Inc. The software described in this document is furnished under a license agreement
which states the terms for use of this product. The software may be used or copied only in accordance with the
terms of that agreement. No part of this publication may be reproduced, transmitted, stored in a retrieval sys-
tem, or translated into another language without the written permission of Cardiff Software, Inc. This manual
utilizes fictitious names for purposes of demonstration; references to actual persons, companies, or organiza-
tions is strictly coincidental.

Trademarks and Copyrights
Copyright ©1991-2000, Cardiff Software, Inc. All rights reserved. AudienceOne, the AudienceOne Logo, the
Cardiff logo, Cardiff Software, Connect Agent, HTML+Forms, MediClaim, PDF+Forms, TELEform, Tri-CR,
TrueAddress, and VersiForm are trademarks or registered trademarks of Cardiff Software, Inc. The Adobe
logo, Adobe and Acrobat are registered trademarks of Adobe Systems, Inc. Other products mentioned herein
may be trademarks and/or registered trademarks of their respective owners.
Adobe and Adobe Acrobat are registered trademarks of Adobe Systems, Inc.
Portions of the product, Copyright 1991-2000, Summit Software Company.
dBASE is a registered trademark of Borland Corporation.
Portions of the product, Copyright 1990-98, Pixel Translations, Inc., Inlite.
Microsoft Windows, Windows 95, Windows 98, Windows 2000, Windows NT, Microsoft Exchange, Excel,
SQL, Access, MS-DOS, ODBC, and Dynamic Data Exchange are registered trademarks of Microsoft Corpo-
ration.
SmartHeap Memory Manager, Copyright 1991-2000, Arthur D. Applegate. All Rights Reserved.
Pervasive.SQL is a trademark of Pervasive Software, Inc.
Some bar code technology provided in this product is copyrighted by TAL Technologies, Inc.
The Sentry Spelling-Checker Engine, Copyright 1993-2000, Wintertree Software, Inc.
Tri-CR includes technologies licensed from Advanced Telecommunications Technologies, re: Recognition
GmbH, Caere, Summit Software Company and others. Raster Imaging Technology Copyrighted by Snow-
bound Software Corporation 1993-2000.
Other products listed are trademarks of their respective owners.

Patent Information
Covered by U.S. Patents 4,893,333; 5,247,591; 5,555,101 and 5,943,137. Additional patents pending.
Cardiff Software Incorporated, Vista CA 92083
www.Cardiff.com

Document Number and Revision
Document Number 100-00012 Revision A
Effective Date: September 01, 2000

CHAPTER 1

��������	�
���	����	�����������������
About BasicScript ... 1

About this Chapter .. 1

Why use BasicScript? ... 2

BasicScript Capabilities .. 3
During Form Evaluation ...3

During Correction and Data Entry ..3

During Export..3

General Productivity ...3

How BasicScript Works with TELEform... 4
Script Types ..4

Script Entry Points (subroutines) ..5

Overview of the BasicScript language..6

Classes .. 7

Class Properties .. 8

Data Types .. 8

Case Sensitivity .. 9

BasicScript Tour ... 10
Step 1: Determine the Script Type You Want to Use ... 10

Step 2: Open Your Script in TELEform Designer .. 10

Step 3: Write Your Script.. 11

Step 4: Compile Your Script ... 12

Step 5: Execute Your Script.. 13

CHAPTER 2

�����	������������
Need Answers? ... 15

Documentation .. 15
Contents iii

Online Help... 16

Cardiff Web Site ... 16

Accessing www.Cardiff.com from TELEform... 16

Technical Support ... 17

The Annual Support and Maintenance Plan ... 17

Before You Contact Technical Support….. 18

Contacting Technical Support from the Americas, Asia, and the Pacific Region............ 20

Contacting Technical Support from Europe, Africa, and the Middle East....................... 20

CHAPTER 3

����������������������	���
About this Chapter .. 21

Overview of Form Scripts... 21

Overview of Global Form Script .. 22
Opening a Global Form Script For Script Writing ... 22

Opening a Form Script for Script writing ... 23

Form Script Entry Points .. 24
Field-Specific Form Script Entry Points... 27

Field-Specific Entry Point Examples.. 27

Global Form Script Entry Points .. 28
Global Form Script Entry Point Examples ... 28

Form Script Classes and their Properties .. 30
Form Class .. 30

Form.Mode Property Values... 31

Form.Status Property Values .. 31

Fields Collection (Array).. 32

Referencing Fields Collection Information .. 32

Field Class .. 33

Referencing Field Class Information .. 33

FieldName.Type Property Values... 39

FieldName.Status Property Values... 39

TELEform Virtual Fields.. 41

Referencing Image Zone File Names ... 42

Choices Class.. 43
iv Contents

Referencing Choices Collection Information ... 43

Data Review Functionality ... 46
DataReview Entry Points .. 46

DataReview (Form.Mode Value) ... 47

Field.DoubleKey Property.. 47

Executing Your Form Scripts ... 48

PDF+Forms, Pdf+forms for Livelink, and HTML+Forms Evaluations............... 50

Sample Form Scripts... 51
Using Form Scripts for TELEform Verifier..51

Forcing Retries of Incorrect Data ... 51

Using the SetFocus Property .. 52

Sample Form Validation Script... 52

Overview of the Validation Script .. 53

Sample FieldGotFocus Script ... 55

Sample Form_Merge Script .. 55

CHAPTER 4

����������	���
About this Chapter .. 57

Overview of Export Scripts .. 57

Opening an Export Script for Script Writing.. 58

Export Script Entry Points .. 59

Saving Your Export Script.. 60

Export Classes and their Properties .. 62
Export Class .. 62

Referencing Export Class Information ... 62

Form Class .. 66

Fields Collection ... 66

Field Class .. 66

Executing Your Export Scripts ... 67

Sample Export Script .. 68

CHAPTER 5
Contents v

����������	��
About this Chapter .. 71

Overview of the System Script ... 71
Public Variables.. 72

Initializing Public variables for an application .. 72

Opening a System Script for Script Writing... 73

System Script Entry Points ... 74

System Script Classes and their Properties... 77
Batch Class ... 77

Executing Your System Script.. 83

Common Examples of a System Script .. 84
Sample System Script ... 84

Sample BatchSetup Script .. 85

Sample BatchScan_End Script ... 85

CHAPTER 6

 �����!�"��	��	������	��������	���
About this Chapter .. 87

Overview of Custom, Periodic, and Library Scripts... 87
Custom Scripts.. 88

Assigning Accelerator Keys to Custom Scripts.. 89

Periodic Script .. 92

Library Scripts .. 93

Opening a Custom, Periodic, or Library Script for Script Writing....................... 94

Custom, Periodic and Library Script Entry Points ... 97

Executing Your Custom, Periodic and Library Scripts .. 98

CHAPTER 7

#�$�������������������	���
About this Chapter .. 99

TrueAddressFieldName.Status Values ... 100

Custom Status Messages... 101

Combining FieldName.Mask and FieldName.Text Properties................................. 102

Table of TELEform Virtual Fields ... 103
vi Contents

LoseFocus Field Property ...106

Examples Using the LoseFocus Property ... 106

Additional Batch Class Properties ..107

TopChoice Class ...108

Referencing TopChoices Collection Information... 108

Row Class..110

Referencing Row Collection Information .. 110

Automatic Field Lookups in SKFI Database Groups ...114

CHAPTER 8

%�	�	�
������	�	�
�&�������	���
About this Chapter .. 117

Writing Scripts .. 117
Opening your Script in the Edit Script window..117

Overview of the Edit Script Window..118

Edit Script Window Toolbar... 119

Edit Script Window Status Bar... 119

Editing Your Script ... 119
Navigating within a Script ..120

Edit Procedures ...121

Inserting Text ... 122

Adding TELEform References ... 122

Selecting Text ... 124

Deleting Text .. 126

Undoing Edits ... 126

Using the Clipboard.. 126

Searching for and Replacing Text .. 128

Adding Comments to Your Script...130

Notes on using comments:.. 131

Extending a BasicScript Statement into Multiple Lines ...131

Creating Dialog Boxes ..132

Compiling Your Script (Checking the Syntax)... 133

Exiting the Edit Script window... 134

CHAPTER 9
Contents vii

������	�
����'���

	�
�&�������	���
About this Chapter .. 135

Executing Your Scripts ... 135

Debugging Your Scripts ... 136
Debugging Toolbar ... 137

Debugging Keyboard Shortcuts.. 138

Starting Debug Mode.. 138

Starting Debug Mode for Form Scripts .. 139

Starting Debug Mode for Other Scripts .. 139

Using the BasicScript Debugger... 141

Tracing Script Execution .. 141

Debugging one or more parts of a long script .. 144

Monitoring Selected Variables ... 145

Debugging Script in the Form_Check and Export Entry Points............................... 147

CHAPTER 10

 ���	�
� ������'	��
������
About this Chapter .. 149

What You Can Use Custom Dialog Boxes for ... 149

Overview of the Dialog Editor.. 149
Dialog Editor Window.. 150

Toolbar.. 150

Dialog Box Display .. 152

Status bar... 152

Keyboard Shortcuts... 153

Creating a Custom Dialog Box... 154
Control and Design Elements ... 154

Planning Your Dialog Box ... 157

Saving Your Dialog Box .. 158

Adding a Title to Your Dialog Box .. 159

Using the Dialog Box Grid ... 159

Adding Elements to a Dialog Box .. 161

Selecting Your Elements .. 161

Selecting Your Dialog Box... 162
viii Contents

Configuring Element and Dialog Box Attributes..162

Dialog Box Attributes... 163

Element Attributes .. 165

Adding/Changing Titles and Labels..166

Moving and Sizing Elements ..167

Assigning Accelerator Keys to Your Controls ... 167

Adding Pictures to Your Picture Elements ...168

Creating and Modifying Picture Libraries ..169

Duplicating Your Elements...171

Deleting Your Elements..171

Undoing Editing Operations ...171

Using an Existing Dialog Box ... 172
Pasting Existing Dialog Box Code into Dialog Editor..172

Capturing a Dialog Box from Another Application..173

Opening a Dialog Box File ...173

Testing Your Dialog Box.. 174
Checking Your Dialog Box Functions..175

Tab Order.. 175

Option Button Grouping ... 176

Accelerator Keys .. 176

Adding an Element to Your Script ... 177

Adding Your Dialog Box to Your Script.. 177

Incorporating Your Dialog Box into Your Script ... 178
Sample Script ..178

Step 1: Creating a Dialog Record..178

Step 2: Assigning Values to Dialog Box Controls..179

Adding an Item to Your Script ... 180

Adding Default Text to a Text Box .. 180

Step 3: Displaying the Custom Dialog Box ..181

Using the Dialog() Function ... 181

Using the Dialog Statement .. 181

Step 4: Retrieving Values from the Custom Dialog Box..182

Example of Your Finished Script..183
Contents ix

Dialog box and message boxes ... 184

Making Your Dialog Box Dynamic ... 185

Using a Dialog Function ... 185

CHAPTER 11

 ��������
�
����������
About this Chapter .. 191

Common Language Elements ... 191

Variant .. 194
Function Variant ... 194

Variable Variant.. 194

Declarations .. 195
Const (statement) .. 195

Comments ... 196
Dim (statement) .. 197

Naming Conventions .. 198

Public (statement) ... 199

Flow Control ... 199
If...Then...Else (statement).. 199

Syntax 1 Parameters.. 200

Syntax 2 Parameters.. 200

For...Next (statement) ... 201

For statement... 202

Logical Operators ... 203

And (operator) .. 203

Binary Conjunction... 204

Or (operator) ... 205

Binary Disjunction .. 206

String Operators .. 207
Str$ (function)... 207

Val (function).. 208

User Interface.. 209
InputBox$ (function) .. 209

MsgBox (function).. 210
x Contents

DispMsg (statement) ...212

File Operators ... 214
Open (statement) ...214

File Mode... Parameter 214

Close (statement) .. 216

FreeFile (function) ..217

FileExists (function)..218

Calling Functions .. 219
Sub...End Sub (statement) ...219

Passing Parameters to Subroutines ... 220

Function...End Function (statement) .. 220

Returning Values from Functions... 222

Passing Parameters to Functions .. 223

Declare (statement) ...223

Call (statement) ...226

Reserved Words .. 227
Keyword..227

Getting Around Reserved Words in BasicScript ..228

Miscellaneous ... 229
Nothing..229

Let (statement) ..230

CHAPTER 12

��	����	�����
�
�����������
About this Chapter .. 231

Notes on this Reference .. 231

Language Element Categories .. 232

Summary of the BasicScript Language .. 235
Contents xi

xii Contents

CHAPTER 1

Introducing BasicScriptTM for
TELEform
About BasicScript
BasicScriptTM is an integrated scripting language that lets you add extensive features
such as arithmetic comparisons, financial calculations, cross-field validations,
checksums, calls to external functions, and skip-and-fill logic to form processing in
TELEform. The BasicScript language is similar in syntax to Visual Basic and requires
similar programming experience to use. This version of BasicScript has been
specially adapted for use with TELEform.

About this Chapter
This chapter provides an overview of BasicScript as it relates to TELEform. It
explains what BasicScript is, and how BasicScript can customize and enhance your
TELEform processing.

This chapter also gives you a quick tour of the scripting process, which includes
writing your script, executing your script, and debugging your script. If you are new
to BasicScript, you should read this chapter to get an idea of what steps to follow
when writing your scripts.
Chapter 1: Introducing BasicScriptTM for TELEform 1

Why use BasicScript?
You can think of BasicScript as a tool that runs behind the scenes operations during
any and every part of form processing. BasicScript allows you to create customized
and flexible add-ons for TELEform. The TELEform version of BasicScript has been
customized to work specifically with form processing.

For example, suppose you have an order form. If you want TELEform to add a series
of Price field values together while it is evaluating returned forms, you can do this by
entering code in the appropriate entry point of your form script.

Then, you can enter code in another entry point to fix the Total field when it is
incorrectly filled in. When the Verifier operator is in form mode correction, you can
display a message box informing the operator that the value in the Total field is
incorrect. The Verifier operator must enter the correct value in the Total field before
moving to the next field.

If you want to write a script that does this type of calculation, refer to the “Sample
Form Validation Script” on page 52.
2 Why use BasicScript?

BasicScript Capabilities
BasicScript provides you with increased capabilities regarding how your forms are
interpreted, validated, accessed, and exported, and gives you extended control over
your returned data. For example, BasicScript brings the following capabilities to
TELEform:

During Form Evaluation
• Examine, modify and enhance form data.

• Determine if a form should be held for review.

• Change the validity status of fields and forms.

During Correction and Data Entry
• Force retries when incorrect data is entered into a field.

• Dynamically choose the next field based on entered data (skip-and-fill logic).

• Run validations before sending the form to form mode correction.

• Allow certain information to be seen only by specific Verifier operators.

• Route forms to specific Verifier operators.

• Format data before exporting it to a data file.

During Export
• Ensure that the form data is valid before exporting it.

• Take complete control of how your data is exported.

• React to form processing with custom operations.

General Productivity
• Create custom menus in TELEform for instant script access.

• Create custom dialog boxes that allow user interface with your script.

• Write scripts to automatically perform routines at regular intervals in TELEform
Reader.
Chapter 1: Introducing BasicScriptTM for TELEform 3

How BasicScript Works with TELEform
BasicScript adds a lot of functionality to TELEform, but does not require complex
programming knowledge. If you have written programs with Visual Basic, you can
probably teach yourself BasicScript. If you have never written programming code
before, learning BasicScript may require extra training.

Script Types
There are seven types of scripts that you can create in BasicScript:

Form Script - There is one Form script for every TELEform form. The Form script is
used to control form merges, validate returned data, control correction in Verifier, and
modify data exports. The majority of BasicScript functions that you write will be
accommodated by Form scripts. See “Form and Global Form Scripts” on page 21 for
instructions.

Global Form Script - The Global Form Script has the same entry points that a
regular Form script has; however, the entry points in a Global Form Script apply to
every form template.

 Export Scripts - You can write as many Export scripts as you want. Each Export
script created a custom export format. See “Export Scripts” on page 57 for more
information on writing and executing Export scripts.

System Script - For each TELEform installation, there is only one System script. The
System script allows you to control batch processing, along with the starting and
closing of Designer, Print Manager, Reader and Verifier. See “System Script” on page
71 for more information on writing and executing your System script.

Custom (Menu) Scripts - You can write as many Custom scripts as you want. Each
Custom script creates a command in the Script menu of Designer, Print Manager,
Reader and Verifier. When a user selects this command, the custom script is executed.
See “Custom, Periodic and Library Scripts” on page 87 for more information.

Periodic Script - Each TELEform installation is allowed to have one Periodic script.
The Periodic script is executed at regular intervals in Reader. See“Custom, Periodic
and Library Scripts” on page 87 for more information.

Library Scripts - You can write as many Library scripts as you want. A Library
script is not directly executed. Instead, it is used to store functions that are referenced
in one of the five script types mentioned above. For example, you can consistently use
a function in multiple Form scripts by putting this function into a Library script, and
then calling this function in each Form script. See Chapter 5 for more information on
writing and executing Library scripts.

NOTE: You are only allowed to have one System script and one Periodic Script per
TELEform installation.
4 How BasicScript Works with TELEform

Script Entry Points (subroutines)
Each one of these scripts (except the Library script) has its own group of entry points.
These entry points can be thought of as TELEform-specific subroutines that allow
you to control each major TELEform operation (for example, setting up a batch in
TELEform Reader, exporting data to a data file, and so on). You can customize any
TELEform operation by inserting code into the appropriate entry point of a script.

As their name implies, entry points indicate those places where TELEform "enters"
and executes that part of the script. The entry point where you type your code dictates
when TELEform executes that code. In other words, each entry point represents a
unique point in the form processing cycle.

When you understand how the TELEform entry points relate to the flow of data in
TELEform, you can put your code into an entry point that TELEform will call at the
appropriate time.

For example, when you evaluate a form image in TELEform Reader, the following
sequence of events occurs.

1. TELEform begins evaluating a form.

2. TELEform calls the Form_Evaluate entry point.

3. If this entry point contains script, the script will be executed. Otherwise, the
entry point is ignored.

4. TELEform continues processing the form.

You can think of the entry point as a pre-defined subroutine. Regardless of whether
or not script is inserted into the entry point, TELEform will call the entry point every
time the corresponding TELEform process occurs.
Chapter 1: Introducing BasicScriptTM for TELEform 5

Overview of the BasicScript language
The BasicScript language behaves similarly to Visual Basic because both of these
languages deal with objects. The TELEform version of BasicScript uses a special set
of objects known as the TELEform object model. The scripts that you write
communicate with TELEform through this object model.

When you understand the organization of TELEform information into unique classes
and properties, you can utilize the full range of TELEform information.

The TELEform object model contains the following organization:

• The object model contains several classes of objects. Each class contains a
particular set of TELEform information.

• Each TELEform class contains a unique set of properties. Each property refers to
a subset of TELEform information. Properties allow you to reference the
complete set of TELEform information; they are the building blocks of your
script.

• Each property is classified into a data type. A data type tells you what type of
value to expect from a property.
6 How BasicScript Works with TELEform

Classes

The TELEform object model consists of the eight classes of objects listed below. Each
class allows access to a different set of TELEform information:

 * Form scripts only

** Export scripts only

*** System Script Only

NOTE: All classes in the TELEform object model (except the Field class) are
hidden, meaning that you cannot dimension variables of these types. Hidden
classes may be used with their appropriate properties by referencing the
class name directly.

Object Class Description

Form Provides access to general information about the form being
processed, such as the form’s title, form ID, and so on.

Export** Provides access to information about the current export
session.

Fields Provides access to all fields on the form by treating each field
as an element in an array.

Field
Provides access to all data (and other field attributes) in any
field on the form. This is the most frequently used type of
object.

Choices* Provides access to the choices in a choice field. Each choice is
treated as an element in an array.

TopChoices*
Provides access to the 3 best-guess characters for each
interpreted character (based on the field recognition). The
choices are stored in a 3-element array.

Row* Provides access fields that are part of a detail group. Each row
in the detail group is treated as an element in an array.

Batch*** Provides access to batch information.
Chapter 1: Introducing BasicScriptTM for TELEform 7

Class Properties

Each object class has a unique set of properties. These properties represent the
specific types of information available in the object. For example, all field objects
have the property "Name”, which is used to reference the field ID.

Refer to Chapters 2-4 (the Form, Export, and System Script chapters) for the
following information:

• List of each classes’ properties (all properties except the Batch and Export class
properties are described in Chapter 2.)

• How properties are used in the object model to reference TELEform information

• Miscellaneous information regarding properties

One property often references another property in a particular object class. For
example, the HasMask property in the Field class checks the status of the Mask
property in the same field.

Data Types

Each property is classified into one of the following types:

Type Description

String Character string

Long 32 bit integer

Integer 16 bit integer

Float Single precision floating point number

Double Double precision floating point number

Variant Universal (Generic) data type (see chapter 8)
8 How BasicScript Works with TELEform

Case Sensitivity

All object and property references are case-insensitive, so you do not need to worry
about case when typing them.

City.Text = CITY.TEXT = city.text = CiTy.tExT

However, case is very important when validating alphabetic and alpha-numeric field
values. Because a TELEform field can be configured to interpret and store both upper
case and lower case characters (or both), it is important that any script which tests that
field’s value correspond to those settings.

For example, if the City field contains the value “San Francisco,” and the script tests
for the condition:

IF City.Text = "SAN FRANCISCO"

then the validation will fail, because “San Francisco” does not match “SAN
FRANCISCO.”

NOTE: The best way to avoid this type of problem is to select the Convert to
uppercase check box in the Recognition Setup Options dialog box of all
Constrained Print Fields and Image Zones used for scripting. This option
stores the field value in uppercase characters. If you select this check box,
make sure that you also use upper case characters in the script.

You can use Ucase$ and Lcase$ in your scripts when performing case-sensitive data
comparisons. For example:

If UCase$(City.Text) = “SAN FRANCISCO”
Chapter 1: Introducing BasicScriptTM for TELEform 9

BasicScript Tour
Now that you know a little about the way BasicScript works with TELEform, you are
ready to take a quick tour of the BasicScript writing process. This tour will help you
understand what is required to successfully incorporate BasicScript into TELEform
processing.

Step 1: Determine the Script Type You Want to Use
Before you can write your script, you must know which type of script you will be
using. To do this, you have to pinpoint the exact part of the TELEform process that
your script fits into (see the entry point diagrams in Chapters 2-4). For this tour, we
will select the Form script, which is the script type most commonly used.

Step 2: Open Your Script in TELEform Designer
When you open your script, it appears in the Edit Script window. The Edit Script
window is the application where you will write, edit and compile your script. For this
tour, you will open the Sample Smart Form’s Form script.

1. Open the Sample Smart form in TELEform Designer.

2. Click Script on the Form menu. The Edit Script window will appear.
10 BasicScript Tour

Step 3: Write Your Script
The Edit Script window includes most of the basic functions that you will find in any
text editor, plus the BasicScript-specific functions that are used to create the
statements in your script.

Refer to each of the callouts in the figure below to orient yourself with this script.

To create a script from scratch, you should adhere to the following conventions:

• Write comments at the top of your script to tell others what it does (and to remind
yourself of what it does).

• If you want to define constants, declare public variables, or declare functions, do
so at the very beginning of your script (before the entry points).

• Use blank lines in your script to group sections that logically belong together. For
example, this script writer put variables in one group, and put the function in
another group.

• Write at least one comment for each group in your script. This will help others
see the reasoning behind your code, and it will help you make sure that this
reasoning is sound.

• Use the right-click feature to reference fields on your form.

Notice that the script
writer put comments into

his/her script to inform the
script viewer of the

function of the script.

Notice that the script
contains defined

constants and a declared
function. Because the

constants and function are
defined/declared before

the entry points, they apply
to all entry points in this

script.

This entry point is a subroutine that will be called each
time a form image is evaluated in TELEform Reader.
Chapter 1: Introducing BasicScriptTM for TELEform 11

Step 4: Compile Your Script
Once you have written your script, you will need to compile it to check the syntax of
your BasicScript statements. If the syntax is OK, you can proceed to step 5. If there is
a problem with your syntax, you will receive an error message. This error message
will point you to the line with the problem and tell you what the problem is.

IMPORTANT! Even if your script compiles OK, there is no guarantee that it will
execute successfully. The compiler cannot check for every possible
error in your script.

1. On the File menu of the Edit Script window, click Compile. Because this script
was written for the Sample Smart form, it compiles OK.

2. If the script contained errors, you would see a message that looks something like
the following:

3. Notice that this error message displays the line that contains the error, highlights
this line in your script, and gives the reason for the error. When you have fixed all
of the errors, recompile your script.

4. On the File menu, click Save, and then exit the Edit Script window.

5. Normally, you would also save the form itself, but you do not need to do so for
this example.
12 BasicScript Tour

Step 5: Execute Your Script
When your script has compiled OK, execute it to make sure that it performs as
expected. This involves creating a condition that will force this script to do extra
processing. In this example, all you need to do is evaluate the Smart sample image
and correct it in TELEform Verifier (since this image has an incorrect value in the
Total Time field.)

1. Start TELEform Reader.

2. On the File menu, click Evaluate Image. The Open dialog box appears.

3. Click Smart.tif, and then click Open.

4. TELEform Reader evaluates the Smart sample image. When it does this, the
Form_Evaluate entry point is called and executed.

5. Start TELEform Verifier.

6. In the Forms list, select Sample Smart Form.

7. In the Stored Images list, select Smart.tif , and then click the Correct button.

8. Correct any suspect characters and press any key when you get to the finish flag.

9. When Form Mode Correction begins, press TAB until you get to the total_hr
field. This is the field that your Form_Evaluate subroutine validated.

10. Press TAB to go to the next field. When you attempt to tab out of this field, the
following message appears.

11. Click OK to return to the total_hr field.

12. Enter the correct time in the total_hr field (08:30), and then press TAB.
TELEform Verifier will now accept this value and allow you to move to the next
field.

If you had seen any errors or incorrect results during the execution of this script, you
would want to debug it. See “Using the BasicScript Debugger” on page 141 for
debugging details.

IMPORTANT! Always compile your script after any changes to the Form.

•

Chapter 1: Introducing BasicScriptTM for TELEform 13

14 BasicScript Tour

CHAPTER 2

Technical Resources
Need Answers?
You have many options for getting information about your TELEform system:

• Documentation

• Online Help

• Cardiff Web site

• Cardiff Technical Support

Documentation
Along with your program software, you receive this User Guide as an Adobe PDF file
on a CD. Adobe Acrobat Reader 4.0 is available at http://www.adobe.com/acrobat/.

Printed Documents

To order printed TELEform documentation, go to http://www.Cardiff.com and click
Order Product Manuals.

Downloading Revised Documents

Cardiff updates our user guides on a continuous basis. To download the latest revision
of a user guide, go to http://www.Cardiff.com/Manuals.
15

Online Help
You can access the TELEform Help system from any TELEform module by pressing
the F1 key or clicking an option from the Help menu. The Help system includes a
Table of Contents, an Index, and a Search/Find feature.

Cardiff Web Site
The Cardiff Web site, www.Cardiff.com, provides a wealth of information about
TELEform. The site includes:

• News updates;

• A list of Frequently Asked Questions (FAQ) that you can search for solutions to
common problems;

• A Scanner Wizard to help you find scanners that are certified for use with or
compatible with TELEform;

• A list of fax servers that are certified for use with TELEform;

• A library of Cardiff documents in Adobe Acrobat PDF format;

• Free downloads of Connect Agents, Service Packs, patches, and other useful
software;

• A glossary of terms you may encounter when working with your system;

• “Walk-through” slide shows that demonstrate the exact steps needed to perform
common tasks like exporting a form, copying your form to Microsoft Word,
importing a form, setting up your primary auto export, using the Purge Log,
NonForm data entry, and using the Form Merge feature;

• White Papers explaining the use of TELEform in real-world scenarios;

• An Operating System (OS) Wizard to help you determine if your computer OS is
compatible with your version of TELEform and any other Cardiff products;

• Automatic e-mail contact to Cardiff’s Technical Support and Sales departments.

Accessing www.Cardiff.com from TELEform

The Help menu and the www.Cardiff.com toolbar button provide direct links to
Cardiff’s Web site.
16

Technical Support
If you have a question about TELEform, you should first look in the TELEform user
documentation, the online Help, or check the Cardiff Web site for answers.
Frequently Asked Questions (FAQ) are available on the Web site’s Technical Support
page. If you still can't find answers to your questions, contact Cardiff's Technical
Support team.

Cardiff is dedicated to providing the highest quality technical support to registered
TELEform customers. You will receive the benefits of our Annual Support and
Maintenance Plan for a full 60 days at no charge following the shipment of your
TELEform product. After this initial 60 day period, you have the option of signing up
for an Annual Support and Maintenance Plan.

The Annual Support and Maintenance Plan

The Annual Support Plan offers the following benefits:

• Unlimited technical support;

• New point releases of your TELEform products.

Point releases are only available to customers with an Annual Support and
Maintenance Plan. Express shipping and handling is available for new point releases
for a nominal fee. Contact your Cardiff sales representative for more information.
17

Before You Contact Technical Support…

Before you call Technical Support, please have the following data available:

• The version and build number of TELEform that you are running. This
information can be found by clicking About from the Help menu of any
TELEform module;

• The registration code of your software. This code is printed on the CD case. You
can also find it by starting TELEform License Manager and clicking File -
License Info;

• The type of hardware you are using;

• The amount of available memory (RAM) and disk space on your system;

• A description of what you were doing when the problem occurred;

• The exact wording of any messages that appeared on your screen;

• Any other details pertinent to your problem.

If you are having recognition problems, please be ready to send the form template and
several image files to Tech Support when you call.
18

Saving the form definition and image files

1. Create a “Troubleshooting” directory on your local drive.

2. In TELEform Designer, on the File menu, click Export a Form. The Export a
Form dialog box will appear.

3. In the Forms window, select the form you need to troubleshoot.

4. Click the Browse button and navigate to your new Troubleshooting directory.

5. Make sure the Export Format box shows the version of TELEform you are
currently using.

6. Click Export. The form template will be copied to the Troubleshooting directory.

7. Start TELEform Verifier.

8. Open the Image Management Dialog.

9. In the Forms window, select the form you exported.

10. In the Stored Images list, select 5-10 images of the form.

11. From the File menu, click Save As and save the images to the Troubleshooting
directory.

12. Using a word processing application, create a “ReadMe.txt” file that contains
step-by-step notes on the events leading up to the problem. Please save this file in
a text (.txt) format. Save this file to the Troubleshooting directory.

13. If possible, compress the files in the Troubleshooting directory.

14. E-mail the form template and image files to your Cardiff Technical Support
representative.
19

Contacting Technical Support from the Americas, Asia,
and the Pacific Region

E-Mail: support@Cardiff.com

Web site: http://www.Cardiff.com

Fax: (760) 936-4850

Phone: (760) 936-4801. Phone calls are taken from 6 am to 5 pm Pacific Time,
Monday through Friday (closed from 3 pm to 4 pm on Friday). Check
the Cardiff Web site for up-to-date hours.

Mail: Cardiff
Attention: Technical Support
3220 Executive Ridge Drive
Vista, CA 92083 USA

Contacting Technical Support from Europe, Africa, and
the Middle East

Cardiff, Ltd. is now providing direct technical support to customers in Europe, Africa,
and the Middle East through the following methods:

E-Mail: UK_Support@Cardiff.com

Fax: +44(0) 208 326 1122

Phone: +44(0) 208 326 1111. Phone calls are taken from 9am to 5pm
Greenwich Mean Time (GMT), Monday through Friday.
20

CHAPTER 3

Form and Global Form Scripts
About this Chapter
In this chapter, Form and Global Form scripts will be introduced and their
components will be explained in detail. This chapter will also explain how to:

• Open the Edit Script window for writing Form scripts

• Execute your Form scripts

At the end of this chapter, there are examples illustrating some common uses for
Form Scripts.

Overview of Form Scripts
Form scripts (also called "validation scripts") allow you to interact with TELEform at
various points during the form processing cycle. Each TELEform form is assigned
one Form script where validation routines can be written. When a form is evaluated,
corrected, and exported, its Form script is executed in various stages throughout the
processing cycle.

Form scripts are most often used for data validation (i.e. comparing returned data to
some acceptable value within the script). This can include double-checking any
mathematical calculations performed on the form, such as with time cards and order
forms. Fields that do not pass the script’s validation tests can be marked for review.

Besides validating returned data, Form scripts can be used to intelligently control the
tabbing order during correction in TELEform Verifier. This "skip and fill logic"
means that the script can decide which field to visit next based upon the value in the
current field. For example, when correcting a survey form, the script could instruct
Verifier to go to question 5 if the answer to question 3 is "No".

From the time a form is first evaluated by TELEform Reader to the time the form data
is stored or exported, Form scripts provide many opportunities to control the action.
Chapter 3: Form and Global Form Scripts 21

Overview of Global Form Script
Sometimes it is preferable to have a script that runs for every form that is processed in
TELEform (instead of for only a specific form). The Global Form Script can be used
for this very situation. The Global Form Script has the same entry points that a
regular Form script has; however, the entry points in a Global Form Script apply to
every form template.

Recall that Form scripts (also called “validation scripts”) allow you to interact with
TELEform at various points during the form processing cycle. When a form is
processed, its Form script and the Global Form Script are executed in various stages
throughout the processing cycle.

Opening a Global Form Script For Script Writing
To access the Global Form Script, you must use the following procedure:

1. In TELEform Designer, select Export Scripts on the Utilities menu. The Edit
Script window appears.

2. Click Open on the File menu. The Open Script dialog box appears.

3. Click the Display Library and Custom Scripts check box, select Global Form
Script from the list, and then click OK. The Global Form Script is displayed in
the Edit Script window.
22 Overview of Global Form Script

Opening a Form Script for Script writing
In order to write, edit and compile your script, you must use the BasicScript editor.
This script editor is initiated when you open the Edit Script window in TELEform
Designer:

1. Start TELEform Designer.

2. Open your form.

3. Click Script on the Form menu. The Edit Script window will display the Form
script for that form.

Chapter 3: Form and Global Form Scripts 23

Form Script Entry Points
The following diagram shows when each Form script entry point gets called with
respect to the TELEform data flow.

A tabular description of each entry point is provided on the following pages. You’ll
probably want to refer to this table often when you first begin writing scripts. As you
review these, note that the entry points form a sequence; each being executed at a
slightly later point in the form processing cycle.

Typically a form script utilizes several entry points. For example, the script may use
Sub Form_Evaluate to check the form data after evaluation and Sub Form_Verify to
check the corrected value after verification.

DESIGNER READER

VERIFIER

HOLD FOR
VERIFICATION

CHAR
MODE

FIELD
MODE

FORM
MODE

DATA
EXPORT

SAVE TO
RESULTS
FILE
(Dialog)

Auto Merge
Publisher

PAGE
LINKING

INTERNAL
STORAGE

PAGE
LINKING

INTERNAL
STORAGE

DATA
EXPORT

EVALUATED
OK PATH

*SKFI
Mode

* Refer to the SKFI section in your TELEform Elite User Guide for details.

 Indicates a data path that your script can initiate

NEEDING REVIEW PATH

FORM SCRIPT ENTRY POINTS

Image

Form FORM
SCAN

EVALUATE
IMAGE

Form_Merge

Form_Evaluate Form_Verify

Form_Export Form_Check

Form_Load

FieldGotFocus
FieldHasFocus
FieldLostFocus

Form_Unload

Form_HasUnloaded

Form_Verify

Form_Export
24 Form Script Entry Points

Form Script Entry Point Description

Sub Form_Merge
 (script)
End Sub

This entry point is called at the beginning of a form merge operation in
TELEform Auto Merge Publisher. The data to be merged onto the form
corresponds to fields within the script. With this entry point, users can
modify the data prior to merging it.

Note: A merge cannot be aborted from within the form script. The
Form_Merge entry point only allows editing the data that will be used in the
merge.

Sub Form_Evaluate
 (script)
End Sub

This entry point is called immediately after a form is evaluated by TELEform
Reader.

For multi-page forms:

• it is run for each linked group in a multi-page form.

• if the page link fields fail to associate some pages, it is
run multiple times for the form.

This entry point is frequently used to perform validations on form data and
mark fields for review, as appropriate.

This entry point is called for all HTML forms received by TELEform
Internet Server.

Sub Form_Check
 (script)
End Sub

When a single image is corrected in TELEform Verifier, this entry point is
called after character and field mode correction but before entering form
mode correction. You can use this to save the corrected data or run
validations before going to form mode correction.

When multiple images are corrected in TELEform Verifier at the same time,
the following apply:

• If all fields on a form are verified in character and field
mode, Sub Form_Check is initiated as a background
process while character and/or field mode continues for
the remaining forms.

• If form mode is required for any of the forms, Sub
Form_Check is initiated prior to form mode occurring.

• If your form contains SKFI zones, Form_Check is called
after character mode, field mode, and all SKFI zones are
complete.

Note: If validations in Form_Check run for more than a second or two, the
Verifier operator may get the message “Waiting for validations” when
making a transition to form mode.
Chapter 3: Form and Global Form Scripts 25

Sub Form_Load
 (script)
End Sub

This entry point is called as soon as a form enters form mode correction in
TELEform Verifier.

Sub FieldGotFocus
 (script)
End Sub

This entry point is called in the form mode of TELEform Verifier
immediately prior to a field gaining the focus.

Sub FieldHasFocus
 (script)
End Sub

This entry point is called in the form mode of TELEform Verifier when a
field has the focus (when a field is highlighted). Sub FieldHasFocus can be
used to receive information from the operator concerning the current field.

Sub FieldLostFocus
 (script)
End Sub

This entry point is called in TELEform Verifier immediately after a field
loses the focus (when you tab out of a field). Sub FieldLostFocus can be
used to instantly check the corrected field and prevent invalid data from
being entered by Verifier operators.

Sub Form_Unload
 (script)
End Sub

This entry point is called before a form or partial form (i.e. missing pages) is
closed in TELEform Verifier. This entry point will either be called right
before the user is prompted to save changes, or before the user manually
closes the form. This can be used to double-check edits made on the form or
to change the form status to force the form to stay in TELEform Verifier.

This entry point is also called after leaving a SKFI zone in SKFI Streaming
Mode.

Sub Form_HasUnloaded
 (script)
End Sub

This entry point is called immediately after Sub Form_Unload. If the user is
prompted to save results, this prompt will appear before Sub
Form_HasUnloaded is called. Sub Form_HasUnloaded allows you to close a
file that you opened in Form_Load.

Sub Form_Verify
 (script)
End Sub

This entry point is called after the Verifier operator corrects all images in the
form image set. Complete form cross-validation can be performed in this
entry point. The form can be forced to go through review again if validations
do not pass.

This entry point is called even if forms do not go through verification
processing (those forms that are Evaluated OK in TELEform Reader).

All page linking actions are complete before Form_Verify is entered for
either TELEform Reader or TELEform Verifier.

Sub Form_Export
 (script)
End Sub

This entry point is called immediately prior to data being exported to your
data file or stored in an internal data file. Sub Form_Export can modify data
immediately prior to export. Therefore, you can use Sub Form_Export when
you want to avoid replacing your export format with an Export script.

Form Script Entry Point Description
26 Form Script Entry Points

Field-Specific Form Script Entry Points
During verification, it is often useful to be able to run a script in association with a
particular field. This can be used to instantly check the corrected field and prevent
invalid data from being entered by Verifier operators. To enable this type of "instant
validation", BasicScript includes three entry points that can be attached to individual
fields.

The following entry points are executed whenever the fields receive, have, or lose the
focus during form mode correction in TELEform Verifier.

If a script has both general entry points and field-specific entry points defined, the
general entry point (i.e. FieldGotFocus or FieldLostFocus) gets called before the
field-specific entry point.

Field-Specific Entry Point Examples

If the field total has a specific entry point, then the order of calls for GotFocus is the
following:

1. FieldGotFocus

2. total_GotFocus.

Consider the case where you have five fields named Price1, Price2, Price3, Price4 and
Price5. When a user leaves one of these fields, you want the focus to go to the Total
field. You can write the following statement to do this:

Sub FieldLostFocus
if Left$(LCase$(Form.CurField), 5) = "price" then

Total.SetFocus
end if

End Sub

Field-Specific Entry
Point

Description

Sub FieldName_GotFocus
 (script)
End Sub

This entry point is called immediately prior to the specified field
getting the focus in the form mode of TELEform Verifier (when you
tab into the field).

Sub FieldName_HasFocus
 (script)
End Sub

This entry point is called when the specified field has the focus in the
form mode of TELEform Verifier (when the field is highlighted).

Sub FieldName_LostFocus
 (script)
End Sub

This entry point is called immediately after the specified field loses
the focus in the form mode of TELEform Verifier (when you tab out of
the field).
Chapter 3: Form and Global Form Scripts 27

Global Form Script Entry Points
Entry points are TELEform-specific subroutines that allow you to control each form
processing operation. Each Form script entry point corresponds to a Global_Form
entry point in the Global Form Script. For example, the Form_Evaluate entry point in
a Form script has the following format in the Global Form Script:

Sub Global_Form_Evaluate
(enter script here)

End Sub

The Global Form Script entry points include:

The Global Form Script entry points are always called before the corresponding
Form script entry points. Accordingly, all Global Form Script entry points are
executed for every TELEform form that has a Form Script associated with it. For
example, if the form “Sample Andy’s Time Card V6” has a Form Script written for it,
the Global Form Script will be called for that form; since Global Form Script entry
points apply to every form template associated with it.

If a Form script has not been written for a form, such as “Sample Comdex Show Form
V6”, then the Global Form Script would not be called since there is no script written
for it. See “Form Script Entry Points” on page 24 for a description of the form
processing cycle.

Global Form Script Entry Point Examples

Hiding a Global Form Script entry point

If you put an entry point into a regular Form script that has the Global_ prefix (such as
Global_Form_Evaluate), this entry point will substitute for the corresponding entry
point in the Global Form Script. In effect, doing this hides the Global Form Script’s
entry point from TELEform while you are processing this particular form.

Global_Form_Evaluate Global_FieldHasFocus

Global_Form_Verify Global_FieldLostFocus

Global_Form_Load Global_Form_Check

Global_Form_Unload Global_Form_Merge

Global_Form_HasUnloaded Global_Form_Export

Global_FieldGotFocus Global_DataReview_Load

Global_DataReview_Unload Global_DataReview_HasUnloaded
28 Global Form Script Entry Points

Overriding existing Global Form Script entry points

All Global Form Script entry points are called for Forms that have Form Script
associated with them. Some Forms, however, may require that the Global Form Script
entry points NOT be called, or that they perform a different task. It is possible to
redefine the Global Form entry points for a Form within the Form Script to override
the existing Global Form Script entry point. For example, if the Global Form Script
defines an entry point:

Sub Global_Form_Load
MsgBox “Hello!”

End Sub

A message box saying “Hello” would appear each time a form with Form Script is
loaded in Verifier. This behavior can be over ridden for a form by redefining this entry
point in Form Script as shown in the following example:

Sub Global_Form_Load
End Sub

When this form is loaded in Verifier there will be no message box stating “Helllo!”.

Field Specific Entry Points

You can place field specific entry points in the Global Form Script, just as you can in
a regular Form script. For example, if you have a field named LastName, you can
create the following entry point.

Sub Global_LastName_GotFocus
(enter script here)

End Sub

Classes compatible with the Global Form Script

You can only use the Form and Fields class properties in a Global Form Script.
Although you cannot directly reference specific fields using the Field class objects,
you can refer to a specific field by name in the Fields array (collection), as shown
below:

Dim LastName as Field
Set LastName = Fields(“LastName”)
If Not (LastName is Nothing) Then

LastName.Text = “Doe”
End If

The ‘is nothing’ test prevents a runtime error from occurring in the event that the
script is run for a form that does not have the LastName field
Chapter 3: Form and Global Form Scripts 29

Form Script Classes and their Properties
There are eight classes of objects in TELEform. Each class has a unique set of
properties. With these properties, you can access the full range of TELEform
information. Because the script must rely on logic and mathematics to execute
properly, it is imperative that you use these properties correctly.

Form Class
Form class properties contain information about the particular form currently being
processed by the Form script. The syntax for referencing Form class information is:

Form.FormPropertyName

where FormPropertyName is a valid property of the Form class. For example:

id = Form.FormId ’Assign the form ID to the variable ’id’.
name$ = Form.Title ’Assign the form’s title to the variable
name$’.

The following properties are defined for the Form class:

Property Type Access Description

Title String Read Only Contains the name of the form.

FormID Long Read Only Contains the form number assigned to the form.

Mode Integer Read Only Contains the path of the form image being processed.

Image String Read Only Contains the path of the form image being processed.

Status Integer Read Only Contains and controls the disposition of the form. At form
evaluation time, it indicates whether the form will be held for
review (suspended) or evaluated OK. At verification, it
determines how corrected data will be handled. The values of
this property are described for each case in the table on page
31.

CurField String Read Only Only defined in the GotFocus, HasFocus and LostFocus
entry points. This property contains the name of the current
field

CurGroup String Read Only Only defined in the GotFocus, HasFocus and LostFocus
entry points. Contains the name of the detail group that the
current field belongs to (if the current field is part of a detail
group). If the current field is not part of a detail group, then
CurGroup is empty.
30 Form Script Classes and their Properties

Form.Mode Property Values

Form.Status Property Values

The following table lists the Status property values that the Form script can be set to
in TELEform Reader and Verifier for the entry points listed. For all other Form script
entry points, setting Form.Status is not defined.

Value Value Processing Status

Evaluation 2 Reader: evaluating a form

FormFill 8 Verifier: filling a new form

Reader: processing an HTML or form

Suspense 4 Verifier: correcting a form in form mode or performing SKFI data entry in form
mode.

Exporting 16 Reader, Verifier, Designer: exporting data

FinalValidate 128 Reader, Verifier: finish evaluation or correction (in the Form_Verify entry point)

FormCheck 512 Verifier: going from character mode, field mode or SKFI streaming mode to form
mode.

FormMerge 1024 Auto Merge Publisher: merging a form (during the Form_Merge entry point).
This value allows read and write access to all fields on a form before a merge.
Virtual merge fields (those not printed on the form) such as Remote_Fax and
Remote_Phn are excluded from this access.

SKFI 2048 Verifier: entering SKFI data in SKFI streaming mode

DataReview 8192 Verifier: performing quality control in Data Review mode.

Value Evaluation
(Form_Evaluate)
(Form_Verify)

Verification
(Form_Unload)

Verification
(Form_Verify)

Accept interpreted OK save corrections to results file save corrections to results file

Cancel not defined ignore changes keep for later
verification, and exit form mode

not defined

SaveAndExi not defined save the form in its current state
and exit form mode

not defined

Suspend needs review keep user in form mode store changes for later
verification
Chapter 3: Form and Global Form Scripts 31

Fields Collection (Array)
The Fields collection can be used by Form scripts and Export scripts. Fields is a
collection that provides access to all fields on the form being processed.

As with all collections, the Fields collection includes the Count property, which
indicates the number of fields on the form. This does not include fields inside detail
groups, just the number of named fields at the top level of the form. Fields that are
members of SKFI zones, data groups or address groups (including virtual fields) are
included in this collection.

NOTE: Detail groups have a Fields collection for each one of their rows.

Referencing Fields Collection Information

The Fields collection represents the set of fields on the form, or a set of fields in the
row of a detail group. These collections utilize an array structure to gain access to
each item in the collection. The number 0 represents the first element in the array.

The syntax for referencing Field class properties for individual fields in the Fields
collection is:

Fields(i).PropertyName

or:

Fields(FieldName).PropertyName

where:

For example:

Dim i as integer
For i = 0 to Fields.Count - 1

DispMsg "The " & i & "th field is " & Fields(i).Name
Next i

If Not Fields("Name") is Nothing Then
DispMsg "The Name field contains the value " & Fields("Name").Text

End If

i Integer between 0 and Fields.Count - 1

FieldName Field ID of the field on the form

PropertyName Valid property of the Field class.
32 Form Script Classes and their Properties

The following properties are defined for the Fields Collection:

Field Class
The most frequently used object class is the Field class. Each object of the Field class
contains the data of one field on the form. The Field class can be used in Form
scripts, Export scripts and Library scripts (via parameters). In Export scripts, field
objects are only accessible through the Fields collection.

Referencing Field Class Information

The syntax for referencing Field class information is:

FieldName.FieldPropertyName

where:

For example:

IF City.Text = "SAN FRANCISCO" THEN State.Text = "CA"

Fields
Collection
Property

Type Access Description

Count Integer Read Only Contains the number of top-level fields in the form. During export,
this property is the number of exported fields.

() Field Read Only Contains the collection of top-level fields in the form. The value
specified between the parentheses can be the following:

• integer containing the number of the field in
the count (0 to Fields.Count - 1)

• string containing the field name.

NOTE: You cannot use a variant in this property

If the string does not identify a valid field in the fields collection, then
Nothing is returned.

If the integer is not within the range 0 to Fields.Count - 1, a runtime
error occurs.

(See “Nothing” in Chapter 8 for more information on uninitialized
object variables.)

FieldName Field ID of a field on the form

FieldPropertyName Valid property of the Field class
Chapter 3: Form and Global Form Scripts 33

Each Field object has the following properties:

Field Class
Property

Type Access Description

Name String Read Only Contains the field ID of the field.

Type Integer Read Only Contains predefined values describing the format of the data
field. See page page 39 for a table of values for this
property.

Text String Read-Write Contains the actual data associated with the field, up to 16
kilobytes (KB). Note that trailing blanks are stripped off
before the script is executed.

NOTE: As with all TELEform object properties, the Text
property can only be modified by a direct assignment. It
cannot be assigned as an argument within another function.

Special handling of the Text property is performed on
Choice fields. (See “ChoiceField.Text Property” on page 44
for details).

Value Double Read-Write Contains the numeric value of the field. May only be used
with numeric data entry fields. Note that assignments to the
value property set the Text property value to be formatted
according to the number of decimal places defined for the
numeric field.

Status Long Read-Write Contains a set of pre-defined values that describe the status
of the field. When the field is evaluated and corrected, this
property indicates whether the field is OK or needs review.

See page 39 for a list of the Field.Status values.

Missing Integer Read Only Contains the missing page status of the form page that
includes the field (this property is only applicable during
Form_Evaluate).

True: the form page is missing

False: the form page is not missing

Because the individual pages of a multi-page form can be
evaluated separately, you may want to test this property
before running validations on a given field.

For example, if SSN.Missing is true, it means that the SSN
field is not in the set of pages currently being evaluated and
will be handled by a different call to the script.
34 Form Script Classes and their Properties

Mask String Read-Write Contains a string of numbers (0-9) corresponding to each
character in the text property. 0’s indicate successful
recognition and any other value indicates a failure condition
as follows:

0 Successful recognition

1 Other error with character

2 Reserved

3 Not filled

4 Too many marks

5 Illegal Character

6 Indefinite Mark

7 Marks beginning of word not found in dictionary

8 Marks best guess character

9 Marks bad character, no best guess found

IMPORTANT: This string is not always available (see the
HasMask property below).

Choice fields have 1 mask character per choice.

NOTE: As with all TELEform object properties, the Mask
property can only be modified by a direct assignment. It
cannot be assigned as an argument within another function.
For more information on Field.Mask property, see
“Combining FieldName.Mask and FieldName.Text
Properties” on page 102.

HasMask Integer Read Only Contains the mask status of the field:

True: the mask string is valid

False: the mask string is not available and cannot be set

IMPORTANT: References to Field.Mask when
Field.HasMask is False will generate a run-time error, and
will stop execution of your script.

Length Integer Read Only Contains the maximum number of characters that may be
assigned to the text property.

Field Class
Property

Type Access Description
Chapter 3: Form and Global Form Scripts 35

TabIndex Integer Read Only Contains the field’s order in the TAB sequence during form
mode correction in TELEform Verifier.

The tabindex value must be between 0 and Fields.Count - 1.

When a new tabindex value is assigned to a field, all fields
below it are moved down in the order.

Attempts to access this property during the Form_Evaluate
entry point will cause an error.

NOTE: When assigning TabIndex to fields in BasicScript,
assign fields in ascending order. Assigning fields in
descending order will produce inconsistent results.

TabStop Integer Read-Write Contains the TAB stop status of a field during form mode
correction in TELEform Verifier.

True if the value of the Field.Status property is nonzero

False if the value of the Field.Status property is zero

NOTE: TabStop is provided for backward compatibility.
Use Field.Status instead.

TopChoices TopChoice Read Only Contains a collection of TopChoice objects, each one
corresponding to a character in the Text property.

Note that this property is only valid if the HasChoices
property is true.

IMPORTANT: This property is not always available (see
the HasChoices property below).

(See page 110 for more information on the TopChoices
collection.)

HasChoices Integer Read Only Contains the status of the TopChoices property:

True: the TopChoices property is defined for this field,

False: the TopChoices property is not defined for this field .

IMPORTANT: References to Field.TopChoices when
Field.HasChoices is False will generate a run-time error and
will stop execution of your script.

Field Class
Property

Type Access Description
36 Form Script Classes and their Properties

SetFocus Method In TELEform Verifier, this command results in the specified
field being selected for correction.

SetFocus is ignored if the mouse is used to select a specific
field to go to, unless SetFocus is setting the focus back to the
field the user is trying to leave. This can guarantee that valid
data is entered in a field

SetFocus can be used within a LosfFocus or GotFocus entry
point.

NOTE: In SKFI Streaming Mode, SetFocus calls to a field
outside the current SKFI zone will be ignored.

Choices Choice Read Only Contains a collection of choice objects for this field.

Always Nothing for non-choice fields.

Choices is a collection, so it has a Count property (see page
43 for more information on the Choices collection).

Count Integer Read Only Contains the number of rows in a detail group. Always zero
for non-detail groups.

() Row Read Only Contains a collection of rows. This collection of rows is
valid only for detail groups. This value must be between 0
and DetailField.Count - 1.

NOTE: A Row by itself is a collection, so it has a Count
property. See page 110 for more information on the Row
collection

The result is a row of data inside the detail group. During
verification processing in the GotFocus, HasFocus, or
LostFocus entry point, a subscript of -1 indicates that the
"current" row should be used.

CurRow Integer Read Only Contains the current row being edited during verification.
This value is only valid in the GotFocus, HasFocus and
LostFocus entry points and only applies to fields that are
members of a detail group.

ImagePage-
Number

Integer Read Only Contains the page number of the form image from which the
field was read. The first page of the image is page 0.

Field Class
Property

Type Access Description
Chapter 3: Form and Global Form Scripts 37

DoubleKey Integer Read Only If a field is marked for Double Key, the Boolean value of
Field.DoubleKey is 1. Otherwise Field.DoubleKey is 0.

NOTE: Field.DoubleKey is only defined during Data
Review and Form mode, and is 0 during Form mode
correction.

Image-
Orientation

Integer Read Only Contains the orientation of the form image from which the
field was read. This property will be set to one or more of the
following values:

ImageRotate90 - page is rotated 90 degrees

ImageRotate180 - page is rotated 180 degrees

All rotations must be applied in a counter-clockwise fashion
to the stored image before applying the Left, Right, Top,
and Bottom field coordinates (see below). In other words,
you should use this property to determine how much the
image needs to be rotated before applying the coordinates.

Left, Right,
Top, Bottom

NOTE: Each of the field coordinates (Left, Right, Top, and
Bottom) are expressed in terms of the number of pixels the
edge of the field is from the top or left edge of the image,
after rotating this image with the Image-Orientation
property.

Left Long Read Only Contains the X (horizontal) coordinate of the left edge of the
field (See the note in the Image-Orientation description
above).

Right Long Read Only Contains the X (horizontal) coordinate of the right edge of
the field. (See the note in the Image-Orientation description
above).

Top Long Read Only Contains the Y (vertical) coordinate of the top edge of the
field. (See the note in the Image-Orientation description
above).

Bottom Long Read Only Contains the Y (vertical) coordinate of the bottom edge of
the field. (See the note in the Image-Orientation description
above).

Field Class
Property

Type Access Description
38 Form Script Classes and their Properties

FieldName.Type Property Values

The following table lists the possible values for the Field.Type property:

FieldName.Status Property Values
The following is a list of the possible values for the Field.Status property. These
constant names are not pre-defined. Therefore, you must declare them at the top of
your script (before your entry points) if you want to use them in your code. Each of
these status values (except FldOK) can be combined with a bitwise OR operator.

To clear all of the FieldName.Status values for a field:

Const FldOK = 0
FieldName.Status = FldOK

An example of setting FldInvalid status on the total field is:

Const FldInvalid = 128
IF Not SumsAddOK Then

total.Status = (total.status OR FldInvalid)
End If

By using OR, this statement preserves any existing status the total field may have
such as FldReview.

Additional status values are available for TrueAddress fields and for setting custom
status messages. Reference “Advanced Features of Scripts” on page 99 for more
information on these features

FieldName.Type Value Description

NumberType 1 number

StringType 2 string (e.g, ‘treat as text’ checked in the field Attributes dialog box)

TextFileType 3 file name of a text file (image zone with Store Value and In Separate
File selected in the Image Zone Attributes dialog box.)

ImageFileType 4 file name of an image (image zone with Store Image selected in the
Image Zone Attributes dialog box)

DetailType 5 detail group record

ChoiceType 6 a choice field

KFIType 9 a SKFI zone
Chapter 3: Form and Global Form Scripts 39

The following table lists the possible values for the Field.Status property:

Constant Name Value Description

Const FldOK 0 Field interpreted OK

Const FldNotFilled 1 Field not filled

Const FldThreshold 2 Ambiguous choice or entry markings

Const FldRange 4 Data outside the numeric range defined in the Field
Attributes dialog box

Const FldTooMany 8 Too many choices marked in a choice field

Const FldBadInterp 16 Low confidence recognition of a character in field

Const FldIOError 32 Failure to write to file (image zone)

Const FldReview 64 The Always review checkbox is selected in the Field
Attributes dialog box

Const FldInvalid 128 Field validation failed

Const FldLookup 256 Database lookup error, invalid value in field

Const WordNotFound 512 Word not found in dictionary

Const FldIllegalChar 1024 Illegal character in the field

Const FldMissingPg 2048 Missing page

Const FldBlankZone 4096 Image Zone not filled in

Const FldLengthErr 8192 Length not correct (bar code)

Const FldKeyNotFound # 16384 Key for a variable location field was not found

Const FldWordChg 32768 Word changed by dictionary

Const FldInvalidDate # 268435456 Date Field contains a value that is not a valid date

Const FldBestGuessChar # 536870912 Best guess character

Const IndefiniteLocation # 1073741824 Indefinite location detected for field object
40 Form Script Classes and their Properties

TELEform Virtual Fields

TELEform automatically includes several standard fields for use in export routines.
These standard fields appear on every form and are referenced as any other
TELEform field. These fields can also be exported along with the validated and
corrected form data to your data file. Refer to “Table of TELEform Virtual Fields” on
page 103 for a list of pre-defined TELEform virtual fields.

Route_To Field

The Route_To field (a TELEform virtual field) is filled whenever a form is being
transferred to a specific individual or escalated for review or further verification by a
Supervisor. BasicScript can read the field to determine the form’s recipient. Also,
BasicScript can set the field (along with Form.Status) to route or escalate the form to
an individual.

NOTE: You can only use the Route_To field when the Security feature in TELEform
Verifier is used. This field only applies to form mode correction in
TELEform Verifier. For more information on TELEform Security, refer to
your TELEform User Guide.

When the user clicks the Send to button in TELEform Verifier, the form is unloaded
(causing the Form_Unload entry point to execute) and the text property of Route_To
is set to the name of the form recipient.

When the user clicks the Escalate button in TELEform Verifier, the same procedure
occurs, except that the text property is set to Supervisor. BasicScript can read the
field value entered by the user and take the appropriate action.

If a user exits the form by:

• Clicking the Close button (cancelling), and then clicking No on the
Save corrections before closing message (no save)

• Clicking the Close button, and then clicking Yes on the Save
corrections before closing message (partial save)

• Completely correcting the form, and then clicking Yes on the Save
corrections to results file prompt (full save)

Then the text property of Route_To is set to empty, and the form is neither sent nor
escalated.

You can escalate or send forms in the Form_Unload entry point. In order to escalate
or send the form, you must use the SaveAndExit status. Setting Form.Status to
SaveAndExit tells TELEform Verifier to save the current state of the form, to keep the
form in suspense, and to exit from Form Mode correction so that Route_To can send
or escalate the form.

NOTE: Route_To and SaveAndExit have no effect in the Form_Verify entry point.
Chapter 3: Form and Global Form Scripts 41

To escalate a form for review by a supervisor

Sub Form_Unload
…other code…
Form.Status = SaveAndExit
’Supervisor is not quoted since it is a special keyword
Route_To = Supervisor

End Sub

To send a form to another user

Sub Form_Unload
…other code…
Form.Status = SaveAndExit
’The UserName must always be in quotes
Route_To = "DaveL"

End Sub

The only way to activate the Send to and Escalate buttons is in form mode
correction, as a user, when security features are enabled. For more information on
Security features in TELEform, refer to your TELEform User guide.

NOTE: To send a form for review to a specific user in TELEform Reader, use the
Form_Evaluate entry point, and set the Route_To field to the user name. To
escalate a form in TELEform Reader, use the Form_Evaluate entry point,
and enter Route_To = Supervisor.

Referencing Image Zone File Names

TELEform lets you save each image zone as a separate file.

The image file name can be accessed in BasicScript as:

PCX_imagefieldname.text

where:

imagefieldname is the field ID of the image zone on the form.

NOTE: In the Image Zone Attributes dialog box, select the Store Image check box
to store each image in a separate file.
42 Form Script Classes and their Properties

Choices Class
Only Form scripts can use the Choices class. Each field that is defined as a choice
field has an additional property called Choices. The Choices property is a collection
of Boolean values reflecting the settings in the Choice Field Attributes dialog box.

Referencing Choices Collection Information

The Choices collection represents the set of choices in a choice field. This collection
utilizes an array structure to gain access to each choice in the choice field. The
number 0 represents the first element in the array.

The syntax for referencing Choices collection information (other than Choices.Count)
is:

ChoiceField.Choices(i).ChoicesProperty

where:

The following properties are available for each choice field on your form:

ChoiceField Field ID of the choice field on the form

i Integer between 0 and
ChoiceField.Choices.Count - 1.

ChoicesProperty Valid property of the Choices collection

Choices Class
Property

Type Access Description

Count Integer Read
Only

Contains the number of choice options in a choice field.

Text String Read
Only

Contains the storage text string associated with an
individual choice. For each choice, there is one storage
text string.

Value Integer Read-
Write

Contains the mark status of the choice.

True: this choice has been marked

False: this choice has not been marked

NOTE: This setting this to True in a single-choice field
sets all other choices to False.

When the Value property is set, the ChoiceField.Text
property is changed to reflect the new set of choices (this
property is discussed below).
Chapter 3: Form and Global Form Scripts 43

ChoiceField.Text Property

The ChoiceField.Text property is the text property of the choice field (a member of
the Field class). The string that is assigned to the ChoiceField.text property is the tab-
separated set of Storage strings whose choice values are marked.

• If the field has fixed storage, then there is one tab separating each possible
choice, even if the choice is not marked (for example, a field with 7 choices
would always contain 6 tabs in this property).

• If the field does not have fixed storage, then the number of tabs separating values
depends on how many choices are marked. (For example, a 7 choice field with 3
choices marked would contain two tabs in this property).

Choices Property Example

Suppose we have a multiple choice field named X whose Storage values are Yes, No,
and Maybe. The following statements are true:

If we set X.Choices(0).Value to True, set X.Choices(1) to False, and set
X.Choices(2) to True, then for a fixed choice field, X.Text is "YesTTMaybe"; for a
non-fixed choice field, then X.Text would be "YesTMaybe" (where T is a single tab
character).

Single choice vs. Multi-choice fields

If a choice field is defined to allow a single choice, then only one element in the
collection may be True at a time. Setting a choice to True sets all other choices to
False.

If a choice field is defined as multi-choice, then any number of choices may be True.

X.Choices(0).Text equals "Yes"

X.Choices(1).Text equals "No"

X.Choices(2).Text equals "Maybe"

X.Choices.Count equals 3
44 Form Script Classes and their Properties

Referencing Choices from Scripts

Choice fields utilize the additional choices property because each field can consist of
any number of choices.

For example, suppose the field ID of a choice field is Tendency. The Tendency choice
field consists of five choices: Always, Usually, Occasionally, Usually Not, and
Never. In this example, the storage values match the display values.

Using this choice field, the various properties of the choices collection can be
demonstrated. The following script goes through each choice in the choice field.
When it finds the selected choice, it tests to see if the selection was Always, and if so,
sets the qualify variable equal to 1.

NOTE: This script works for choice fields where multiple choices are allowed.

Sub Options_LostFocus
Dim choicenum as integer ’Define the variable choicenum
Dim Qualify as integer ‘Define the variable Qualify

'Loop through each of the choices
For choicenum = 0 to Options.Choices.Count - 1

‘If a choice has been marked, examine its value
If Options.Choices(choicenum).Value Then

‘Test to see if value is Always
If Options.Choices(choicenum).Text = "Always" Then

Qualify = 1
End If

End if
Next choicenum

End Sub
Chapter 3: Form and Global Form Scripts 45

Data Review Functionality
Data Review allows a Verifier operator to quickly review data from a batch that is
ready to be committed (initiated when all of the forms in the batch have the status
Evaluated OK). Depending on how your batch is set up, certain forms will be
displayed in the Data Review window. Depending on how each form in the batch is
designed, certain fields will be checked (or keyed) in Data Review. With this feature,
a Verifier operator can perform quality control on the processing of each batch before
the batch is committed.

This functionality only appears in TELEform Elite and TELEform Enterprise Edition.
If you are running TELEform Standard, you will not see any DataReview-related
entry points, properties or values.

For more information on the Data Review operation, refer to “Data Review” on page
136 of this Addendum.

DataReview Entry Points
The following entry points are called during Data Review in TELEform Verifier.
These entry points are located in both the Form script of an individual form and the
Global Form Script of TELEform.

Refer to page 2-3 of your BasicScript Guide for more information on Form script
entry points.

Form Script Entry Point Description

Sub DataReview_Load
 (script)
End Sub

This entry point is called when a form enters Data Review Mode in
TELEform Verifier.

Sub DataReview_Unload
 (script)
End Sub

This entry point is called before a form or partial form (i.e. missing
pages) is closed in Data Review. This entry point will either be called
right before the user is prompted to save changes, or before the user
manually closes the form. This can be used to double-check edits
made on the form or to change the form status to force the form to
stay in Data Review.

Sub DataReview_HasUnloaded
 (script)
End Sub

This entry point is called immediately after Sub
DataReview_Unload. If the user is prompted to save results, this
prompt will appear before Sub DataReview_HasUnloaded is called.
Sub DataReview_HasUnloaded allows you to close a file that you
opened in DataReview_Load.
46 Data Review Functionality

DataReview (Form.Mode Value)

The following Form.Mode value is used to distinguish Data Review mode
from Form mode.

A generic example of using this new value in your script is provided below.

If Form.Mode = DataReview Then
 ’Do something specific to Data Review mode.
Else
 ’Do normal form mode stuff
End If

Refer to “Form.Mode Property Values” on page 31 for more information on
Form.Mode values.

Field.DoubleKey Property

Double Key is a type of Data Review that forces the operator to re-enter the value of a
field from scratch (he/she cannot see the corrected value). Then, the keyed-in value
and the corrected value are compared to make sure they match. Double Key must be
specified for a particular field in order for that field to undergo Double Key.

The DoubleKey field property allows a script to test whether or not a particular field
is configured for Double Key.

Mode Value Processing Status

DataReview 8192 Verifier: performing quality control in Data
Review mode.

Field Class Type Access Description

DoubleKey Integer Read Only If a field is marked for Double Key, the Boolean value of
Field.DoubleKey is 1. Otherwise Field.DoubleKey is 0.

NOTE: Field.DoubleKey is only defined during Data
Review and Form mode, and is 0 during Form mode
correction.
Chapter 3: Form and Global Form Scripts 47

Executing Your Form Scripts
In order to execute your Form script, you must first successfully compile it and save it
in the Edit Script window of TELEform Designer. If you receive any compile errors
when compiling your Form script, you must resolve these errors before you attempt
to execute it.

To execute a form script, use the following general procedure:

1. If your script includes the Form_Merge entry point, execute a form merge in
TELEform Print Manager.

2. Evaluate a form image in TELEform Reader.

3. Correct this form image in TELEform Verifier.

The routines in each entry point are executed automatically in
response to the various events (evaluating, correcting, exporting)
that occur.

IMPORTANT: Always compile your script after any changes to the Form.

If you want to isolate a particular entry point in your form script, refer to the
following table:

Form Script Entry Point Called...

Form_Merge When TELEform Print Manager merges a record into your
form. To start a form merge, click the New Merge button on
the Form Merge Setup dialog box in TELEform Print
Manager.

Form_Evaluate When you evaluate a form image in TELEform Reader.

Form_Check When you finish Character and Field Mode Correction for a
form image. It is called right before you enter Form Mode
Correction

Form_Load Before you enter Form Mode Correction or SKFI Streaming
Mode for a form image.

FieldGotFocus Right before you tab into a field in Form Mode Correction

FieldHasFocus After you tab into a field in Form Mode Correction, but
before you type anything in the field.

FieldLostFocus When you tab out of a field in Form Mode Correction
48 Executing Your Form Scripts

Form_Unload When you close a form in TELEform Verifier. You can save
the corrections to the results file, or cancel the edits you
made to the form image.

When you leave a SKFI zone in SKFI Streaming Mode

Form_HasUnloaded After you click Yes on the ‘Save corrections to results file’
message in TELEform Verifier.

Otherwise, immediately after Form_Unload, unless
Form_Unload sets the Form.Status to Suspend

Form_Verify After you have corrected all pages of a form in TELEform
Verifier.

Form_Export After you have corrected all pages of a form but before the
data is exported to your data file.

DataReview_Load When a form enters Data Review Mode in TELEform
Verifier.

DataReview_Unload Before a form or partial form (i.e. missing pages) is closed
in Data Review. This entry point will either be called right
before the user is prompted to save changes, or before the
user manually closes the form. This can be used to double-
check edits made on the form or to change the form status to
force the form to stay in Data Review.

DataReview_HasUnloaded Immediately after Sub DataReview_Unload. If the user is
prompted to save results, this prompt will appear before Sub
DataReview_HasUnloaded is called. Sub
DataReview_HasUnloaded allows you to close a file that
you opened in DataReview_Load.

Form Script Entry Point Called...
Chapter 3: Form and Global Form Scripts 49

PDF+Forms, Pdf+forms for Livelink, and
HTML+Forms Evaluations

If you are using PDF+Forms, PDF+Forms for Livelink, and HTML+Forms, the entry
point ‘Form_Evaluate’ will be called for all records received by TELEform Internet
Server. To distinguish from paper form evaluations, the Form.Mode property will be
set to “FormFill” rather than “Evaluation”.

Normally, PDF+Forms, PDF+Forms for Livelink, and HTML+Forms (Filler) records
are exported without going through TELEform Verifier. If, during the Form_Evaluate
entry point, a field’s status gets set to a non-OK value, then the record will be held for
review. Rather than having an image as a backdrop, a filled in form template will be
presented. The BasicScript entry points called during this phase will be the same as
the normal Verification entry points (Form.Mode = Suspense).
50 PDF+Forms, Pdf+forms for Livelink, and HTML+Forms Evaluations

Sample Form Scripts
If you want TELEform to perform a special function, it is very likely that you can
write a Form script in BasicScript to accommodate and execute this function. This
section includes examples that illustrate common BasicScript functions, and how
these functions are integrated with the TELEform process. Although you may not be
able to use these scripts word-for-word, you can modify them and then use them to do
similar things in your TELEform system.

Using Form Scripts for TELEform Verifier
This section exemplifies the important role of scripts during form verification in
TELEform Verifier.

Forcing Retries of Incorrect Data

If the SetFocus is to the current field, the user will effectively not be able to leave the
field. This technique can be incorporated into a LostFocus routine to keep the focus
on the current field until some acceptable value is entered.

For example, to prevent the user from entering a value for the numeric field ‘x1’ that
is less than zero (0), you could write the following script:

Const FieldOK = 0
Sub x1_LostFocus

If x1.value < 0 Then
DispMsg "Amount cannot be less than zero. Please

retry"
x1.setfocus

 Else
x1.status=FieldOk

End If
End Sub

NOTE: Be careful not to trap the user in the current field with no way out.
Chapter 3: Form and Global Form Scripts 51

Using the SetFocus Property

The SetFocus property can also be used to determine (conditionally) which field
should be visited next. This property is useful if you want to employ skip-and-fill
logic for the tab order in TELEform Verifier.

For example:

If q1.text = "Yes" Then
q2.SetFocus

Else
q3.SetFocus

End If

Sample Form Validation Script
Validation scripts are form scripts, and are therefore associated with a particular form.
This script is for the time card form shown below. It checks to make sure that the
total time equals the difference between the end time and the start time, less any lunch
time.

The form contains the following fields:

start_time lunch_time end_time total_time
52 Sample Form Scripts

Overview of the Validation Script

This script utilizes a user-defined function to convert all of the time data on the form
into minutes so that calculations can be performed with the values. This function can
be typed anywhere in the script file except inside another subroutine or function.

The function is called at evaluation time and will test the values on the form to see if
they are correct. If the calculated "total time" value doesn’t match the value written in
the total_time field, the function will mark that field for review and hold the form for
verification.

If the form needs review, the script will include a total_time_LostFocus event that
will not allow tabbing out of the field until the correct value is entered.

‘Form Validation Script

Const SumFail = 0
Const SumSuccess = 1
Const FldInvalid = 128 ’field validation failed
Const FldOK = 0 ’field evaluated OK

‘declare the SumOK function for use throughout the script
Declare Function SumOK() as integer

Sub Form_Evaluate

'call the SumOK function to test the values on the form.

 'if function fails, mark total_time field for review.
If SumOK = SumFail Then

'if total doesn't match, bitwise 'OR' turns on FldInvalid flag, forcing review.
total_time.status = (total_time.status OR FldInvalid)

End If
End Sub

'the following subroutine is executed when you tab out of total_time field.
Sub total_time_LostFocus

'keep the focus on total_time field until correct value is entered.
If SumOK = SumFail Then

'if totals do not match, show message box.
DispMsg "Total hours worked is not correct. Please re-enter."
total_time.setfocus 'set focus back to the total_time field.

Else
total_time.status=0 'if total matches, accept value and proceed to the next field.

End If
End Sub
Chapter 3: Form and Global Form Scripts 53

’create a user-defined function that validates the total hours worked. If this function fails,
’it returns False.

Function SumOK() as integer
’declare variables to hold "minutes" value for start, end, and total times and the calculated
‘duration.
Dim beg_min as integer 'start time
Dim end_min as integer 'end time
Dim tot_min as integer 'total time
Dim duration as integer 'calculated duration

'this code assumes that template characters are not stored with the data.

'convert start time data to minutes
beg_min = Val(Left$(start_time.text, 2)) * 60 + Val(Mid$(start_time.text, 3,2))

'convert end time data to minutes
end_min = Val(Left$(end_time.text, 2)) * 60 + Val(Mid$(end_time.text, 3,2))

'convert total time data to minutes
tot_min = Val(Left$(total_time.text, 2)) * 60 + Val(Mid$(total_time.text, 3,2))

'calculate the total hours from the individual fields
duration = end_min - beg_min
If duration < 0 Then 'add 12 hours if not in 24 hour format

duration = duration + (12 * 60)
End If

'subtract lunch break from calculated total hours
duration = duration - Val(lunch_time.text)

'compare calculated total to the entered total and set value of SumOK
If duration = tot_min Then

SumOK = SumSuccess
Else

SumOK = SumFail
End If

End Function
54 Sample Form Scripts

Sample FieldGotFocus Script
A script writer can declare a global variable and set it to Form.CurField during
FieldGotFocus to keep track of the last field visited at any time. This may be useful
since global variables can be accessed from any entry point, including custom menu
entry points. (Recall that Form.CurField is only defined in the FieldGotFocus,
FieldHasFocus and FieldLostFocus entry points.) The script to accomplish this could
be as follows:

 ’Define the global variable
Public LastField as String
 ... other code here ...
Sub FieldGotFocus

LastField = Form.CurField
End Sub

With the above example, ’LastField’ can be used in a custom script to take action
based on what field the user is currently on.

Sample Form_Merge Script
The following example fixes the Company name ’Cardiff Software’ and calculates the
Total field (by summing Line1, Line2 and Line3 fields). The printed form will show
the new values for the Company and Total fields.

Sub Form_Merge

’ Standardize the company name
 if Left$(LCase$(Company.Text), 16) = "cardiff software" then
 Company.Text = "Cardiff Software, Inc."

end if

’ Set the total field to the sum of the line fields
Total.Value = Line1.Value + Line2.Value + Line3.Value

End Sub
Chapter 3: Form and Global Form Scripts 55

56 Sample Form Scripts

CHAPTER 4

Export Scripts
About this Chapter
In this chapter, Export scripts will be introduced and their components will be
explained in detail. The Export script components include the following:

• Export script entry points

• Export script classes and properties

This chapter will also explain how to do the following:

• Open the Edit Script window for writing Export scripts

• Execute your Export scripts

At the end of this chapter, there is an example of an Export script.

Overview of Export Scripts
Export scripts allow you to write customized export routines for TELEform. When
you create an Export script, it is added to the list of standard export formats and
becomes available for both auto and manual export. Export scripts are not connected
to any particular form and they assume no prior knowledge of the TELEform forms or
the data that is being exported. Export scripts simply read the data from a form and
write it out to a file or process it in other useful ways.

When an Export script is saved, you are prompted to enter a name for it. The next
time you start TELEform Designer and open one of the Export Setup dialog boxes,
this name appears in the Format list.

NOTE: You must exit TELEform Designer, and then re-start it in order to view the
names of newly added export scripts in the Format list.
Chapter 4: Export Scripts 57

Opening an Export Script for Script Writing
In order to write, edit and compile your Export script, you must use the BasicScript
editor. This script editor is initiated when you open the Edit Script window in
TELEform Designer

To create a new export script:

1. Start TELEform Designer

2. Click Export Scripts on the Utilities menu.

3. The Edit Script window displays a new export script.

To open an existing export script:

1. Start TELEform Designer

2. Click Export Scripts on the Utilities menu.

The Edit Script window appears.

3. Click Open on the File menu.

4. If a message appears, click No on the message to bypass saving changes to
the Untitled script.

The Open dialog box appears.

5. Click your export script in the list, and then click OK.

The Edit Script window displays your export script.

NOTE: You can only write and edit your Export script in the Edit Script window of
TELEform Designer. If you try to edit your Export script in another
TELEform application, you will not be able to compile and/or save it.
58 Opening an Export Script for Script Writing

Export Script Entry Points
Export script entry points indicate the points where TELEform "enters" and executes
the Export script. The entry point where you type in your code dictates at which point
during the export process that code will be run.

The following diagram shows when each Export script entry point gets called with
respect to the TELEform data flow:

Each entry point is described in the following table.

Export Script Entry Point Description

Sub Export_Setup
 (script)
End Sub

This entry point is called in TELEform Designer when the user chooses
‘Save As’ on one of the Export Setup dialog boxes. This entry point will
only be called when the Setup Dialog Supported check box is selected
in the Save Script As dialog box or the Edit Capabilities dialog box (of
the Edit Script window).

Sub Export_Start
 (script)
End Sub

This entry point is called once for each export record and allows access to
every exported field on the form. A typical export script goes through
each field and writes the desired field information to the data file.

Sub Export_Record
 (script)
End Sub

This entry point is called once for each export record and allows access to
every exported field on the form. A typical export script goes through
each field and writes the desired field information to the data file.

Sub Export_End
 (script)
End Sub

This entry point is called at the completion of the export and is typically
used to close the data file.

DESIGNER READER VERIFIER

HOLD FOR
VERIFICATION

CHAR
MODE

FIELD
MODE

FORM
MODE

DATA
EXPORT

SAVE TO
RESULTS
FILE
(Dialog)

PRINT
MANAGER

PAGE
LINKING

INTERNAL
STORAGE

PAGE
LINKING

INTERNAL
STORAGE

DATA
EXPORT

EVALUATED
OK PATH

*SKFI
Mode

NEEDING REVIEW PATH

EXPORT SCRIPT ENTRY POINTS

Image

Form FORM
SCAN

EVALUATE
IMAGE

Export_Setup

Export_End

Export_Record

Export_Start

Export_End

Export_Record

Export_Start

* Refer to the SKFI section in your TELEform Elite User Guide for details.

 Indicates a data path that your script can initiate
Chapter 4: Export Scripts 59

Saving Your Export Script
The first time you attempt to save your Export script, the Save Script As dialog box
appears.

In this dialog box, you can specify the extension and name of your export format, and
set up several export options. These options tell TELEform what your script’s
capabilities are. Enter these settings to accurately reflect your script’s function.

NOTE: If your settings are not accurate, your data may not be exported correctly.

IMPORTANT: Always compile your script after any changes to the Form.
60 Saving Your Export Script

The following table briefly describes each option in the Save Script As dialog box.
Many of these options can also be specified in the Edit Capabilities dialog box (on the
Edit menu of the Edit Script window, click Capabilities):

Export Option Description

Export Format Name Name of the script as it will appear in the Format
list of your Export Setup dialog boxes. The first
3 characters of this name specify the file
extension that will appear in the Save As
dialog box when defining the data export file
path and name.

Script Path Name Directory and file name where your Export
script will be saved to

OPTIONS

Append Mode Supported If your Export script supports appending data to
an existing file, select this check box.

Can Include a Header If including a header in your script is optional,
select this check box.

NULL Values Supported If your script allows null (empty) values, select
this check box. Otherwise, TELEform converts
null numeric values to zero (0) for export.

If your script supports null values, use the
FieldName.Text property to test for blank fields
instead of using the FieldName.Value property.

Setup Dialog Supported Allows the Export_Setup entry point in your
Export script to be called

If you select this check box, you must fill the
Export_Setup entry point with code that asks the
user to fill in the name of the file to export to.

FIELD LIMITS

Max # of Fields Enter the maximum number of fields per form
record that your Export script allows.

Max Field Width Enter the maximum number of characters per
field that your Export script allows.

Max Name Length Enter the maximum number of characters per
field ID that your script allows.
Chapter 4: Export Scripts 61

Export Classes and their Properties
As mentioned in Chapter 1, each class has a unique set of properties. With these
properties, you can access the full range of TELEform information. Because the script
must rely on logic and mathematics to execute properly, it is imperative that you use
these properties correctly.

Export Class
Only Export scripts can use the Export class. This object class contains information
about the export session.

Referencing Export Class Information

The syntax for referencing Export class information is:

Export.ExportPropertyName

where ExportPropertyName is a valid property of the Export class

For example:

Open Export.Path for output as #FileNum
62 Export Classes and their Properties

The following properties are defined for the Export class:

Export
Class
Property

Type Access Description

Path String Read-Write

(Write only in
Export_Setup)

Contains the full path of the data file. This is the file to
which the script will write field data.

Capabilities Integer Read Only Contains a number describing the capabilities of the export
format.

This value can be changed by clicking Capabilities on the
Edit menu of the Edit Script window.

The value of this property equals the sum of the following
constants. These are not predefined values but can be
specified in the script as shown:

 Const AppendSupport = 04 ’Append Mode Supported

 Const HeaderSupport = 08 ’Can Include a Header

 Const AllowNull = 32 ’NULL Values Supported

 Const SetupSupport = 02 ’Setup Dialog Supported

For example, if Header and Append Mode are enabled,
then Export.Capabilities = 12.

Header support can be tested by using the following
syntax:

 If (Export.Capabilities And HeaderSupport) Then

 ...

 End If

The And operation is bitwise, and the result of it is only
true if the Field Capabilities include header support.
Chapter 4: Export Scripts 63

MaxFields Integer Read Only Contains the maximum number of fields exported from a
single form at one time.

This value can be changed by clicking Capabilities on the
Edit menu of the Edit Script window.

Range: 1-4096

MaxWidth Integer Read Only Contains the maximum number of characters that can
appear in any one data entry field.

This value can be changed by clicking Capabilities on the
Edit menu of the Edit Script window.

Range: 1-16384

MaxNameL
en

Integer Read Only Contains the maximum number of characters that can
appear in the field ID of any one data entry field.

This value can be changed by clicking Capabilities on the
Edit menu of the Edit Script window.

Range: 1-29

Format String Read Only Contains the name of the export format as it appears in the
Format list of the export dialog box.

Count Integer Read Only Contains the number of forms remaining to be processed
in this export session. At Export_Start, this value is the
total number of forms to be processed. Each time
Export_Record is called, this value is decremented by one.

Append Integer Read Only Contains the append status of the export.

True: the file already exists and you are appending

False: the file is new

Export
Class
Property

Type Access Description

Path String Read-Write

(Write only in
Export_Setup)

Contains the full path of the data file. This is the file to
which the script will write field data.
64 Export Classes and their Properties

Header Integer Read Only Contains the header status of the export.

True: the user selects Include Header when starting the
export operation

False: the user does not select this option

Note: Export scripts must select the Can Include a
Header check box to allow the user to select Include
Header. (See the Capabilities property above for more
information on header support)

Result Long Read-Write Contains the result of attempting to export a record. This
value is returned to TELEform at the end of each
Export_Record call.

The script should set this either to a non-zero value
(typically -1) to indicate failure of export or to zero (0)
after successfully exporting a record.

Master Export Read Only Returns the master record if the export being performed is
the nested export of a detail record. Each row of a detail
group is considered a separate record during export.

The value of this property is:

• Nothing for form-level exports

• A value for detail group exports.

 (See "Nothing” in Chapter 8 for more information on
uninitialized object variables.)

Refer to your TELEform User Guide for more information
on Detail groups.

Export
Class
Property

Type Access Description

Path String Read-Write

(Write only in
Export_Setup)

Contains the full path of the data file. This is the file to
which the script will write field data.
Chapter 4: Export Scripts 65

Exporting detail groups

If you write an export format, special handling is usually not required for detail
groups. Your export format just gets called once for each detail row as well as once
for the master form record.

Because TELEform calls your script for detail groups before it is done with the master
record, you should not use fixed file handles. Instead, use the function ’FreeFile()’ to
obtain the next available file handle. See the Sample Export Script at the end of this
chapter.

If you do require special handling for detail groups, the Export.Master property
contains the master export object for the detail records during calls to Export_Start,
Export_Record and Export_End. Export.Master is Nothing during export of the
master form record.

Form Class
Form class properties contain information about the particular form currently being
processed by the Export script. For more information on the Form class, see the
“Form Class” section in Chapter 2.

Fields Collection
The Fields collection can be used by Form scripts and Export scripts. Fields is a
collection that provides access to all fields on the form being processed. Therefore,
you can access information from the Field class with the Fields collection. For more
information on the Fields collection, see the “Fields Collection” section in Chapter 2.

Field Class

Export scripts typically use the Name, Type and Text properties of the Field class
(within the syntax of the Fields collection). These and other Field class properties are
discussed in the “Field Class” section of Chapter 2
66 Export Classes and their Properties

Executing Your Export Scripts
In order to execute your Export script, you must first successfully compile it and save
it in the Edit Script window of TELEform Designer. If you receive any compile errors
when compiling your Export script, you must resolve these errors before you attempt
to execute it.

To execute an Export script, use the following procedure:

1. If TELEform Designer is running, and you just created a new Export script, exit
TELEform Designer.

You must re-start TELEform Designer to put your newly created export
format in the Format list of the Auto Export Setup dialog boxes.

2. Start TELEform Designer.

3. Open a form.

4. Click Auto Export Setup on the Form menu. The Auto Export Setup dialog box
appears.

5. On the Select tab, select <none> and then click Modify. The Auto Export Setup
dialog box for the form appears.

6. On the Main tab, in the Format list, select your export script name, and then click
Save As.

7. The path that you coded in the Export_Setup Entry Point should be displayed in
the dialog box.

NOTE: If nothing happens when you click Save As, you may have selected the
Setup Dialog Supported check box (in the Edit Capabilities or Save Script
As dialog box of the Edit Script window) without inserting any code in the
Export_Setup entry point. If this is the case, go back and clear this check
box.

8. Check the Enable checkbox to invoke this script and then click OK.

9. The Auto Export Setup dialog displays showing the export path and indicates it is
enabled. Click OK.

10. Save the form.

11. Evaluate a form image in TELEform Reader.

12. Correct this form image in TELEform Verifier. The export routines are
automatically executed.

NOTE: You can also execute the script by doing a manual export (click Internal
Data Export on the Utilities menu).
Chapter 4: Export Scripts 67

Sample Export Script
The following Export script checks to see if a data file already exists.

• If there is an existing data file, the Export script appends exported
records to this file

• If there is not an existing data file, the Export script writes a line of field
names in the first line of the data file, and then adds records to this file.

For each record exported by TELEform, this script writes a line of data to the end of
the data file.

Dim fileNum As Integer ’Declare global to hold file handle. File
 ’with this handle will be opened in ’export_start’
 ’used in ’export_record’ and closed in export_end’.

Dim newFile As Integer ’Declare global to remember whether file exists
 ’already. This variable will be used to determine
 ’whether a header line should be written to the file.

’==
Sub Export_Setup

 export.path = "C:\My Directory\my file.txt" ’provide full path for export

End Sub
==

’===
Sub Export_Start

 fileNum = FreeFile() ’Get the next available file handle

 If FileExists(export.path) Then
 Open export.path for append as #fileNum ’Open existing file for appending.
 newFile = FALSE ’Remember that file already exists.
 Else
 Open export.path for output as #fileNum ’Create new file for writing.
 newFile = TRUE ’Remember that file is new
 End If ’(so we can write a header record)

End Sub
’===
68 Sample Export Script

’==
Sub Export_Record

 Dim i As Integer ’Declare integer to count through the file list
 Dim datastring As String ’Declare string to hold one line of data.

 ’If the file was just created, then we need to write a header record.

 If newFile Then
 datastring = "" ’Initialize to empty string.

 For i = 0 to Fields.Count - 1 ’Visit each field in the export list.
 If i > 0 Then datastring = datastring + "," ’Append a separator if not the first

‘item on the line.
 datastring = datastring + fields(i).name 'Append the field name.
 Next i

 Print #fileNum, datastring 'Write the header line to the file
 newFile = FALSE 'Don't go through this section again.
 End If

 'Prepare and write one record of data.

 datastring = "" 'Initialize to empty string.

 For i = 0 to Fields.Count - 1 'Visit each field in the export list.
 If i > 0 Then datastring = datastring + "," 'Append a separator if not the first item

‘on the line.
 datastring = datastring + fields(i).text 'Append the field value.
 Next I

 Print #fileNum, datastring 'Write the data line to the file.

End Sub
'==

'==
Sub Export_End

 Close #fileNum 'Close the file opened in 'export_start'

End Sub
'==
Chapter 4: Export Scripts 69

70 Sample Export Script

CHAPTER 5

System Script
About this Chapter
In this chapter, the System script will be introduced and its components will be
explained in detail. The System script components include the following:

• System script entry points

• System script classes and properties

This chapter will also explain how to do the following:

• Open the Edit Script window for writing your System script

• Execute your System script

At the end of this chapter, there are examples illustrating some common uses for the
System script.

Overview of the System Script
The system script brings the power of BasicScript to a global level in TELEform. It
allows scripts to be tied to the start-up and shutdown of TELEform Designer, Print
Manager, Reader, and Verifier, and provides script access to batch processing
operations.

NOTE: There is only one system script per TELEform installation.
Chapter 5: System Script 71

Public Variables
Besides its ability to assign script routines to the opening/exiting of TELEform
applications and other processes, system scripts allow the declaration of public
variables. Any public variables declared during the initialization of these applications
will be available for every script. A good use for public variables is the storage of
connection handles to a database.

Public variables are available to an application the entire time it is running. However,
these variables are global only to the particular application where the variables were
assigned:

• Public variables set in TELEform Designer cannot be read in TELEform Reader.

• Public variables set in TELEform Reader cannot be read in TELEform Verifier.

• Public variables set by one workstation are not available to other TELEform
workstations.

The System script has entry points corresponding to each of the TELEform
applications (Designer, Print Manager, Reader, and Verifier). Public variables that
are declared at the top of the System script (before any of these entry points) are
accessible for all scripts. They should be declared using the word ‘Public’ in the
following manner:

Public num As Integer

Initializing Public variables for an application

Public variables can be used for many purposes. One of the most common uses is to
initialize a variable on application start-up and then use it throughout the life of the
application. For public variables used in this way, the Application_Init entry points
are good places to initialize the variables (because these entry points will be called
when the application starts up).
72 Overview of the System Script

Opening a System Script for Script Writing
In order to write, edit and compile your script, you must use the BasicScript editor.
This script editor is initiated when you open the Edit Script window in TELEform
Designer.

1. Start TELEform Designer.

2. Click Export Scripts on the Utilities menu.

The Edit Script window appears.

3. Click Open on the File menu.

The Open Script dialog box appears.

4. Click System Script in the list, and then click OK.

The Edit Script window displays the System script.

NOTE: You can only write and edit your System script in the Edit Script window of
TELEform Designer. If you try to edit your System script in another
TELEform application, you will not be able to compile and/or save it.
Chapter 5: System Script 73

System Script Entry Points
The following diagram shows when each System script entry point gets called with
respect to the TELEform data flow:

The System script contains several entry points, each being called when the
associated action or event occurs in TELEform.

DESIGNER SCAN STATION

PRINT
MANAGER

SYSTEM SCRIPT ENTRY POINTS

Form

Scan_Init

FORM
SCAN

Print_Init

BatchSetup

Scan_End
Print Exit

Designer_Exit

Designer_Init

BatchScan_End

1 2

AUTOMERGE
PUBLISHER

Merge_Init

Merge End

3

4 5

READER

VERIFIER

HOLD FOR
VERIFICATION

CHAR
MODE

FIELD
MODE

FORM
MODE

DATA
EXPORT

SAVE TO
RESULTS
FILE
(Dialog)

PAGE
LINKING

INTERNAL
STORAGE

PAGE
LINKING

INTERNAL
STORAGE

DATA
EXPORT

EVALUATED
OK PATH

*SKFI
Mode

NEEDING REVIEW PATH

Image

Form FORM
SCAN

EVALUATE
IMAGE

BatchSetup

**BatchCommit_End

**BatchCommit_Start

Verifier_Init Verifier_Exit

BatchCommit_End

BatchCommit_Start

BatchScan_End

Reader_Exit

 * Refer to the SKFI section in your TELEform Elite User Guide for details.
** Utilities/Configuration/Local System must have “EnabledAutoBatchCommit” checked.
 This is a toggle, IF BATCH.STATE = BATCH ERROR from Reader you will not go back to BatchCommit_Start. You will have to go to Verifier to correct error and re-commit.

→Indicates a data path that your script can initiate

Reader_Init
74 System Script Entry Points

System Script Entry
Point

Description

Sub Print_Init
 (script)
End Sub

This entry point is called each time TELEform Print Manager is
started.

Sub Print_Exit
 (script)
End Sub

This entry point is called each time TELEform Print Manager is
closed.

Sub Designer_Init
 (script)
End Sub

This entry point is called each time TELEform Designer is started.

Sub Designer_Exit
 (script)
End Sub

This entry point is called each time TELEform Designer is closed.

Sub Reader_Init
 (script)
End Sub

This entry point is called each time TELEform Reader is started.

Sub Reader_Exit
 (script)
End Sub

This entry point is called each time TELEform Reader is closed.

Sub BatchSetup
 (script)
End Sub

This entry point is called in TELEform Reader, TELEform Scan
Station immediately after a user has entered batch settings in the Batch
Setup dialog box and clicked the OK button.

The system script is provided with properties that match each batch
setting in the Batch Setup dialog box of TELEform Reader, TELEform
Scan Station (see “Batch Class” on page 77).

You can use Sub BatchSetup to validate batch settings and force the
user back into the Batch Setup dialog box when information is invalid.
Chapter 5: System Script 75

Sub BatchScan_End
 (script)
End Sub

This entry point is called after batch scanning is done but before the
images are submitted into the system for evaluation.

At this entry point, you have the option of:

• Writing code to print or generate reports based on the
batch information (Batch Object).

• Modifying page or form counts so that Verifier operators
do not need to manually calculate the number of forms
based on the number of pages.

• Over-riding the Accept/Reject Batch prompt so that the
batch is automatically accepted.

• Forcing the reject of a batch if certain criteria are not
met.

• Displaying a custom dialog box to collect information
before handing the batch over to TELEform.

Sub BatchCommit_Start
 (script)
End Sub

This entry point is called when you commit a batch of forms in
TELEform Verifier. It is called immediately prior to storing and/or
exporting the batch data records.

Sub BatchCommit_End
 (script)
End Sub

This entry point is called after you commit a batch of forms in
TELEform Verifier. It is called immediately after storing and/or
exporting the batch data records. This is your system script’s last
chance to abort the batch commit process.

Sub Verifier_Init
 (script)
End Sub

This entry point is called each time TELEform Verifier is started.

Sub Verifier_Exit
 (script)
End Sub

This entry point is called each time TELEform Verifier is closed.

System Script Entry
Point

Description

Sub Print_Init
 (script)
End Sub

This entry point is called each time TELEform Print Manager is
started.
76 System Script Entry Points

System Script Classes and their Properties
As mentioned in Chapter 1, each class has a unique set of properties. With these
properties, you can access the full range of TELEform information.

Batch Class
Batch objects can only be used in the Batch entry points of the System script.

Referencing Batch Class Information

The syntax for referencing Batch class information is:

Batch.BatchPropertyName

where:

BatchPropertyName is a valid property of the Batch class

For example:

id = Batch.ID ’Assign the batch ID to the variable ’id’.

The following list describes each batch class property.
Chapter 5: System Script 77

Property Type Access Description

ID Long Read Only Contains the unique number for each batch that is
assigned by TELEform.

State Integer Read-Write Contains the state of each batch.

For more information on the Batch.State property, see
page 80.

Priority Integer Read/Write Verify that the Batch.Priority property in the Sub
BatchSetup entry point is equal to what was set in the
Batch Setup Dialog. Modify the Batch.Priority property
in the Sub BatchScan_End entry point. Create a batch,
then use Control Center to verify that the priority is equal
to the value that was set in the entry point.

Flags Integer Read-Write

(Write only in
BatchScan_End)

These are flags used in the system to determine actions
specified in the Batch Setup dialog box.

1 - Reject without prompting

2 - Accept without prompting

4 - Prompt on errors (missing pages...)

8 - NonForms expected

16 - Single form

For more information, see “Batch.Flags Property” on
page 81.

Pages Integer Read Only Contains the number of pages expected for the batch (as
entered or accepted by the user).

Forms Integer Read-Write

(Write only in
BatchScan_End)

Contains the number of forms expected for the batch (as
entered or accepted by the user).

PagesEvaluated Integer Read Only Contains the number of pages evaluated by TELEform
Reader.

FormsEvaluated Integer Read Only Contains the number of forms evaluated by TELEform
Reader

(a multi-page form is one form)
78 System Script Classes and their Properties

NonForms Integer Read Only Contains the number of non-form pages in the batch.

WSName String Read Only Contains the Workstation Name - the value taken from
the Station Name configuration setting.

Prefix String Read Only Contains the Batch file name prefix. For example, ‘0fe3’
in a file name series 0fe30000.tif, ...0fe39999.tif.

Ext String Read Only Contains the Batch file extension. For example, ‘.tif’ in
a file name 0fe30000.tif.

Directory String Read Only Contains the batch directory. This is the same Directory
that is displayed in the Batch Setup dialog box of
TELEform Reader.

Comment String Read-Write

(Write only in
BatchScan_End)

Contains the batch comments. This the same Comment
that is displayed in the Batch Options dialog box of
TELEform Verifier.

The maximum length for this property is 95 characters.
If the script exceeds this length, the value will be
truncated and a warning will be displayed

TrackId String Read-Write

(Write only in
BatchScan_End)

Contains the tracking ID. This is the same Tracking ID
that is entered in the Batch Setup dialog box of
TELEform Reader.

The maximum length for this property is 19 characters.
If the script exceeds this length, the value will be
truncated and a warning will be displayed

UserName String Read-Write

(Write only in
BatchScan_End)

Contains the operator name. This is the same Operator
that is entered in the Batch Setup dialog box of
TELEform Reader.

The maximum length for this property is 19 characters.
If the script exceeds this length, the value will be
truncated and a warning will be displayed

Date String Read-Write

(Write only in
BatchScan_End)

Contains a date. This is the same Date that is entered in
the Batch Setup dialog box of TELEform Reader.

The maximum length for this property is 11 characters.
If the script exceeds this length, the value will be
truncated and a warning will be displayed

FormId Long Read-Write

(Write only in
BatchScan_End)

Contains the form ID of the form in the batch. This
property can only be set in conjunction with a
Batch.Flags value of 16 (single form). See the
Batch.Flags property for more information.
Chapter 5: System Script 79

Batch.State Property

The following integer constants are predefined for use with the Batch.State value:

• BatchInProcess

• BatchReady

• BatchComplete

• BatchSetupComplete

• BatchError

• BatchSetupError

• BatchUserAbort

Upon entering BatchCommit_Start and BatchCommit_End, Batch.State is usually
BatchReady. If the user decides to commit the batch before all forms have been
evaluated, the Batch.State is BatchInProcess.

In BatchCommit_End, to allow the batch to commit, the script need do nothing. To
go back to the state prior to the commit, the script must set Batch.State equal to
BatchError.

CommitCount Integer Read Only Contains the number of times the user has attempted to
commit a batch.

Time Long Read Only Contains the date/time stamp of when the batch started.
This value is system generated.

C/C++ time_t data type. Returned number represents
number of seconds from 01/01/70.

NOTE: Batch.Date contains the date field entered by
the scanner operator in the Batch Setup dialog box of
TELEform Reader.

RecordCount Long Read Only Contains the number of records that are ready to be
committed by this batch. These are records that are
evaluated O.K. Even if you force a batch to commit, the
“Needs Review” records are still not considered as
Ready and will not be reflected in the record count. The
number of forms for the batch is still unknown until ALL
records have the status of Evaluated OK.

NOTE: If you want to know the number of records that
will be committed even when you are forcing the batch
commit with “Needs Review” records, you can use the
.FormsEvaluated value. This should give you the correct
number of records.
80 System Script Classes and their Properties

In BatchSetup, to return the user to the Batch Setup dialog box, the script for
Batch.State must contain the value BatchSetupError. The script writer must display an
error message with this value to inform the user that there is a problem with the batch
information. If the Batch.State property is not modified or is set to
BatchSetupComplete, the batch will continue normally.

If the user manually aborts a batch from within TELEform, the Batch.State will
contain the value BatchUserAbort. Alternatively, the script can set this value to
indicate to TELEform that the user aborted the batch (which is useful if you allow the
user to abort a batch from a BasicScript generated dialog box.)

Batch.Flags Property

The Flags property consists of a set of bit flags. This means that each flag value is
added together. The following values are used for the Batch.Flags property:

The 1, 2 and 4 values are mutually exclusive; they should never be set together.
However, they can be set in conjunction with the 8 and 16 values.

NOTE: Use caution when changing the flags property.

For example, if the scan operator wants to be prompted when errors occur, and
specifies a single form for the batch, the Flag property will contain the value 20 (16 +
4). However, if the script needs to change to Accept Without Prompting (for example
2 instead of 4), then the new value should be 18 (16 + 2).

Note that setting Form_ID to a non-zero value will be ignored unless the Flag
property has the value 16 (single form) set.

Flags Value Description

1 Reject without prompting

2 Accept without prompting

4 Prompt on errors (missing pages...)

8 NonForms expected

16 Single form
Chapter 5: System Script 81

Valid values for Flags are:

Invalid values are: 3, 5, 6, 7, 8, 11, 13, 14, 15, 16, 19, 21, 22, 23, 24, 27, 29 and
higher.

Value Combination
of...

Description

 1 Rejects without prompting

9 (1 + 8) Rejects without prompting and NonForms
expected

17 (1 + 16) Rejects without prompting and single
form

25 (1 + 8 + 16) Rejects without prompting, NonForms
expected and single form

2 Accepts without prompting

10 (2 + 8) Accepts without prompting and
NonForms expected

18 (2 + 16) Accepts without prompting and single
form

26 (2 + 8 + 16) Accepts without prompting, NonForms
expected and single form

4 Prompts on errors

12 (4 + 8) Prompts on errors and NonForms
expected

20 (4 + 16) Prompts on errors and single form

28 (4 + 8 + 16) Prompts on errors, NonForms expected
and single form
82 System Script Classes and their Properties

Executing Your System Script
In order to execute your System script, you must first successfully compile it and save
it in the Edit Script window of TELEform Designer. If you receive any compile errors
when compiling your System script, you must resolve these errors before you attempt
to execute it.

To execute the Application_Init and Application_Exit entry points:

1. Start TELEform Designer, Print Manager, Reader and/or Verifier.

2. Exit TELEform Designer, Print Manager, Reader and/or Verifier.

To execute batch entry points in your system script:

1. Start TELEform Reader.

2. Place filled-out forms in your scanner.

3. Click New Batch on the Scan menu.

The New Batch dialog box appears.

4. Select Scanner and click OK.

The Batch Setup dialog box appears.

5. Select the General tab.

6. Enter the batch parameters and click OK.

The Forms are scanned by the scanner and the TELEform Reader dialog box
appears.

7. Click on “Stop Scanning”.

8. Start TELEform Verifier

9. Correct the batch of forms.

10. Commit the batch.

See the diagram in “System Script Entry Points” on page 74 to get a visual
representation of when these entry points are called.

IMPORTANT: Always compile your script after any changes to the Form.
Chapter 5: System Script 83

Common Examples of a System Script

Sample System Script
A primary feature of System scripts is the ability to declare Public variables. One
practical application of Public variables is seen in the example below. This script
shows how a Public variable can be passed to an Export script to track connection
handles in the export database:

Public gblConnection as integer

Sub Reader_Init
gblConnection = 0 ‘Not connected

End Sub

Sub Reader_Exit
Disconnect(gblConnection)

End Sub

The above code would reside in the System script. In a separate Export script, you
would set the gblConnection variable to the connection handle returned by your
database Connect function. On subsequent exports, if the gblConnection variable is
not 0, then you can re-use the connection and make the operation faster.

Public variables must be declared with ‘Public’. To access the Public variables from
another script file, the variable must be declared the same way in that script.
84 Common Examples of a System Script

Sample BatchSetup Script

Sub BatchSetup is called in TELEform Reader immediately after a user has entered
the batch settings in the Batch Setup dialog box and clicked the OK button.

Here is an example that only allows people named Roger to scan batches:

Sub BatchSetup
If LCase$(Batch.UserName) <> "roger" Then

Batch.State = BatchSetupError
 MsgBox "Sorry, unless your name is ’Roger’, this batch can’t go"
 End If
End Sub

NOTE: MsgBox is used here instead of DispMsg because the message should be
forced in front of the user instead of being displayed in the Reader log
(where the user might not see it).

Sample BatchScan_End Script

BatchScan_End is called after scanning is complete but prior to evaluating any
images. The System script can change any of the writable Batch class properties in
this entry point. To abort the batch, set Batch.State = BatchSetupError. Leave the
State alone or set Batch.State = BatchComplete to let the batch go on normally.

Here is an example that allows a minimum of 50 pages in each batch.

Sub BatchScan_End
If Batch.Pages < 50 Then

MsgBox "You’ve got to scan more pages to get ahead in this company."
Batch.State = BatchSetupError

 Else
Batch.Forms = Batch.Pages/2 ’These batches are always made of 2 page forms

 End if
End Sub
Chapter 5: System Script 85

86 Common Examples of a System Script

CHAPTER 6

Custom, Periodic and Library
Scripts
About this Chapter
In this chapter, Custom, Periodic, and Library scripts will be introduced and their
components will be explained in detail. These components include the following:

• Script entry points

• Script classes and properties

This chapter will also explain how to do the following:

• Open the Edit Script window for writing these scripts.

• Execute these scripts.

Overview of Custom, Periodic, and Library
Scripts

The Custom, Periodic and Library scripts are rarely used by TELEform script writers.
However, if the need arises, you can use these specialized scripts to do the following:

• Custom Script - Create a new menu on each TELEform application’s menu bar
that allows TELEform users to execute each Custom script.

• Periodic Script - Execute a function at fixed intervals in TELEform Reader.

• Library Script - Store commonly used functions in a library.
Chapter 6: Custom, Periodic and Library Scripts 87

Custom Scripts
When you create a new Custom script, a command is added to a user-named menu in
each TELEform application’s menu bar. This type of script allows users to select a
menu command when they want to execute the script. These scripts can be used for
testing code and running data conversion programs.

When you create and save a Custom script, it is entered in the [Custom Menu] section
of the Teleglob.ini file. By default, the name of the new menu is Script. However,
this can be changed by editing the Teleglob.ini file.

To change the name of your menu:

1. Start Windows Notepad.

2. Click Open on the File menu.

3. Open your Teleglob.ini file (which is located in your Teleform\ directory).

4. Find the [Custom Menu] section in this file:

[Custom Menu]
Menu Title=&Script
Custom1=C:\Teleform\frm\Custom1
Custom2=C:\Teleform\frm\Custom2

NOTE: The & character precedes the shortcut key underlined on the TELEform
menu bar.

5. In the Menu Title line, replace the word Script with the name of the menu that
you want to see in your TELEform applications.

6. Save Teleglob.ini and close Windows Notepad.

These changes will take effect the next time you start a TELEform
application.

Notice that each line in the [Custom Menu] section corresponds to a command on the
Custom script menu. TELEform allows you to add up to 20 commands (20 Custom
scripts). When a user chooses the Custom script’s command, TELEform will load the
script specified and call the Sub Main entry point.

IMPORTANT: Always compile your script after any changes to the Form.

One use of a Custom script is to provide help to a Verifier operator that is specific to
the field currently in focus. Because the Fields collection and the Field class are not
available in Custom scripts, you can add code to your Form script that stores
information in Public variables. See the “Sample FieldGotFocus Script” in Chapter 2.
Using this sample script as an example, the Custom script knows which field is the
current field by examining the LastField variable.
88 Overview of Custom, Periodic, and Library Scripts

Assigning Accelerator Keys to Custom Scripts

Accelerator keys can be specified to execute whole scripts. Once you assign an
accelerator key to your custom script, pressing the CTRL and/or SHIFT key in
conjuction with an alphanumeric key will execute this script. You can also assign a
function key to your custom script (for example, F6).

When an accelerator key assignment is activated, the key combination will be
displayed on that script’s menu item in the Script menu.

Possible key assignments

• Any function key except F1 and F10.

• A function key in combination with the control key [CTRL-F6] or in
combination with the control and shift keys [CTRL-SHIFT-F6].

• Any alphanumeric key in combination with the control key [CTRL -G], or in
combination with the control and shift keys [CTRL-SHIFT-G].

NOTE: The SHIFT key can only be used in combination with the CTRL key.

To assign an accelerator key to a Custom Script

1. Start Windows Notepad.

2. Open your Teleglob.ini file. This file is located in your TELEform directory.

3. Locate the [Custom Menu] section in this file.

4. Find the entry in this section that corresponds to the custom script for which you
want to set up an accelerator key.

5. Add a description of the accelerator key to the end of this entry, separated by an
asterisk (*). For example:

Test Script=c:\teleform\test*F6

This edit will assign the function key F6 to the custom menu script
Test Script.

6. Repeat step 5 for each of your custom scripts.

7. Click Save on the File menu to save these edits to your Teleglob.ini file.

8. Exit Windows Notepad.

These changes will take effect the next time you start a TELEform
application.
Chapter 6: Custom, Periodic and Library Scripts 89

Examples of acceptable accelerator keys

Test Script1=c:\teleform\test1*F4

Test Script2=c:\teleform\test2*CTRL-K

Test Script3=c:\teleform\test3*CTRL-SHIFT-F7

Test Script4=c:\teleform\test4*CTRL-SHIFT-K

Restricted Accelerator Keys

If the specified accelerator key conflicts with an accelerator used by Windows or
TELEform, the custom menu accelerator will be disabled. You can tell if an
accelerator was accepted by looking at the Script menu. If the accelerator keystroke
is shown in the menu command, then the accelerator assignment was accepted.

NOTE: Make sure that you re-start TELEform before checking the Script menu for
your accelerator keys.

The following table contains a list of accelerators that will not be allowed by
TELEform or Windows:

NOTE: Because certain accelerator keys can be customized in TELEform, there may
be other accelerator keys that your Custom scripts cannot use. Application-
defined accelerator keys always take precedence over script-defined
accelerator keys.
90 Overview of Custom, Periodic, and Library Scripts

Application or System Restricted Accelerator Keys

System F1

F10

CTRL-F4

CTRL-F6

TELEform Designer F1

SHIFT-F4

SHIFT-F5

CTRL-C

CTRL-V

CTRL-X

CTRL-Z

CTRL-Y

CTRL-O

CTRL-S

CTRL-P

TELEform Print Manager F1

SHIFT-F4

SHIFT-F5

TELEform Reader F1

SHIFT-F4

SHIFT-F5

TELEform Verifier F1

F12 (by default)

CTRL-H

CTRL-D

CTRL-F

CTRL-T

CTRL-E

CTRL-W

CTRL-L
Chapter 6: Custom, Periodic and Library Scripts 91

Periodic Script
The Periodic script is called by TELEform Reader at regular intervals. Periodic
scripts are not allowed to run while TELEform Reader is evaluating a form and
during some other processes such as scanning. As a result, the interval between script
calls may be longer than the period specified.

To change the period of a Periodic script

1. Open the Edit Script window

2. Click Capabilities on the Edit menu.

The Edit Capabilities dialog box appears.

3. Type the new period (in seconds) in the Script Period (sec) box, and then click
OK.

Teleglob.ini and the Periodic script

When you create and save a Periodic script, it is automatically recorded in the
[Periodic Script] section of the Teleglob.ini file. The first line in this section
specifies the name of the periodic script that will be repeatedly executed. The second
line specifies the interval that the script will be called. The default period is 1 minute.

For example:

[Periodic Script]
Periodic Script=F:\Teleform\frm\PS1
Period (secs)=60

In this example, ‘PS1’ is the name of the script file (without the .tfs extension) and
TELEform Reader will call it every 60 seconds.
92 Overview of Custom, Periodic, and Library Scripts

NOTE: When using TELEform Enterprise Edition, you might want the Periodic
script to run on only one workstation. To accomplish this, the Periodic script
section should be moved from the Teleglob.ini file (in your TELEform
network directory) to the Teleform.ini file (in your WINNT network
directory).

If you do this, do not edit the period of the script in the Edit Capabilities
dialog box (of the Edit Script window). When you edit the period in this
dialog box, you will place the Periodic script settings back in your
Teleglob.ini file.

Library Scripts
Library scripts provide a consistent way to incorporate any code that you use into
multiple forms or scripts. Once the code is in a Library script, it can be accessed from
any script.

For example, suppose you have two different time card templates in TELEform
Designer. Instead of having two copies of the validation code in your Form scripts
(which validates the total hours worked by your employees), you can put the
validation code into a Library script, and then call the Library script from each of
your Form scripts.

The functions and subroutines defined in Library Scripts are not automatically
available to other scripts. To access Library Script functions from other scripts each
must be declared at the top of the other scripts. For example, if sub test MsgBox
“Test” EndSub was defined in a Library Script, that same function must be declared at
the top of a script that wants to access it Declare Sub Test. None of the standard
TELEform objects (such as the Fields collection or the Form object) are available in a
Library script. If you want to operate on a field, the field has to be passed in as a
parameter.

For example:

declare Function GetName(fname as Field, lname as Field) as integer

NOTE: Each library script must be compiled like a standard script.
Chapter 6: Custom, Periodic and Library Scripts 93

Opening a Custom, Periodic, or Library Script
for Script Writing

In order to write, edit and compile your script, you must use the BasicScript editor.
This script editor is initiated when you open the Edit Script window in TELEform
Designer.

To create a new script:

1. Click Export Scripts on the Utilities menu.

The Edit Script window appears.

2. Point to New on the File menu.

• If there is a submenu, go to 5.

• If there is no submenu, go to 3.

3. Click Open on the File menu.

The Open Script dialog box appears.

4. Click the Display Library and Custom Scripts check box, and then click
Cancel.

5. Point to New on the File menu, and then click the type of script you want to
create.

The Edit Script window displays a new script of this type.

To open an existing script:

1. Click Export Scripts on the Utilities menu.

The Edit Script window appears.

2. Click Open on the File menu.

The Open Script dialog box appears.

3. Select the script name in the list, and then click OK.

The Edit Script window displays your script.

IMPORTANT: Always compile your script after any changes to the Form.
94 Opening a Custom, Periodic, or Library Script for Script Writing

Chapter 6: Custom, Periodic and Library Scripts 95

New Custom Script

The following figure shows what a new Custom script looks like:

New Periodic Script

The following figure shows what a new Periodic script looks like:

New Library Script

The following figure shows what a new Library script looks like:

Notice that there are no pre-defined entry points in a Library script. Remember, a
Library script is not called by TELEform directly. It can only be referenced by another
script.
96 Opening a Custom, Periodic, or Library Script for Script Writing

Custom, Periodic and Library Script Entry
Points

Custom Script Entry Point

Custom scripts have a single entry point called Main, which contains the Custom
script routine. This entry point is called when you click a command on the Script
menu in a TELEform application.

Periodic Script Entry Point

The Periodic script has a single entry point called Main, which contains the Periodic
script routine. By default, this script will be called every 60 seconds by TELEform
Reader.

Library Script Entry Point

TELEform does not call entry points in Library scripts directly, so you can choose
whatever name you like for the Library script function. Any function that is declared
and written in a Library script can be called and used by any other TELEform script.
Chapter 6: Custom, Periodic and Library Scripts 97

Executing Your Custom, Periodic and Library
Scripts

In order to execute your scripts, you must first successfully compile and save them in
the Edit Script window of TELEform Designer. If you receive any compile errors
when compiling your scripts, you must resolve these errors before you attempt to
execute your scripts.

Custom Script Execution

In a TELEform application, click the Custom script command on the Script menu (or
on the menu name that you specified in the Teleglob.ini file).

Periodic Script Execution

Run TELEform Reader.

Because the Main entry point will be called by TELEform Reader at every specified
interval, you must keep TELEform Reader open for at least this duration.

Library Script Execution

Use the execution procedure(s) that the script’s function is used in.

Remember that Library scripts are used to store commonly used functions that can be
referenced in other, active scripts.

NOTE: Library scripts cannot run while they are open in the Edit Script window.

To debug a Library script, open the script that will call the Library script. See
Chapter 7 for more information on debugging your scripts.
98 Executing Your Custom, Periodic and Library Scripts

CHAPTER 7

Advanced Features of Scripts
About this Chapter
The following sections explain in more detail the complex and less commonly used
features of scripts.
Chapter 7: Advanced Features of Scripts 99

TrueAddressFieldName.Status Values
The following values occur when a portion of a TrueAddress field cannot be
validated.

Whenever a script sets the Field.Status to FldOK (0) or FldBlankZone (4096), the
corresponding Field.Mask property is set to all ’0’ characters so that it matches the
length of the corresponding Field.Text property. Any of the Status property values in
the previous table can be put into either a conditional or a bitwise (boolean) Or
statement with the FieldName.Status values, with the following exceptions:

• Each of the Fld values found in “FieldName.Type Property Values” on page 39
can be in an Or statement with any combination of the FldName, FldCompany,
and FldStreet2 values found in the TrueAddress table above.

• Only one of the other TrueAddress values (FldAddress through
FldUndeliverable) may be included in an Or statement with the Fld values in
“FieldName.Type Property Values” on page 39.

TrueAddress Constant
Name

TrueAddress Value Description

Const FldAddress 65536 entire address

Const FldCityState FieldAddress * 2 city, state or zip code

Const FldStreet FieldAddress * 3 street number

Const FldStreetRange FieldAddress * 4 street range

Const FldStreetName FieldAddress * 5 street name

Const FldStreetDir FieldAddress * 6 street direction

Const FldStreetSuffix FieldAddress * 7 street suffix

Const FldStreetDirSuf FieldAddress * 8 street direction (suffix)

Const FldZipRange FieldAddress * 9 zip code

Const FldUndeliverable FieldAddress * 10 address is undeliverable

Const FldName FieldAddress * 16 name field that has low confidence character

Const FldCompany FieldAddress * 32 company field has low confidence character

Const FldStreet2 FieldAddress * 64 street 2 field cannot be validated
100 About this Chapter

Custom Status Messages
Fields can be marked with any number of review conditions listed in the
Status Property Values tables (see the previous section). There are also
seven status codes reserved explicitly for BasicScript that can be set and/or
read in a script. The corresponding status is then indicated to the user in
Verifier when the field is corrected.

NOTE: Custom status messages appear only during form mode correction.

The following is a list of the custom status values:

To specify custom status values:

1. Create the following section in your Teleglob.ini file (which is located in your
TELEform directory):

[Field Status Messages]
Custom1 = My Message
Custom2 = Name does not conform to the rules

The message written in this file will be displayed next to the field in
TELEform Verifier where you would normally see messages such
as ‘low confidence character’ or ‘lookup failed’.

2. In your script, define the following constants:

Const FldCustom = 16777216
Const FldCustom2 = FldCustom * 2
Const FldCustomPriority = FldCustom * 8

Insert your custom status by choosing one of the values FldCustom through
FldCustom7. Optionally, put this value into an Or statement with
FldCustomPriority. Then, put your combined custom status into an Or
statement with Field.Status to set the final status.

Since a field can have multiple status messages, TELEform must choose
which message to display. By default, TELEform displays built in status
messages before custom status messages. If you include CustomPriority
with your status value, TELEform will display your message first regardless
of other status messages.

Custom Constant Name Custom Value Description

Const FldCustom 16777216 custom message 1

Const FldCustomN FldCustom * N custom message N, where N is an integer
between 2 and 7.

Const FldCustomPriority FldCustom * 8 priority status for custom message
Chapter 7: Advanced Features of Scripts 101

For example:

Suppose you have a field called MyName that had an unrecognized
character. In BasicScript you set the status to indicate that the field does not
conform to your special naming rules. (Using the definitions given earlier in
this section).

If you set the status as follows:

MyName.Status = MyName.Status Or (FldCustom2)

The message ‘Unrecognized Character’ will appear in TELEform Verifier
when the focus goes to the field Name. When the user corrects this
character, the ‘Name does not conform to the rules’ message will appear.

If you set the status as follows:

MyName.Status = MyName.Status Or (FldCustom2) Or
FldCustomPriority

The message ‘Name does not conform to the rules’ will appear in TELEform
Verifier when the focus goes to the field Name. However, if the field has a
non-zero mask property, the ‘Unrecognized Character’ message will still
take precedence.

Combining FieldName.Mask and FieldName.Text
Properties

Most scripts never need to modify the Field.Mask property. However, if you set the
Mask property of a field, it may be truncated to match the length of the Text property.
Therefore, if you are setting both the Text and Mask properties of a field, the Text
property needs to be set first to avoid losing part of the newly set Mask property.

An example of the wrong order is as follows:

Suppose Field.Text and Field.Mask contain 'myf' and '090' respectively. Then we
write the following code.

This example will not work properly:

 Field.Mask = "000090"
 Field.Text = "myfile"

1. After the first line, Field.Mask is truncated to 3 characters (‘000’) so that it
matches the length of Field.Text, which is still 'myf'.

2. After both lines have executed, Field.Text and Field.Mask contain 'myfile' and
'000000', respectively

Therefore, Field.Mask gets truncated in the first step and expanded in the second.

This example will work properly

 Field.Text = "myfile"
 Field.Mask = "000090"
102 About this Chapter

Table of TELEform Virtual Fields
The following table contains a description of each TELEform virtual field. Unless
indicated otherwise, each field exports as a string with a length of 30 characters:

Virtual Field Description

BatchCust1-5 These fields are configured in the Custom Fields tab of the Batch Setup
dialog box in TELEform Reader or the Scan Station. They allow you to
create customized data entry fields that a Reader or Scan Station operator
must fill with information before a batch is processed.

BatchDir* Field specifies the directory to hold the image files in during batch
processing.

BatchNo* Field uniquely identifies the batch of forms being processed. Exports a
numeric field with a length of 10.

BatchPgCnt* Field contains the number of pages in the batch. Exports a numeric field
with a length of 4.

BatchPgDta* Batch Page Data. Normally has scanner endorser string. Otherwise has
original TIF filename under batch processing conditions.

BatchPgNo* Each page in a batch is assigned a unique page ID corresponding to the
order it was evaluated within the batch. This field contains that number.
Exports a numeric field with a length of 4.

BatchRDate* Batch Receive date

BatchScOpr* Batch Scanner Operator

BatchTrack* Batch customer tracking ID

CSID The fax number (CSID) of the sending fax machine if such a number is
available. If the form was scanned or received in any manner other than
from a fax machine, this field is set to the file name of the image evaluated.
The validity of the field (when received from a fax machine) depends on
the sending fax machine, which must be manually programmed with its
fax number by its owner.

Image_Seq Image sequence - list of pages in the order they are in the file (separated by
the choice field separator).
Chapter 7: Advanced Features of Scripts 103

Form_ID Contains the form’s form_ID, range of 2-65000. Exports a numeric field
with a length of 5.

Form_Notes Notes that are entered by a Verifier operator during correction in
TELEform Verifier. Exports a string with a length of 4096.

Form_Pri Sets the priority of an individual form image. The range of values for this
field are 0 (highest priority) to 255 (lowest priority). The default value is
100. FormPri is exported as a numeric field with a length of 5.

Orig_File TIS will grab attachments from the MAPI service. They are placed in the
RCV directory along with the XLQ file. The XLQ file will have an entry
field for “Orig_File” virtual field if there is an attachment. The value of
the field will be the full path to the attachment. “Orig_File” must be in the
field order for an export (this is an optional field but required for digital
signature capture).

OrigPgSeq Contains the page number of each image in the batch, ordered
consecutively. These images can either be forms or NonForm
attachments.

Remote_Bid Phone book ID for the remote user, with a range of 0-255. This field is
exported as a numeric field with a length of 3.

Remote_Cmp Contains name of the company associated with remote user, as specified in
the phone book.

Orig_File TIS will grab attachments from the MAPI service. They are placed in the
RCV directory along with the XLQ file. The XLQ file will have an entry
field for “Orig_File” virtual field if there is an attachment. The value of
the field will be the full path to the attachment. “Orig_File” must be in the
field order for an export (this is an optional field but required for digital
signature capture).

OrigPgSeq Contains the page number of each image in the batch, ordered
consecutively. These images can either be forms or NonForm
attachments.

Remote_Bid Phone book ID for the remote user, with a range of 0-255. This field is
exported as a numeric field with a length of 3.

Remote_Cmp Contains name of the company associated with remote user, as specified in
the phone book.

Virtual Field Description
104 About this Chapter

* for batch scanning only

Remote_Fax Contains the fax number in the phone book that matches the Remote_Uid
if one exists.

Remote_Phn Contains the phone number in the phone book that matches the
Remote_Uid if one exists.

Remote_Uid The ID for the remote user, with a range of 0 - 32767. It is exported as a
numeric field with a length of 5.

Remote_User Contains the fax sender’s name, as configured in the receiving phone
book.

SuspenseFile Contains the name of the file in the /SUS directory that contains the image
that produced this export record. In the export format, the column by this
name will contain the name of the file in the suspended images (sus)
directory. This field is only valid when forms that are Evaluated OK are
saved.

Time_Stamp The date and time the form was received or evaluated.

Route_To Use in BasicScript to route forms to other workstations for verification.
For more details on this virtual field, refer to “Route_To Field” on page 41.

Verify_Wks For use with TELEform Enterprise Edition, this field holds the name of the
workstation that performed the verification on the form. By default, this
field is assigned the value from the “Station Name=” line in the
TELEFORM.INI file. This occasionally causes a problem if more than one
person uses the system.

To solve this problem, you can set an environment variable called
TFUSER during either a network login script or during boot-up. If
TFUSER is defined, its value is automatically assigned to the Verify_Wks
field. This ensures that the proper user name is associated with the person
performing the TELEform operations.

NOTE: If security is turned on, login name overrides “station name=”
value.

Virtual Field Description
Chapter 7: Advanced Features of Scripts 105

LoseFocus Field Property
The LoseFocus property is a Field class property that will initiate leaving a field while
in Form Mode Correction (of TELEform Verifier). This property is most useful when
a script dialog box has allowed the operator to correct data in a field, leaving no
reason to stay in the field.

NOTE: The LoseFocus Property can only be used in the Sub FieldHasFocus entry
point and the Sub FieldName_HasFocus entry point

Examples Using the LoseFocus Property
Sub MyName_HasFocus

‘prompt user for input with a dialog box
...
MyName.Status=0
MyName.LoseFocus

End Sub

Field Class
Property

Type Description

LoseFocus Method In TELEform Verifier, this command results in the highlighted field
being closed and the next field in the field order being opened for
correction.

The LoseFocus method can only be used within a HasFocus entry
point
106 About this Chapter

Additional Batch Class Properties
There are four additional properties of the Batch class, all of which apply to the new
Batch Processing capabilities. Each of these properties can be read from the Batch
Setup dialog box, and/or set in the BatchScan_End entry point of the System Script.
Refer to the following table for specific information on each property.

Batch Class
Property

Access Description

ClassificationReview Read/Write This property specifies the Job QC status of a batch.

• ClassificationReview = 1 if Job QC is
selected for the batch.

Classification Review =0 if no Job QC is done on
the batch.

DataReview Read/Write This property specifies the Data Review status of a
batch.

• DataReview = 1 if a review of the batch
data will be done (after the batch is ready
to be committed),

DataReview =0 if Data Review is not specified for
the batch.

DataReviewMethod Read/Write This property specifies what kind of review should be
done of the batch data (it is only applicable if
DataReview = 1):

• DataReviewAll (0) - review all forms

• DataReviewPercent (1) - Review N
percent of the forms

DataReviewInterval (2) - Review every Nth form.

DataReviewNumber Read/Write This property specifies the value of the
DataReviewMethod property (it is only applicable if
DataReview = 1). The significance of this value is
dependent on the value of DataReviewMethod:

• For DataReviewPercent, valid values are 0
to 100 (percent).

• For DataReviewInterval, valid values are 1
to 255 or the number of forms in the batch,
whichever is less.

Otherwise, DataReviewNumber is ignored.
Chapter 7: Advanced Features of Scripts 107

TopChoice Class
The TopChoice class can only be used in the Form_Evaluate entry point of your form
script. The field must be set up for character recognition (OCR). During form
evaluation, the character recognition engine typically produces a set of three choices
for each character position in the Text string of a field. These choices are available
through the TopChoices collection. Each element in this collection is a TopChoice
object.

Referencing TopChoices Collection Information

The TopChoices collection represents a set of recognition values for a character. This
collection utilizes an array structure to gain access to each recognition value for the
character. The number 1 represents the first element in the array. Each element is a
TopChoice object.

The syntax for referencing TopChoice information in the TopChoices collection is:

FieldName.TopChoices(i).TopChoicesProperty

where:

FieldName Field ID of the field on the form

i An integer between 1 and Len(FieldName.Text)

TopChoicesProperty Valid property of the TopChoice class
108 About this Chapter

 The TopChoice class has the following properties:

* Each of the Left, Right, Top, and Bottom properties are expressed in terms of the
number of pixels the edge of the character is form the left or top edge of the image
after rotating the image according to FieldName.ImageOrientation (see page 42 for
more information on the ImageOrientation property).

The 0-th element in the Choices array (and the Confidence array) is often the one
stored in the Text property.

TopChoices Property Example

Given a field X at form evaluation time, the TopChoices class may be used as follows:

Dim i as Integer
’If the field HasChoices is true, then evaluate the field
If X.HasChoices Then

’Loop through each character in the field text string
For i = 1 to Len (X.Text)

If X.TopChoices(i).Confidence(0) < 90 Then
DispMsg "First choice < 90"

End If
Next i

End If

Unlike most Collections, the TopChoices Collection goes from 1 to the number-of-
characters in the text property. This is done to correspond with the string array, which
is always indexed from 1.

Property Type Access Description

Choices Integer Read Only Choices is an array of three characters which are the three most
likely candidates for the character.

Confidence Integer Read Only Confidence is an array of three values which are the confidences
of each of the three characters above.

Left* Long Read Only Contains the X coordinate of the left edge of the character.

Right* Long Read Only Contains the X coordinate of the right edge of the character.

Top* Long Read Only Contains the Y coordinate of the top edge of the character.

Bottom* Long Read Only Contains the Y coordinate of the bottom edge of the character.
Chapter 7: Advanced Features of Scripts 109

Row Class
Only your Form script can use the Row class. Each detail group has a collection of
rows. Refer to your TELEform User Guide for more information on detail groups.

Referencing Row Collection Information

The Row collection represents the set of rows in a detail group. This collection
utilizes an array structure to gain access to each row in the detail group. The number 0
represents the first element in the array.

The syntax for referencing Field class properties for fields within a Row object is:

 DetailFieldName(i).FieldName.FieldPropertyName

where:

The example below shows a detail field named Order that consists of a collection of 3
row objects. Referencing the data in a particular field now requires that you specify
which row the field is in.

DetailFieldName Field ID of the detail group on the form

i Integer from 0 to DetailFieldName.Count - 1

FieldName Field ID of the field in the detail group

FieldPropertyName Valid property of the Field class.

TABLE 1.

Sub Form_Evaluate

 Dim i as integer

 Dim sum as double

 sum=0 ’initialize the variable

 For i = 0 to Order.Count-1

 sum = sum + Order(i).TotalPrice.Value

 Next i

 DispMsg "The grand total is "+ "$" + Str$(sum)

End Sub

Order:
110 About this Chapter

The script routine shown here goes through each row in the detail group and adds the
value in the TotalPrice field to the sum variable. It then displays the net sum as the
grand total.

The following property is available for each row of a detail group:

Because the Row class represents member fields in a detail group, individual fields in
a detail group row can be accessed using the Fields collection.

In the Row class example above, Order(i).TotalPrice is equivalent to
Order(i).Fields(“TotalPrice”).

Or, to check all fields in all rows of the ‘Order’ detail group for unacceptable entries,
you could use the following code:

Dim row as Integer
Dim f as Integer

For row = 0 to Order.Count - 1
For f = 0 to Order(row).Fields.Count - 1

If Order(row).Fields(f).Type = NumberType Then
If Order(row).Fields(f).Value < 0 Then

DispMsg "Row " & row & " field " & Order(row).Fields(f).Name & _
"Contains an illegal value."

End If
End If

Next f
Next row

Property Type Access Description

Fields Fields Read Only The collection of fields within the specified row. This property has
exactly the same properties as the fields declared for the entire
form (in the Field class), including a Count property.
Chapter 7: Advanced Features of Scripts 111

Row Class Example

Setting the index to -1 in a GotFocus, HasFocus or LostFocus subroutine references
the current row. For example, suppose a detail group named "Order" is defined with
the following fields.

The following script tests the detail group to make sure that the extended price value
equals the product of the unit price and the quantity for each row.

Extended Price = Quantity * Unit Price

The script has two basic parts:

• The first part of the script is called from the Form_Evaluate entry point,
which tests the data as soon as it is evaluated. It checks the extended
price field in each row, and marks it as needing review if the value is not
valid.

• The second part of the script is called from the Eprice_LostFocus
(Extended Price) event. It tests the extended price value when you tab
out of that field during verification. The script keeps the focus on the
Eprice field until a valid value is entered.
112 About this Chapter

Const FldInvalid = 128

Sub Form_Evaluate
Dim row as integer
Dim CalcPrice as Double
’Check the value of Eprice in each row. Mark Eprice for review if incorrect
For row = 0 to Order.Count-1

CalcPrice = Order(row).UPrice.Value * Order(row).Qty.Value
If Order(row).Eprice.Value <> CalcPrice Then

’The bitwise ’or’ turns on the FldInvalid flag, forcing review.
Order(row).Eprice.Status = Order(row).Eprice.Status or FldInvalid

End If
Next row

End Sub

Sub Eprice_LostFocus
Dim CalcPrice as Double
CalcPrice = Order(-1).UPrice.Value * Order(-1).Qty.Value
’Confirm that the extended price is correct before changing the focus.
’If value is incorrect, set the focus back to Eprice until valid value is entered
If Order(-1).EPrice.Value <> CalcPrice Then

DispMsg "Extended price does not match sum of unit prices"
’set the focus back to the Eprice field
Order(-1).Eprice.SetFocus

Else
’accept value and proceed
Order(-1).Eprice.Status = 0

End If
End Sub

NOTE: Because of the (-1) row index, this subroutine works properly regardless of
which row has the focus.
Chapter 7: Advanced Features of Scripts 113

Automatic Field Lookups in SKFI Database Groups
Sometimes it is beneficial to combine a BasicScript call with a SKFI database group.
For example, you may have an order form that has the standard order form fields
(Item Number, Item Description, Quantity, Unit Price and Total Price.). Using a Form
script, you can combine these data entry fields with a SKFI zone that looks up the
Price and Description based on the Item Number.

Keep in mind that you would have to create two sets of fields in order to do this: one
set that is set up for character recognition and one set that is located inside the SKFI
zone. The SKFI zone would then have to be linked (via script) to the former set of
fields so that the key SKFI field (Item Number) would automatically be filled in
based on the recognized Item Number value.
114 About this Chapter

Instead of having to visit each Item Number field in order to update the corresponding
information, TELEform automatically updates the information whenever the Item
Number is changed by your script. In effect, every time a script event is called, fields
with database lookups will be updated to reflect the current values of key SKFI fields.

Automatic field lookups are enabled for the FieldGotFocus and FieldLostFocus entry
points.

For more information on SKFI database groups, refer to your User Guide.

For information on field-specific Form script entry points, refer to your BasicScript
Guide.
Chapter 7: Advanced Features of Scripts 115

116 About this Chapter

CHAPTER 8

Writing and Editing Your Scripts
About this Chapter
This chapter shows you how to write and execute scripts, including how to reference
TELEform objects.

Writing Scripts

Opening your Script in the Edit Script window
Scripts are created and modified in the Edit Script window.

If you want to edit your script, open the Edit Script window in TELEform Designer.
If you want to debug your script, open the Edit Script window in the TELEform
applications that execute your script. (See “Executing and Debugging Your Scripts”
on page 9-135 for more information on debugging your scripts).

NOTE: Scripts are read-only when they are opened in TELEform Print Manager,
Reader and Verifier. If you make edits in any of these applications, they
cannot be saved to your script.
Chapter 8: Writing and Editing Your Scripts 117

To open a specific type of script, refer to that script’s chapter:

• For more information on opening a Form script, refer to “Overview of
Form Scripts” on page 21.

• For more information on opening an Export script, refer to “Opening an
Export Script for Script Writing” on page 58.

• For more information on opening your System script, refer to “Opening
a System Script for Script Writing” on page 73.

• For more information on opening another type of script, refer to
“Opening a Custom, Periodic, or Library Script for Script Writing” on
page 94.

Overview of the Edit Script Window
When you open the Edit Script window in TELEform Designer, Print Manager,
Reader or Verifier, the following is displayed:

Toolbar

Status Bar

Entry
points
118 Writing Scripts

Edit Script Window Toolbar

The following list briefly explains the purpose of each of the tools on the Edit Script
toolbar. These tools will be explained in more detail in the following sections. For
the buttons in the toolbar that relate to debugging, see“Debugging Your Scripts” on
page 136.

Edit Script Window Status Bar

The status bar of the edit script window displays the following

• The compile status when you click Compile on the File menu

• The line number and column number of your insertion point

• The edit status of your script - Modified appears in the right corner

Editing Your Script
This section explains how to edit BasicScript code in the Edit Script window. You’ll
learn how to move around within your script, select and edit text, add comments to
your script, break long BasicScript statements across multiple lines, search for and
replace selected text, and perform a syntax check of your script.

Button Tool Function

Cut Cuts the selected text from the Edit Script window and places it in the
Clipboard.

Copy Copies the selected text to the Clipboard.

Paste Pastes the contents of the Clipboard to the script editor.

Undo Reverses the most recent edit.
Chapter 8: Writing and Editing Your Scripts 119

Navigating within a Script
The navigating keyboard shortcuts listed below allow you to move the insertion point
to any location in your script

You can also reposition the insertion point with the mouse or the Goto Line
command.

Key(s) Function

UP ARROW Moves the insertion point up one line.

DOWN ARROW Moves the insertion point down one line.

LEFT ARROW Moves the insertion point left by one character position.

RIGHT ARROW Moves the insertion point right by one character position.

PAGE UP Moves the insertion point up one page.

PAGE DOWN Moves the insertion point down one page.

CTRL +
PAGE UP

Scrolls the insertion point x columns to the left.

CTRL +
PAGE DOWN

Scrolls the insertion point x columns to the right.

CTRL +
LEFT ARROW

Moves the insertion point to the start of the next word to the left.

CTRL +
RIGHT ARROW

Moves the insertion point to the start of the next word to the right.

HOME Places the insertion point before the first character in the current line.

END Places the insertion point after the last character in the current line.

CTRL + HOME Places the insertion point before the first character in the script.

CTRL + END Places the insertion point after the last character in the script.
120 Editing Your Script

To move the insertion point to a specific line

1. In the Edit Script window, press F4.

The Goto Line dialog box appears.

2. Enter the line number in your script
that you want to move the insertion
point to, and then click OK.

The insertion point is positioned at
the start of this line.

Edit Procedures
The editing keyboard shortcuts are listed below:

The following sections provide more detailed instructions on the editing operations
you can perform in the Edit Script window.

Key(s) Function

DELETE Deletes the selected text or removes the character following the insertion point.

BACKSPACE Deletes the selected text or removes the character preceding the insertion point.

CTRL+Y Deletes the entire line containing the insertion point.

TAB Inserts a tab character.

ENTER Inserts a new line, ending the current line.

CTRL + C Copies the selected text and places it on the Clipboard.

CTRL + X Removes the selected text from the script and places it on the Clipboard.

CTRL + V Inserts the contents of the Clipboard at the insertion point.

SHIFT + any
navigating shortcut

Selects the text between the initial location of the insertion point and the point to
which the keyboard shortcut would normally move the insertion point. (For
example, pressing SHIFT + DOWN ARROW selects the current line and the line
below it; pressing SHIFT + CTRL + LEFT ARROW selects the word to the left of
the insertion point; pressing SHIFT + CTRL + HOME selects all the text from the
location of the insertion point to the start of your script.)

CTRL + Z Reverses the most recent edit change.
Chapter 8: Writing and Editing Your Scripts 121

Inserting Text

In the script editor, inserting text and other characters such as tabs and line breaks
works about the same way as it does in a word-processing program: you position the
insertion point at the desired location in the script and start typing.

Pressing ENTER

In the script editor, text does not wrap. If you keep entering text on a given line,
eventually you will reach a point at which you can enter no more text.

Press ENTER when you want to insert a new line in your script. The effect of
pressing ENTER depends on where the insertion point is located:

• If you press ENTER with the insertion point at or beyond the end of a
line, a new line is inserted after the current line.

• If you press ENTER with the insertion point at the start of a line, a new
line is inserted before the current line.

• If you press ENTER with the insertion point within a line, the current
line is broken into two lines at that location.

Pressing TAB

If you press TAB , a tab character is inserted at the insertion point. Any text after the
tab moves to the next tab stop.

Adding TELEform References

When you are editing Form scripts, Export scripts, and the System script, the Edit
Script window has a right-click feature that simplifies the task of adding TELEform
field, object class, and property references to your script.

NOTE: In Export scripts, the only available classes are export level classes.

In the System script, the only available class is the Batch class.
122 Editing Your Script

To add a TELEform field reference to a Form script

1. Move the pointer to the desired location in your script.

2. Click the right mouse button.

A pop up list of all the top-level fields on the form appears.

3. Double-click the field.

The field name is inserted in your script.

NOTE: The top-level field list also contains form level classes.

To add a TELEform object class reference to an Export or Sys-
tem script

1. Move the pointer to the desired location in your script.

2. Click the right mouse button.

A pop-up list of the available classes for this script appears.

3. Double-click the desired object class.

The object class name is inserted in your script.
Chapter 8: Writing and Editing Your Scripts 123

To add a property reference

1. Move the insertion point to a TELEform field (or object class) on your script

2. Click the right mouse button.

A pop-up list of available properties for this field type (or object class)
appears.

3. Double-click on a property.

The field (or class) property is inserted in your script using the proper
syntax.

Selecting Text

You can select either a portion of one script line or a series of whole script lines.
When you select multiple lines, the Edit Script window automatically extends the
selection to include each line in its entirety.

Once you have selected text within your script, you can perform a variety of other
editing operations on it, including deleting the text, placing it on the Clipboard and
pasting it.

To select a portion of one line with the mouse

1. Point to where you want your selection to begin.

2. Drag to the end of your selection.

The selected text is highlighted.
124 Editing Your Script

To select multiple lines with the mouse

1. Point to the left margin of the first line you want to select.

2. Drag up or down to select multiple lines.

The selected lines are highlighted.

To select text with the keyboard:

1. Place the insertion point where you want your selection to begin.

2. Press SHIFT + one of the navigating keyboard shortcuts (see the preceding table)
to extend the selection to the desired ending point.

The selected text is highlighted.

To select an entire line

NOTE: When you intend to select an entire single line of text in your script, it is
important to remember to extend your selection far enough to include the
hidden end-of-line character, which is the character that inserts a new line in
your script.

1. Place the insertion point at the beginning of the line.

2. Press SHIFT + END to select both the text and any hidden spaces that may be
present at the end of the line.

3. Press SHIFT + RIGHT ARROW to select the hidden end-of-line character.
Chapter 8: Writing and Editing Your Scripts 125

Deleting Text

When you delete text, it is removed from your script. If you accidentally delete text,
click Undo on the Edit menu to restore it.

• To delete a single character to the left of the insertion point, press
BACKSPACE once;

• To delete a single character to the right of the insertion point, press
DELETE once.

• To delete selected text , press BACKSPACE or DELETE.

• To delete an entire line, place the insertion point in this line and press
CTRL + Y.

Undoing Edits

You can undo editing operations that produce a change in your script, including:

• Typing text.

• Pasting text.

• Cutting or deleting text

You cannot undo operations that produce no changes in your script, such as moving
the insertion point, selecting text, or copying material to the Clipboard.

To undo an edit

• Press CTRL + Z.

The effect of the preceding editing operation is reversed. You may click
this again to undo more editing operations.

Using the Clipboard

You can place text from your script on the Clipboard by either cutting it or copying it.
You can then paste this text to another part of your script, or another application.

To cut text

1. Select the text you want to cut.

2. Press CTRL + X.

The selected text is removed from your script and placed on the Clipboard.
126 Editing Your Script

To copy text

1. Select the text you want to copy.

2. Press CTRL + C.

The selected text remains in your script, and a copy of it is placed on the
Clipboard.

To paste text

1. Place the insertion point where you want to paste the text.

2. Press CTRL + V.

The text is inserted.

To replace text on the script with text on the Clipboard

1. Select the text you want to replace.

2. Press CTRL + V

The selected text is replaced with the Clipboard text.
Chapter 8: Writing and Editing Your Scripts 127

Searching for and Replacing Text

The Edit Script window makes it easy to search for text in your script and
automatically replace this text with other text.

Finding Text in Scripts

1. Place the insertion point where you want to start your search.

(To start at the beginning of your script, press CTRL + HOME.)

2. Click Find on the Search menu.

The Find dialog box appears.

3. Type the text you want to search for in the Find what box.

4. Click the Match case check box if you want the search to be case-sensitive.

5. Click Find Next.

The Find dialog box remains displayed, and the Edit Script window searches
for this text.

• If it finds the text, it highlights the text in the script.

• If does not find the text, it displays a message telling you so.

6. To search for other occurrences of the text, click Find Next again.

NOTE: If the Find dialog box obstructs your view of the specified text, you can drag
it out of your way and continue with your search, or you can close it and
press F3 to find the next occurrence of this text.
128 Editing Your Script

Replacing Text in Scripts

The script editor lets you automatically replace either all instances or selected
instances of text.

1. Place the insertion point where you want to start your search and replace.

(To start at the beginning of your script, press CTRL + HOME.)

2. Click Replace on the Search menu.

The Replace dialog box appears.

3. Type the text you want to search for in the Find what box.

4. Type the text you want to replace the Find what text with in the Replace with
box.

5. Click the Match case check box if you want the search to be case sensitive.

6. Click one of the following buttons:

• To replace all instances of the search text, click Replace All.

If no instances of the search text are found, a message appears.

• To replace certain instances of the specified text, click Find Next, and
follow the rest of the procedure.

7. If the specified text has been found, either click Replace to replace that instance
of it or click Find Next to leave that instance in your script and highlight the next
instance.

Each time you click Replace, the highlighted text is replaced and you
proceed to the next instance of the search text.
Chapter 8: Writing and Editing Your Scripts 129

Adding Comments to Your Script
You can add comments to your script to remind yourself or others of the reasoning
behind your code. Comments are ignored when your script is executed. In
BasicScript, the apostrophe symbol (’) is used to indicate that the text from the
apostrophe to the end of the line is a comment.

To add a full-line comment

1. Type an apostrophe (’) at the start of the line.

2. Type your comment.

When your script is run, BasicScript will ignore this line.

To add comments to the end of a line of code

1. Place the insertion point in the empty space beyond the end of the line of code.

2. Type an apostrophe (’).

3. Type your comment.

When your script is run, BasicScript will ignore all text to the right of the
apostrophe.
130 Editing Your Script

Notes on using comments:

• If a comment uses a carriage return to force it onto another line, there
must also be an apostrophe at the beginning of that line.

For example:

’This is a valid comment line
’and so is this, but
 this line needs an apostrophe to be a comment

• Although you can place a comment at the end of a line containing
executable code, you cannot place executable code at the end of a line
containing a comment because the presence of the apostrophe at the
start of the comment will cause the whole the line (including the code)
to be ignored.

Extending a BasicScript Statement into Multiple
Lines

By default, a single BasicScript statement can extend only as far as the right margin;
each line break represents a new statement. However, you can override this default if
you want to extend a long statement into two or more lines.

To extend a BasicScript statement into multiple lines

1. Type the BasicScript statement on multiple lines, exactly the way you want it to
appear.

2. Place the insertion point at the end of the first line in the statement.

3. Press the SPACEBAR once to insert a single space.

4. Type an underscore (_).

The underscore is the line-continuation character, which indicates that the
BasicScript statement continues on the following line.

5. Repeat steps 2-4 to place the underscore at the end of each line in the statement
except the last line.

When you run your script, the code on this series of lines will be executed as
a single BasicScript statement.

Right If Age.Value < 18 ’check the age field

Wrong ’check the age field If Age.Value < 18
Chapter 8: Writing and Editing Your Scripts 131

Creating Dialog Boxes

Inserting a new dialog box into your script

1. Place the insertion point in the entry point where you want the dialog box to
appear.

2. In the Edit Script window, click New Dialog on the Edit menu.

The Dialog Editor window appears, displaying the default dialog box (which
contains an OK and Cancel button).

3. Create your dialog box using commands on the Dialog Editor window and then
save it.

4. Click Exit and Return on the File menu.

You return to the Edit Script window. The dialog box code is inserted into
your script.

Editing existing dialog boxes in a script

1. Select all the lines in your script from Begin Dialog to End Dialog (make sure to
include Begin Dialog and End Dialog in your selection).

2. Click Edit Dialog on the Edit menu.

The Dialog Editor window appears.

3. Edit your dialog box and then save it.

4. Click Exit and Return on the File menu.

• You return to the Edit Script window. Your dialog box code will reflect the
changes you made to the dialog box.

NOTE: Refer to “Creating Custom Dialog Boxes” on page 149 for more information
on creating and editing a custom dialog box to place in your script.
132 Editing Your Script

Compiling Your Script (Checking the Syntax)
Before executing a script, you must compile and save it. Compiling checks the syntax
of the script, making sure that BasicScript commands are properly used.

To compile a script

1. In TELEform Designer’s Edit Script window, click Compile on the File menu.

• If the script compiles successfully, the status bar displays Compiled
OK.

• If the script does not compile correctly, an error message appears,
displaying the first line in your script where an error has been found and
briefly describing the nature of that error.

2. If an error message is displayed, write down the error. Click OK.

If there is a syntax error, the line containing the error is highlighted on your
display.

3. Correct the event that is causing the syntax error.

4. Repeat steps 1-3 until you find and correct all syntax errors.

5. Save the corrected script.

IMPORTANT: Always compile your script after any changes to the Form.
Chapter 8: Writing and Editing Your Scripts 133

Exiting the Edit Script window

To exit the Edit Script window

1. Click Close on the File menu.

2. If your script compiles OK, and you made any unsaved changes to your script, a
message appears asking whether you want to save the script.

• Click No to close the Edit Script window without saving your changes.

• Click Yes to save your changes. The Edit Script window closes after
compiling and saving your script.

3. If your script does not compile OK, you will receive the following message

Do one of the following:

• Click Yes to save the script, including the errors, and close the Edit
Script window.

NOTE: Your script cannot be executed until you fix the errors.

• Click No to close the Edit Script window without saving your changes.

• Click Cancel to cancel the Close command.

4. If you clicked Cancel in step 3, click Compile on the File menu to see the first
line that is causing the compile-time error.

Refer to the preceding section for more information on the Compile
procedure.
134 Exiting the Edit Script window

CHAPTER 9

Executing and Debugging Your
Scripts
About this Chapter
This chapter explains the fundamentals of executing and debugging your scripts. The
debugging process includes identifying procedure calls, setting breakpoints,
controlling which lines in your script are traced, and monitoring selected variables in
your script.

Executing Your Scripts
If your script has a problem when you execute it, an error message will appear on the
screen.

To fix your script

1. Open the Edit Script window in TELEform Designer.

2. Fix the problem.

3. Save and compile the script.

4. Test the script again.

The procedure above is known as debugging a script (which is explained in more
detail in the following sections).
Chapter 9: Executing and Debugging Your Scripts 135

For more information on executing your script, refer to the chapter that explains your
script type:

• For more information on executing your Form scripts, refer to “Writing
Scripts” on page 117.

• For more information on executing your Export scripts, refer to
“Executing Your Export Scripts” on page 67.

• For more information on executing your System script, refer to
“Executing Your System Script” on page 83.

• For more information on executing your other scripts, refer to
“Executing Your Custom, Periodic and Library Scripts” on page 98.

Debugging Your Scripts
The Edit Script window contains some powerful debugging tools to help you
troubleshoot your scripts. These tools are available when you are operating in debug
mode. They will help you track variables and locate errors in your script.

When the debugger is in use, the Edit Script window appears on top of all other
applications so the various debugging tools can be accessed.

This section presents some general information that will help you debug your script.
It also explains how to trace the execution of your script, how to set and remove
breakpoints, and how to add watch variables and modify their values.
136 Debugging Your Scripts

Debugging Toolbar

The following table lists the buttons on the toolbar that relate to executing and
debugging your script:

Button Function Description

Start Continues execution of a script after the debugger stops on a
breakpoint. Remember that scripts cannot be started in the Edit Script
window. To start a script, you must run the TELEform application that
calls that script’s subroutine (see “Executing Your Scripts” on page
135 for more information on starting your script.)

 Pause Pauses execution of a script.

End Stops execution of a script.

Toggle
Breakpoint

Adds or removes a breakpoint on a line of BasicScript code.

Add Watch Displays the Add Watch dialog box, where you can add the name of a
BasicScript variable. BasicScript will display the value of the specified
variable in the watch pane of the Edit Script window (above the code).

Calls Displays the list of procedures called by the currently executing
BasicScript script. Available only during break mode.

Single Step Executes the next line of a script and then suspends execution. If the
script calls another BasicScript procedure, execution will continue into
each line of that procedure.

Procedure
Step

Executes the next line of a script and then suspends execution. If the
script calls another BasicScript procedure, it will run the procedure in
its entirety, but will not step through each line.
Chapter 9: Executing and Debugging Your Scripts 137

Debugging Keyboard Shortcuts

Starting Debug Mode
To start debug mode for a particular script (or a portion of the script), that script must
be opened in the TELEform application that calls the script. For example, if your
Form script is called at the Sub Form_Load entry point, open your Form script in the
Edit Script window in TELEform Verifier, and then correct one of these forms.

You can debug a Form script and another script at the same time. For example, you
can debug your Form script and your Export script simultaneously. After
Form_Export is called in your Form script, Export_Start is called in your Export
script.

Key(s) Function

SHIFT + F9 Chooses the Add Watch tool.

DELETE Removes the selected watched variable from the Watch pane.

F6 If the watch pane is open, switches the insertion point between the watch pane and
the code pane.

F8 Chooses the Single Step tool. (See the Toolbar section above).

SHIFT+F8 Chooses the Procedure Step tool. (See the Toolbar section above).

CTRL +
BREAK

Suspends execution of an executing script and places the instruction pointer on the
next line to be executed.

F9 Sets or removes a breakpoint on the line with the insertion point.

F5 Chooses the Start tool (see “Debugging Toolbar” on page 137).
138 Debugging Your Scripts

Starting Debug Mode for Form Scripts

In TELEform Reader or Verifier:

1. On the Utilities menu, point to Debug Script , and then click Form.

The Select Form dialog box appears.

2. Click the form that you want to debug, and then click OK.

The Edit Script window appears, displaying the form script.

3. If you want, minimize the Edit Script window.

4. Execute your Form script using the procedure in “Executing Your Form Scripts”
on page 48.

TELEform will put the Edit Script window into the foreground when the first
line of your script is executed.

5. When you are done with the debugging process, point to Debug Script (on the
Utilities menu), and then click Form to clear the check mark.

Clearing this check mark will stop the debug process for your form script.

Starting Debug Mode for Other Scripts

In TELEform Print Manager, Reader or Verifier

1. On the Utilities menu, point to Debug Script , and then click Other.

2. Click Export Scripts on the Utilities menu.

The Edit Script window appears.

3. Click Open on the File menu.

The Open Script dialog box appears.

4. Click your script, and then click OK.

Your script is displayed in the Edit Script window.

5. If you want, minimize the Edit Script window. Execute your script using the
appropriate execution procedure (see “Executing Your Scripts” on page 135 for a
reference to your script type’s execution procedure).

TELEform will put the Edit Script window into the foreground when the first
line of your script is executed.
Chapter 9: Executing and Debugging Your Scripts 139

In TELEform Reader or Verifier

1. Point to Debug Script on the Utilities menu, and then click Other.

The Edit Script window appears.

2. Click Open on the File menu.

The Open Script dialog box appears.

3. Click your script, and then click OK.

Your script is displayed in the Edit Script window.

4. If you want, minimize the Edit Script window.

5. Execute your script using the appropriate execution procedure (see “Executing
Your Scripts” on page 135 for a reference to your script type’s execution
procedure).

TELEform will put the Edit Script window into the foreground when the first
line of your script is executed.

6. When you are done with the debugging process, point to Debug Script (on the
Utilities menu), and then click Other to clear the check mark.

Clearing this check mark will stop the debug process for your script.

IMPORTANT: The Edit Script window must be opened in the application that the
script is executing in to debug it. Opening the script in TELEform
Designer will not debug a script called from Reader or Verifier.
140 Debugging Your Scripts

Using the BasicScript Debugger
While debugging, you are actually executing the code in your script line by line.
Therefore, to prevent any changes to your script while it is being run, the Edit Script
window is read-only during the debugging process. You can move the insertion point
throughout the script, select text and copy it to the Clipboard as necessary, set
breakpoints, and add and remove watch variables, but you cannot make any changes
to the script until you stop running it.

NOTE: You can only make changes to your script in the Edit Script window of
TELEform Designer. Do not attempt to make changes in any other
application, because you will not be able to save these changes to your
script.

NOTE: The following procedures assume that you have already successfully
compiled and saved your script in TELEform Designer, that you have
opened the appropriate TELEform application and your script’s debugger,
and that you are executing your script in this TELEform application.

IMPORTANT: Always compile your script after any changes to the Form.

Instruction pointer

To let you follow and control the debugging process, the Edit Script window displays
an instruction pointer on the next line of code to be executed. When the instruction
pointer is on a line of code, the text appears in black against a gray background.

Tracing Script Execution

The Edit Script window gives you two ways to trace script execution: single
step and procedure step. Both involve moving through your code line by
line.

• The single step process traces into every line in your script.

• The procedure step process does not trace into the individual lines of a
procedure.
Chapter 9: Executing and Debugging Your Scripts 141

To step through a script

NOTE: Make sure that the Edit Script window is started in the TELEform
application that will execute your script, and make sure that your script is
opened in this window (for Debug mode).

1. Initiate the action in the TELEform application that will execute your script.

BasicScript will transfer the Edit Script window to the foreground and place
the instruction pointer on the first line in your script’s code (most likely a
subroutine).

2. To trace the execution of your script line by line:

• Press F8 to move to the next line in the single step process.

• Press SHIFT + F8 to move to the next line in the procedure step process.

The Edit Script window executes the line containing the instruction pointer
and moves the instruction pointer to the next line.

3. Repeat step 2 for each line that you want to debug.

4. When you finish tracing the execution of your script, do one of the following:

• Click on the toolbar to run the rest of the script at full speed.

• Click on the toolbar to halt execution of the script.

NOTE: If your script contains any compile errors, it cannot be executed.
142 Debugging Your Scripts

To identify the procedure calls in a subroutine

When stepping through a subroutine, you can display the Calls dialog box to help you
quickly identify the subroutine calls that brought you to this point in the script.

1. Click on the toolbar.

The Calls dialog box appears when a subroutine call occurs.

For example, when an image is opened for correction in TELEform Verifier,
the following Calls dialog box appears.

2. Click the subroutine you want to view, and then click Show.

The Edit Script window highlights the line in the subroutine you selected
which brought you to the current point in the script.

NOTE: During this process, the instruction pointer remains in its original location in
the subroutine. Therefore, the call point is highlighted and the current line
contains the instruction pointer.

To move the instruction pointer to another line

When you are stepping through a subroutine, use the Set Next Statement command
to move the instruction pointer to another line within that subroutine. This command
is useful if you want to repeat or skip a part of your code.

1. Place the insertion point in the line where you want to resume stepping through
the script.

2. Click Set Next Statement on the Debug menu.

The instruction pointer moves to the line you selected

3. Resume stepping through your script.

NOTE: You can only use the Set Next Statement command to move the instruction
pointer within the same subroutine. If you place the insertion point on a line
outside this subroutine, the Set Next Statement command will be
unavailable.
Chapter 9: Executing and Debugging Your Scripts 143

Debugging one or more parts of a long script

If you want to debug certain parts of a long script, set one or more breakpoints at
selected lines in your script. The Edit Script window suspends execution of your
script when it reaches a line containing a breakpoint. Suspending execution allows
you to begin or resume stepping through the script from that line.

Valid breakpoints can only be set on lines in your script that contain code, including
lines in functions and subroutines. When you compile and run the script, invalid
breakpoints (breakpoints on lines that don’t contain code) are automatically removed.
While you are debugging your script, the Edit Script window will beep if you try to
set a breakpoint on a line that does not contain code.

You can set breakpoints to begin the debugging process partway through your script,
to continue debugging at a line outside the current subroutine, and to debug only
selected portions of your script.

Debugging partway through a script

1. Place the insertion point in the line where you want to start debugging.

2. Click on the toolbar to set a breakpoint on that line

The line on which you set the breakpoint now appears in a contrasting color.

3. Initiate the action in the appropriate TELEform application that will execute your
script.

The Edit Script window runs your script at full speed from the beginning and
then places the instruction pointer on the breakpoint line to designate it as
the line that will be executed next.

4. Either start debugging or resume running the script.

5. If you want to continue debugging at another line within this subroutine, skipping
all lines in between that line and the current line, use the Set Next Statement
command (discussed in the preceding section).

6. If you want to continue debugging at a line in another subroutine, set a

breakpoint in the line where you want to continue debugging, and click on
the toolbar .
144 Debugging Your Scripts

Debugging selected portions of a script

1. Set a breakpoint at the start of each script section that you want to debug. (see
above)

NOTE: Up to 255 lines in your script can contain breakpoints.

2. Initiate the action in the appropriate TELEform application that will execute your
script.

The script executes at full speed until it reaches the line containing the first
breakpoint and then pauses with the instruction pointer on that line.

3. Debug the script section.

4. Click on the toolbar to move to the next breakpoint.

Every time you click this button, you will move to the next breakpoint that
you set in step 1.

Removing Breakpoints

Breakpoints can be removed either manually or automatically.

1. Place the insertion point on the line containing the breakpoint that you want to
remove.

2. Click on the toolbar.

The breakpoint is removed, and the line no longer appears in a contrasting
color

3. If you want remove all breakpoints, click Clear All Breakpoints on the Debug
menu.

NOTE: When you exit the Edit Script window, all breakpoints are cleared.

Monitoring Selected Variables

As you debug your script, you can use the Watch pane to monitor selected variables.
For each of the variables in the watch variable list, the Edit Script window displays
the name of the variable, where it is defined, its value (if the variable is not in scope,
its value is shown as variable not defined in context), and other key information
such as its type and length (if it is a string). The values of the variables on the watch
list are updated each time you enter debug mode, and each time you execute a line of
code.
Chapter 9: Executing and Debugging Your Scripts 145

To add a watch variable to your script

NOTE: The BasicScript debugger cannot recognize variables that are declared
outside the scope of a subroutine, unless these variables are declared as
public variables (see Chapter 5 for more information on public variables).

1. Initiate the action in the appropriate TELEform application that will execute your
script.

When your script is executed, the Edit Script window will appear in the
foreground.

2. Click on the toolbar.

The Add Watch dialog box appears.

3. In the Procedure list, select the subroutine that contains the variable you want to
add.

4. In the Variable list, select the variable that you want to add to the watch variable
list.

5. Click OK.

The Watch pane expands far enough to display the variable you just added

6. Single step through your procedure.

The Watch pane displays the current value of the variable. This value will
change whenever the variable’s value is re-assigned in the script.

NOTE: Although you can add as many watch variables to the list as you want, the
watch pane expands to fill at most half of the Edit Script window.

The list of watch variables is maintained between script executions.
146 Debugging Your Scripts

To delete a watch variable

1. Select the variable on the watch pane and press DELETE.

To modify the value of a watch variable

1. Initiate the action in the appropriate TELEform application that will execute your
script. When your script is executed, the Edit Script window will appear in the
foreground.

2. Press F8 until the instruction pointer highlights the variable you want to modify.

3. Click Modify on the Debug menu.

The Modify Variable dialog box appears.

If the instruction pointer is highlighting a variable, this dialog box will be
pre-filled with the variable name.

4. If it is not already entered, enter the variable name in the Name box.

5. Enter the new value for this variable in the Value box, and then click OK.

When you continue execution of your script, the new value of your variable
is displayed in the Watch pane. Your variable will start out with this value.

Debugging Script in the Form_Check and Export
Entry Points

Form_Check and Export entry points (including Form_Export in your Form scripts
and all entry points in your Export scripts) are always run as background processes in
TELEform Verifier and cannot be debugged using the conventional debug procedures
described in this Chapter.

To debug one of these entry points in TELEform Verifier, or to debug Print-Init and
Print-Exit use one or more of the following methods:

• Write to a text file and view the file with Windows Notepad.

• Display variables using a message box.

With Export scripts, you can open the Edit Script window in TELEform Reader, and
then use the Manual Data Export command on the Utilities menu of TELEform
Reader.
Chapter 9: Executing and Debugging Your Scripts 147

148 Debugging Your Scripts

CHAPTER 10

Creating Custom Dialog Boxes
About this Chapter
This chapter shows you how to use the Dialog Editor. You will also learn how to
troubleshoot (debug) your dialog box, how to insert your dialog box into your script,
and what additional script you will need to enter in order to make your dialog box
functional.

What You Can Use Custom Dialog Boxes for
Sometimes your script will need to obtain information from the user. In many cases,
you can obtain this information by using one of BasicScript’s predefined dialog boxes
in your script (see “Predefined Dialogs” on page 260 for more information on the
predefined dialog box language elements). When you must go beyond the
information-gathering capabilities provided by predefined dialog boxes, you can use
the Dialog Editor to create a custom dialog box for your script.

Overview of the Dialog Editor
With the Dialog Editor, you can create and modify custom dialog boxes for use in
your BasicScript scripts. The Dialog Editor makes it easy to generate BasicScript
statements needed for your custom dialog boxes. These BasicScript statements
include code for the dialog box display and the dialog box functions (for example,
selecting a check box).

The Dialog Editor is a tool that allows you to generate a dialog box structure in
BasicScript simply by editing an on-screen dialog box display. When you are done
editing this display, BasicScript will insert the code for this dialog box into your
script
Chapter 10: Creating Custom Dialog Boxes 149

Dialog Editor Window

In the Edit Script window, when you click New Dialog or Edit Dialog on the Edit
menu, the following window appears.

Toolbar

The toolbar is a collection of shortcut buttons. The most common Dialog Editor
commands can be accessed by clicking these buttons. Each toolbar button
corresponds to a menu option on the menu bar.

Button Function

Runs the dialog box, which makes it functional for testing purposes

Displays the Information dialog box for the selected dialog box or control

Cuts the selected control or dialog box and places it on the Clipboard

Copies the selected control or dialog box to the Clipboard

Inserts the Clipboard contents into dialog editor (for more information on this
function, see the Keyboard Shortcuts section below).

Reverses the effect of the preceding editing change.

Lets you select items and position the insertion point.
150 Overview of the Dialog Editor

The following buttons add a control to your dialog box

Button Function

Adds an OK button to your dialog box.

Adds a Cancel button to your dialog box.

Adds a Help button to your dialog box.

Adds a push button to your dialog box.

Adds an option (radio) button to your dialog box.

Adds a check box to your dialog box.

Adds a group box to your dialog box.

Adds text to your dialog box.

Adds a text box to your dialog box.

Adds a list box to your dialog box.

Adds a combo box to your dialog box.

Adds a drop list box to your dialog box.

Adds a picture to your dialog box.

Adds a picture button to your dialog box.
Chapter 10: Creating Custom Dialog Boxes 151

Dialog Box Display

The dialog box display is the visual layout of the dialog box that you are currently
creating or editing. You can think of this dialog box as a preview of the custom dialog
box that will appear in TELEform when you execute your script.

By default, every new dialog box contains an OK button and a Cancel button.

Status bar

The status bar shows the following

• Name of the currently selected control or dialog box.

• Position of the pointer, or position and dimensions of the selected control or
dialog box

• Name of the control you are adding to the dialog box.

NOTE: Dialog boxes created with Dialog Editor appear in Helvetica 8-point font,
both in Dialog Editor and when the corresponding BasicScript code is run. If
you want to change this font, refer to page 164.
152 Overview of the Dialog Editor

Keyboard Shortcuts

There are many keyboard shortcuts built into the dialog box editor to speed up
common editing processes. The following table contains a complete list of keyboard
shortcuts:

Key(s) Function

ALT+F4 Closes Dialog Editor.

CTRL+C Copies the selected dialog box or control and places it on the Clipboard.

CTRL+D Creates a duplicate copy of the selected control.

CTRL+G Displays the Grid dialog box.

CTRL+I Displays the Information dialog box for the selected dialog box or
control.

CTRL+V Inserts the contents of the Clipboard into Dialog Editor. If the Clipboard
contains BasicScript statements describing one or more controls, then
those controls are added to the current dialog box. If the Clipboard
contains BasicScript statements for an entire dialog box, then Dialog
Editor creates a new dialog box from these statements.

CTRL+X Removes the selected dialog box or control from Dialog Editor and places
it on the Clipboard.

CTRL+Z Undoes the preceding operation.

DELETE Removes the selected dialog box or control from Dialog Editor.

F1 Displays the Help system contents.

F2 Runs the dialog box, which makes it functional for testing purposes.

F3 Resizes the controls to fit their label text.

F4 Selects the entire dialog box.

F10 Toggles menu bar activation.
Chapter 10: Creating Custom Dialog Boxes 153

Creating a Custom Dialog Box
This section describes the types of controls that Dialog Editor supports. It also
explains how to create controls and position them within your dialog box.

Control and Design Elements

Control elements allow the user to communicate and interact with the dialog box (and
therefore TELEform). The following table provides a description of each dialog box
control:

Group Box

Option Button

Text Box

Check Box

Push Button

List Box

Combo Box
Drop-down list

box

Picture

Picture
Button

Text
154 Creating a Custom Dialog Box

Control Element Example Description

Check box Square box that users select to turn on an option
and clear to turn off an option.

Combo box Combination of a text box and a list box. Users
can either select an item from the list or type
text in the text box. If the user selects an item
from the list, it is highlighted in the list and
placed in the text box.

Push button Rectangular button that initiates an action.

Drop-down list box Type of list box where the list is displayed only
when the user clicks on the drop-down arrow.
Once they select an item from the list, the list
disappears and the newly selected item is
displayed in the box.

List box Rectangular box containing a list of items, from
which the user selects one item. The selected
item is highlighted.

Option (radio) button One of a group of mutually exclusive options.
Users can only select one option per group box.

Picture button See Figure Above Type of command button where a Windows
bitmap or metafile is the label.

Text box Rectangular box that the user types text into. If
there is default text, the user can delete this text
and type new text.

You can choose between the default setting, in
which this field holds a single line of
nonwrapping text, and the Multi-line setting, in
which the field holds multiple lines of wrapping
text.
Chapter 10: Creating Custom Dialog Boxes 155

Design elements organize the dialog box, inform the user about controls, and enhance
dialog box design. The following table provides a description of each dialog box
design element.

Design Element Example Description

Group box Rectangular frame that encloses a set of related
controls. You can use the group box label as a
title for controls in the box.

Picture See Figure Above Windows bitmap (.bmp format) or metafile
(.wmf format), which you can obtain from a file
or a library.

Text Text displayed to inform the user. The text in
this field wraps, and the field can contain a
maximum of 255 characters.

There are two types of text:

• Stand-alone text

• Label text (defined as part of another
element such as a group box)
156 Creating a Custom Dialog Box

Planning Your Dialog Box
Creating dialog box elements in random order might seem like the fastest approach.
However, the order in which you create elements has important implications; a little
planning can save you a lot of work.

Here are three features of dialog box creation that you should understand.

NOTE: You can fix problems in your dialog box when testing it. However, adding
elements in the right order will save you time and trouble.

Tab order

Users can select dialog box controls by pressing TAB. As users press TAB, the focus
is changed from one control to the next. The order in which you create controls (not
their position on the dialog box) determines the tab order. See page 175 for more
information on the tab order of your dialog box controls.

You should create controls in the tab order you want. The fewer tab-order adjustments
you have to make, the less time you will spend.

Option buttons

If you want a series of option buttons to work together as a mutually exclusive group,
you must create all of them at the same time. If you create a different type of control
before you have finished creating all of the option buttons, you will split the option
buttons into separate groups.

Accelerator keys

In addition to clicking on a control to focus on it, users can also have keyboard access
to controls with accelerator keys.

To assign accelerator keys to controls without labels, create the text or group box,
then create the control. If you do not create the control immediately after you create
the text or group box, your accelerator key will not work.
Chapter 10: Creating Custom Dialog Boxes 157

Saving Your Dialog Box

To save your dialog box for use in this script

1. Click Update on the File menu.

Your dialog box is converted into a series of BasicScript statements
and placed at the insertion point in your script.

2. Click Exit and Return on the File menu.

You return to the Edit Script window.

3. Click Save on the File menu of the Edit Script window to save your dialog box
with your script.

To put your dialog box code in another location:

1. If it is not already selected, select the dialog box code (it starts with Begin Dialog
and ends with End Dialog)

2. Click the Cut button on the toolbar.

3. Move your insertion point to the new location.

4. Click the Paste button on the toolbar.

To save your dialog box for use in another script

1. Click Save As on the File menu.

The Save Dialog File dialog box appears.

2. On the Save in list, select the folder that you want to save your dialog box in.

3. In the File name box, type the name of your dialog box file.

4. Click Save.

Your dialog box code is now saved to a file, and can be opened to
include in other scripts.
158 Creating a Custom Dialog Box

Adding a Title to Your Dialog Box
The title of your dialog box is located on the title bar at the top of the dialog box. By
default, the title of your dialog box is "Untitled".

To change your dialog box title

1. Double-click the title bar of your dialog box.

2. Type the new title in the Text$ box.

3. If the value in the Text$ box should be used as a variable name instead of a literal
string, click the Variable Name check box.

4. Click OK.

The new title is displayed on the title bar or on the control.

Using the Dialog Box Grid
The borders of your dialog box contain a dot grid. Displaying the grid and changing
its X and Y spacing can help you position elements more precisely in your dialog box.

This grid includes the following features:

• The X (horizontal) axis and the Y (vertical) axis intersect in the upper left corner
of the dialog box. This intersection point is (0,0).

• As you move the pointer down from the intersection point, the Y value increases.

• As you move the pointer to the right of the intersection point, the X value
increases.

• Think of each grid dot as a specific location in your dialog box.
Chapter 10: Creating Custom Dialog Boxes 159

To change the grid spacing

1. Press CTRL + G.

The Grid dialog box appears.

2. Type a number in the Horizontal (X): box to set the horizontal spacing of your
grid dots.

• A lower number allows more precise horizontal positioning.

• A higher number allows less precise horizontal positioning.

3. Type a number in the Vertical (Y): box to set the vertical spacing of your grid
dots.

• A lower number allows more precise vertical positioning

• A higher number allows less precise vertical positioning

4. Click OK.

Dialog Editor displays the grid with the spacing you specified.

NOTE: Grid units represent increments of 8 point Helvetica font.

• Each X unit represents an increment equal to 1/4 of that font.

• Each Y unit represents an increment equal to 1/8 of that font.
160 Creating a Custom Dialog Box

Adding Elements to a Dialog Box
In this section, you’ll learn how to add elements to your dialog box. The following
points should be noted:

• A single dialog box can contain no more than 255 controls

• The dialog box must contain at least one push button.

To add an element to your dialog box

1. On the Controls menu, click the element that you want to add.

NOTE: You can only insert an element within the borders of the dialog box you are
creating. You cannot insert an element on the title bar or outside dialog box
borders.

2. If you are within the dialog box borders, the pointer becomes an image of the
element.

If you are outside the dialog box borders, the pointer becomes a circle with a
line through it.

3. Place the element pointer at the desired location and click there.

The upper left corner of the element is inserted at the coordinate you chose.

The element you just added is surrounded by the selection frame.

4. To add this element to another part of your dialog box, press CTRL + D.

The duplicate element is now selected.

Selecting Your Elements
In order to edit an element, you must first select it.

You can select an element in one of two ways:

• Click the Select button on the toolbar, and then click the element

• Click the Select button on the toolbar, and then press TAB repeatedly
until the focus moves to the desired element.

When you select an item, a thick frame surrounds it. This frame is called the selection
frame.
Chapter 10: Creating Custom Dialog Boxes 161

16
Selecting Your Dialog Box
Select your dialog box in one of two ways:

• Click the Select button on the toolbar, and then click on the title bar of
your dialog box.

• Click the Select button on the toolbar, and then press TAB repeatedly
until the focus moves to the dialog box.

Configuring Element and Dialog Box Attributes
The Information dialog box allows you to configure various attributes of
elements and dialog boxes.

To open the Information dialog box

1. Click the element or dialog box to select it.

2. Double-click the item you selected.

The Information dialog box appears, displaying the name of the element in
the title bar.

NOTE: Each element type contains a unique Information dialog box with
specialized attributes. Some of these attributes must be specified, while
others are strictly optional.

3. Enter the attributes you want for this element and then click OK.

NOTE: If the OK button in the Information dialog box is unavailable, then one or
more required attributes is missing. Enter the missing attributes, or click
Cancel to revert to the previously entered attributes.
2 Creating a Custom Dialog Box

Dialog Box Attributes

The following table lists each dialog box attribute and whether or not the attribute is
required by Dialog Editor.

Attribute Required
(Yes/No)

Description

Position No X and Y coordinates on the display, in grid units (see
page 159).

Size Yes Width and height of the dialog box, in grid units (see
page 159).

Style No Options that determine whether the close button and
title bar are displayed.

Text$ No Text displayed on the title bar of the dialog box.

Name Yes Name of the dialog box. This will be referenced in your
BasicScript code.

.Function No Name of a BasicScript function in your dialog box.

Picture Library No Picture library where you get pictures for your dialog
box.
Chapter 10: Creating Custom Dialog Boxes 163

To change the font of your dialog boxes

If you want to change the font of the text in your dialog box (including the list box
labels), use the following procedure:

1. Start Windows Notepad

2. Open your Teleglob.ini file. This file is located in your TELEform directory.

3. Locate the [Script Editor] section of the Teleglob.ini file, and enter the
following line into this section:

Dialog Font=FontName,PointSize,isBold,isItalics

where isBold and isItalics should contain the following values:

• Enter 1 if you want the font to be bold/italic.

• Enter 0 if you do not want the font to be bold/italic.

For example, enter the following line if you want Times New Roman, 9 pt and bold
for your dialog box font:

Dialog Font=TimesNewRoman,9,1,0

4. Save your Teleglob.ini file.

5. Exit Windows Notepad.
164 Creating a Custom Dialog Box

5
Chapter 10: Creating Custom Dialog Boxes 16

Element Attributes

The following table lists each element attribute, whether or not the attribute is
required by Dialog Editor, and which elements the attribute applies to.

Attribute Required
(Yes/No)

Applies to Description

Position Yes All elements X and Y coordinates within the dialog box, in
grid units (see page 159).

Size Yes All elements Width and height of the element, in grid units (see
page 159).

Text$ No Push button, option
button check box,
group box and text

Text displayed on or beside an element as a label.

FileName$ No Help button Name of the help file opened when the user clicks
the help button.

Font No Text Font in which text is displayed.

Multiline No Text box Option that determines whether users can enter a
single line of text or multiple lines of text.

.Identifier No Push button, option
button, group box, text

Name of the element. This will be referenced in
your BasicScript code.

Yes Check box, text box,
list box, drop- down list
box, combo box

Name of the element, and container of the control
value after the dialog box has been processed.

No Picture,

picture button

Name of the file containing a picture that you
want to display or the name of a picture from a
specific picture library.

Frame No Picture Creates a 3 dimensional frame for your picture

Array$ Yes List box, drop-down
list box, and combo box

Name of an array variable in your BasicScript
code.

.Option
Group

Yes Option button Name given to a group of option buttons. This
will be referred in your BasicScript code.

Adding/Changing Titles and Labels
By default, when you begin creating a dialog box, its title is Untitled. When you first
create group boxes, option buttons, push buttons, text controls, and check boxes, they
have generic-sounding default labels, such as Group Box and Option Button.

To change a dialog box title or a control label

1. Display the Information dialog box for the dialog box whose title you want to
change or for the control whose label you want to change.

2. Enter the new title or label in the Text$ box.

Dialog box titles and control labels are optional. Therefore, you can leave
the Text$ box blank.

3. If the information in the Text$ box should be interpreted as a variable name
rather than a literal string, select the Variable Name check box.

4. Click OK.

The new title or label is now displayed on the title bar or on the control.

Although OK and Cancel buttons also have labels, you cannot change them. The
remaining controls (text boxes, list boxes, combo boxes, drop list boxes, and picture
buttons) do not have their own labels, but you can position a text element above or
beside these controls to serve as a label.
166 Creating a Custom Dialog Box

Moving and Sizing Elements

To move an element

1. Click the element in your dialog box with the Selection pointer.

2. Drag the element to its new location

3. If you need to move the element with precision, press an arrow key on your
keyboard.

NOTE: You can only drag an element in increments of a grid dot. If you need to
position the element with more precision, use the arrow keys, or open the
Grid dialog box and change the grid spacing (see page 159).

To size an element (or dialog box)

1. Click the element or dialog box that you want to resize with the Selection pointer.

2. Point to the border or a corner of the selected item.

3. Drag the border or corner until the item expands or contracts to the desired size.

NOTE: Pictures in.wmf format always expand or contract proportionally to fit
within the picture or picture button.

Pictures in.bmp format are of a fixed size. If you place a bitmap in an
element that is smaller than the bitmap, part of the picture will be cut off. If
you place a bitmap in an element that is larger than the bitmap, the picture is
centered within the borders of the element.

Assigning Accelerator Keys to Your Controls

An accelerator key allows users to access a dialog box control simply by pressing
ALT + a specified keyboard letter. This letter must appear in the control label, and is
underlined in the label when it is assigned. For example, users can employ accelerator
keys to select an option button, toggle a check box on or off, and move the insertion
point into a text box.

An accelerator key can be linked to any control except OK and Cancel buttons,
(because their labels cannot be edited). If the control does not have a label (for
example, a combo box), you can create an associated text element and assign an
accelerator key to the text.
Chapter 10: Creating Custom Dialog Boxes 167

To assign an accelerator key

1. Double-click the control in your dialog box.

The Information dialog box appears.

2. In the Text$ box, type an ampersand (&) before the desired letter.

3. Click OK.

The accelerator letter is now underlined on the control label.

NOTE: Accelerator key assignments in a dialog box must be unique. If you attempt
to assign the same accelerator key to more than one control, Dialog Editor
displays a message that the letter has already been assigned.

Adding Pictures to Your Picture Elements
The picture element is an empty outline until you specify the picture that you want it
to display. A picture element can display Windows bitmaps or Windows metafiles,
which you can obtain from a file.

NOTE: If you use a picture library, all the pictures in your dialog box must come
from the same library.

To add a picture from a file

1. Double-click the picture element.

The Picture Information dialog box appears.

2. Under Picture source, click File.

3. Enter the full path of the picture file in the Name$ box.

4. If you do not know the full path, click Browse to display the Select a Picture File
dialog box, and then search for the file in your directory.

When you select the file and click OK, the full path is pasted into the
$Name box.

5. Click OK.

The picture element now displays the picture you specified.
168 Creating a Custom Dialog Box

Creating and Modifying Picture Libraries

NOTE: Creating a picture library requires fundamental C programming skills. To
add pictures to your picture elements, you can also use a picture file (see the
preceding section)

A picture library is a DLL (dynamic link library) that contains a collection of pictures.
Currently, both Windows bitmaps and Windows metafiles are supported.

Each picture is placed into the DLL as a resource with a unique identifier. This
identifier is the name used in the Picture statement of BasicScript to refer to the
picture.

The following resource types are supported in picture libraries:

Resource Type Description

2 Windows Bitmap. This is defined in windows as
RT_BITMAP.

256 Windows Metafile. Since there is no resource type for
metafiles, 256 is used.
Chapter 10: Creating Custom Dialog Boxes 169

To create a picture library

1. Create a C file containing the minimal code required to establish a DLL. The
following code can be used:

#include <windows.h>
int CALLBACK LibMain(

HINSTANCE hInstance,
WORD wDataSeg,
WORD wHeapSz,

{
UnlockData(0);
return 1;

}

2. Use the following code to create a DEF file for your picture library:

LIBRARY
DESCRIPTION "My Picture Library"
EXETYPE WINDOWS
CODE LOADONCALL MOVABLE DISCARDABLE
DATA PRELOAD MOVABLE SINGLE
HEAPSIZE 1024

3. Create a resource file containing your pictures. The following example shows a
resource file using a bitmap called sample.bmp and a metafile called usa.wmf.

#define METAFILE 256
USA METAFILE "usa.wmf"
MySample BITMAP "sample.bmp"

4. Create a make file that compiles your C module, creates the resource file, and
links everything together

To modify an existing picture library

1. Make a copy of the picture library you want to modify.

2. Modify the copy by adding pictures with a resource editor such as Borland’s
Resource Workshop or Microsoft’s App Studio.

NOTE: When you use a resource editor, you need to create a new resource type for
metafiles (using the value 256).
170 Creating a Custom Dialog Box

Duplicating Your Elements
If you need one or more copies of a particular element, you can create the first
element and then use Dialog Editor’s duplication feature rather than creating each of
the additional elements separately.

To duplicate an element

1. Select the element you want to duplicate and then press CTRL + D.

Deleting Your Elements

To delete a single element

1. Select the element you want to delete and then press DELETE.

To delete all elements in a dialog box

1. Select the dialog box and then press DELETE.

If the dialog box contains more than one control, Dialog Editor
displays a message confirming your decision.

2. Click Yes. All the elements disappear, but the title bar and close button remain on
the dialog box.

Undoing Editing Operations
You can undo editing operations that produce a change in your dialog box, including:

• Addition of an element

• Insertion of one or more elements from the Clipboard

• Deletion of an element

• Changes made to an element or dialog box,

To undo an editing operation

• Press CTRL + Z.

The editing operation is reversed.
Chapter 10: Creating Custom Dialog Boxes 171

Using an Existing Dialog Box
There are three ways to use an existing dialog box in Dialog Editor:

1. Copy the dialog box code (or part of it) to the Clipboard and paste it into Dialog
Editor.

2. Click Capture Dialog on the File menu to capture a dialog box from another
application and place it in Dialog Editor.

3. Open a dialog box that has been saved to a file.

Pasting Existing Dialog Box Code into Dialog Editor

To paste an existing dialog box into Dialog Editor

1. Copy the dialog box code from your script to the Clipboard (include the Begin
Dialog and End Dialog lines).

2. Open Dialog Editor.

3. Press CTRL + V.

4. Click Yes on the message box.

Dialog Editor creates a new dialog box corresponding to the code on the
Clipboard.

To paste an existing element into Dialog Editor

1. Copy the element(s) code from your script to the Clipboard.

2. Open Dialog Editor.

3. Press CTRL + V.

Dialog Editor adds one or more elements to your current (or new) dialog
box.

NOTE: When you paste a dialog box into Dialog Editor, the tabbing order of the
controls is determined by the order in which the controls appear in the script.

When you paste one or more elements into Dialog Editor, they will come last
in the tabbing order, following the elements that are already present in the
current dialog box.
172 Using an Existing Dialog Box

Capturing a Dialog Box from Another Application

To capture an existing dialog box

1. Open the dialog box that you want to capture.

2. Open Dialog Editor.

3. Click Capture Dialog on the File menu.

The Select the Dialog Box to Capture dialog box appears.

4. Select this dialog box from the Available Dialogs list, and then click OK.

A prompt appears asking whether you want to replace the current dialog box
with this dialog box.

5. Click Yes to place the captured dialog box in the Dialog Editor.

NOTE: Dialog Editor only supports standard Windows controls and standard
Windows dialog boxes.

Opening a Dialog Box File
1. Click Open on the File menu.

The Open Dialog File dialog box appears.

2. Select the dialog box file and click Open.

Dialog Editor creates a dialog box from the statements in the file.

NOTE: If there are any errors in the BasicScript statements that describe the dialog
box, the Dialog Translation Errors dialog box will appear. This dialog box
shows the lines of code containing the errors and provides a brief description
of the nature of each error.
Chapter 10: Creating Custom Dialog Boxes 173

Editing Existing Dialog Boxes in a Script

1. In the Edit Script window, select all the lines in your script starting with Begin
Dialog and ending with End Dialog.

2. Click Edit Dialog on the Edit menu.

The Dialog Editor window appears.

3. Edit your dialog box, and then click Update on the File menu.

Your updated dialog box code replaces the dialog box code you selected in
step 1.

4. Click Exit and Return on the File menu.

You return to the Edit Script window. Your dialog box code will reflect the
changes you made to the dialog box in the Dialog Editor.

Testing Your Dialog Box
Dialog Editor lets you run your edited dialog box for testing purposes. When you
click the Test button on the toolbar, your dialog box is active. This gives you an
opportunity to make sure it functions properly and fix any problems before you
incorporate your dialog box into your script.

Before you test your dialog box, check the following:

• Your dialog box contains all the necessary push buttons.

• Your dialog box contains a Help button if one is needed.

• Your elements are aligned and sized properly.

• Your element labels, text elements, and dialog box title are spelled and
capitalized correctly.

• Your elements fit within the borders of the dialog box.

• Group boxes are added so that the element order is obvious to the user.

• You used text elements to describe unlabeled elements.

• You assigned accelerator keys consistently (if you assigned them).

When your dialog box complies with the above list, it is ready to be tested.
174 Testing Your Dialog Box

Testing your dialog box is an iterative process that involves running your dialog box
to see how well it works, identifying and fixing problems, and then running the dialog
box again to make sure these problems are fixed and to identify any additional
problems.

To test your dialog box

1. Save your dialog box (see page 158).

2. Press F5.

The dialog box becomes active

3. Check your dialog box functions (see the next section).

4. To stop the dialog box, press F5.

5. Make any necessary corrections to your dialog box.

6. Repeat steps 2-4 until your dialog box works properly.

Checking Your Dialog Box Functions

Tab Order

When you press TAB, the focus should move through the controls in a logical order.
Because users cannot interact with design elements, the focus skips over these
elements.

To correct your tab order

1. Press F5 to stop the test.

2. Cut and paste your elements in the tab order you want.

For example, cut element 1, and paste it. Then cut element 2, and paste it.

NOTE: If you click the Cut button, and then the click the Paste button, your element
will not change its location in the dialog box.

3. Press F5 to confirm that the tab order is correct.
Chapter 10: Creating Custom Dialog Boxes 175

Option Button Grouping

Your option buttons should be grouped correctly. Selecting one option button in your
group should automatically clear all other option buttons in your group.

To merge separate option button groups into a single group

1. Press F5 to stop the test.

2. Change the.Option Group box in every Option Button Information dialog box
of the group so that each option button contains the same value.

3. Press F5 to confirm that the option buttons work properly.

Accelerator Keys

If you have assigned an accelerator key to a text element or group box in order to
provide user access to a text box, list box, combo box, or drop-down list box, the
accelerator keys should put the focus on the control.

To assign your accelerator keys correctly

1. Press F5 to stop the test.

2. Cut and paste your design element, then cut and paste the associated control.

NOTE: If you click the Cut button, and then the click the Paste button, your element
will not change its location in the dialog box.

3. Press F5 to confirm that the accelerator keys work properly.

NOTE: Cutting and pasting a design element may affect the tab order of your
elements. Therefore, you may need to re-cut and re-paste your elements to
establish the correct tab order.
176 Testing Your Dialog Box

Adding an Element to Your Script
Dialog box elements can be transferred from the Dialog Editor to your script. When
you place your element on the Clipboard, it is converted to a BasicScript statement.

To add an element to your script

1. Select the element that you want to add to your script.

2. Press CTRL + C.

3. Click Exit and Return on the File menu.

4. In the Edit Script window, click the location where you want the statement to go,
and then click Paste on the toolbar.

5. Save your script.

Adding Your Dialog Box to Your Script

To insert a dialog box into your script

1. Click Update on the File menu.

Your dialog box is converted into a series of BasicScript statements and
placed at the insertion point in your script.

2. Click Exit and Return on the File menu.

You return to the Edit Script window.

3. To put your dialog box code in another location:

• Click the Cut button on the toolbar.

• Move your insertion point to the new location.

• Click the Paste button on the toolbar.
Chapter 10: Creating Custom Dialog Boxes 177

Incorporating Your Dialog Box into Your Script
After using Dialog Editor to insert a custom dialog box into your script, make the
following modifications to your script:

1. Create a dialog record using the Dim statement.

2. Assign values to dialog box controls.

3. Display the dialog box using either the Dialog() function or the Dialog statement.

4. Retrieve values from the dialog box after the user closes it.

Each of these steps is explained in more detail in the subsections below.

Sample Script
Steps 1-4 will use this sample script as an example, and will add statements to this
script to make it functional.

Sub Main()
’Initialize list box array.
Dim ListBox1$()
’Define the dialog box template.
Begin Dialog UserDialog,,163,94,"Grocery Order"

Text 13,6,32,8,"&Quantity:",.Text1
TextBox 48,4,28,12,.TextBox1
ListBox 12,28,68,32,ListBox1$,.ListBox1
OKButton 112,8,40,14
CancelButton 112,28,40,14

End Dialog
End Sub

Step 1: Creating a Dialog Record
To store the values retrieved from the custom dialog box, create a dialog record with a
Dim statement, using the following syntax:

Dim DialogRecord As DialogVariable

In the sample script above, the Dim statement is as follows:

...
End Dialog
Dim b As UserDialog ’Create the dialog record.
Dialog b ’Display the dialog box.
...
178 Incorporating Your Dialog Box into Your Script

Step 2: Assigning Values to Dialog Box Controls
If you open and run the sample script shown in the preceding subsection, you’ll see a
dialog box that resembles the following:

This custom dialog box isn’t very useful; the user cannot see any items in the list box.

To assign values to dialog box controls, modify the control statements in your script.
The following table lists the dialog box controls that you can assign values to:

Control Type of Value

List box Items

Drop-down list box Item

Combo box Item

Text box Default text

Check box Boolean Value

List box without
any items

No Default
text
Chapter 10: Creating Custom Dialog Boxes 179

Adding an Item to Your Script

You can add items to the list box in the sample script above by creating an array and
then assigning values to the elements of that array.

For example, you could add the following statements to initialize an array with three
elements, where each element is assigned the name of a fruit:

Sub Main
Dim Fruit as String ‘Define the variable fruit.
Dim ListBox1$(2) 'Initialize list box array.
ListBox1$(0) = "Apples"
ListBox1$(1) = "Oranges"
ListBox1$(2) = "Pears"

...

You can create an array for your drop-down list box and combo box using the same
method.

Adding Default Text to a Text Box

You can set the default value of the text box in the sample script above to 12 with the
following statement:

...
Dim b As UserDialog 'Create the dialog record.
b.TextBox1 = "12" 'Make the default value of the text box 12
Dialog b 'Display the dialog box.
...

NOTE: The default text statement above must be entered after the dialog record
statement but before the dialog display statement (as shown in the example
code above).
180 Incorporating Your Dialog Box into Your Script

Step 3: Displaying the Custom Dialog Box
To display a custom dialog box, you can use either a Dialog() function or a Dialog
statement.

Using the Dialog() Function

You can use a Dialog() function to determine how the user closed your custom dialog
box.

For example, the following statement will return a value when the user performs an
action:

...
Dim b As UserDialog ’Create the dialog record.
response% = Dialog(b) ‘Dialog() function - display dialog box.
End Sub

The Dialog() function returns any of the following values:

Using the Dialog Statement

Use the Dialog statement when there is only one push button on your dialog box. The
following is an example of the correct use of the Dialog statement:

...
Dim b As UserDialog 'Create the dialog record.
Dialog b 'Dialog statement - display dialog box.
End Sub

Action Value Returned

User clicks the OK button. –1

User clicks the Cancel button 0

User clicks another push button.
The returned number corresponds
to the tab order of the push
button.

(greater than 0)

1 = first push button

2 = second push
button

and so on.
Chapter 10: Creating Custom Dialog Boxes 181

Step 4: Retrieving Values from the Custom Dialog
Box

After displaying a custom dialog box for your user, your script must retrieve the
values from the dialog controls. You retrieve these values by referencing the
appropriate identifiers in the dialog record.

For example, the following statements retrieve the value of the text box and the list
box to display a message.

...
response%=Dialog(b) ’Dialog() function - display dialog box.
’Create a message box with a display that is contigent upon the user
‘action.
Select Case response%

Case -1
Fruit$=ListBox1$(b.ListBox1)
MsgBox “Thank you for ordering” + b.TextBox1+“ “+Fruit$+”.”

Case Else
MsgBox “Your order has been canceled.”

End Select
...
182 Incorporating Your Dialog Box into Your Script

Example of Your Finished Script
If you inserted the sample code of these four steps into the sample script, your script
might look something like this:

Sub Main
Dim Fruit As String
Dim ListBox1$(2)
Dim response%

ListBox1$(0) = "Apples"
ListBox1$(1) = "Oranges"
ListBox1$(2) = "Pears"

Begin Dialog UserDialog,,163,94,"Grocery Order" _
Text 13,6,32,8,"&Quantity:",.Text1
’First control in the dialog box gets focus
TextBox 48,4,28,12,.TextBox1
ListBox 12,28,68,32,ListBox1$,.ListBox1
OKButton 112,8,40,14
CancelButton 112,28,40,14

End Dialog

Dim b As UserDialog ’Create the dialog record.
b.TextBox1 = "12" ’Set the default value of the text box to 1 dozen.
response = Dialog(b) ’Display the dialog box.

’Create a message box with a display that is contigent upon the user action.
Select Case response%

Case -1
Fruit$=ListBox1$(b.ListBox1)
MsgBox "Thank you for ordering" + b.TextBox1 + " " +Fruit$+"."

Case Else
MsgBox "Your order has been canceled."

End Select
End Sub
Chapter 10: Creating Custom Dialog Boxes 183

Dialog box and message boxes

The following table of figures show you what the dialog box and message box looks
like. If you entered this script into your Edit Script window, you can run the
appropriate TELEform operation (for example, evaluating a form image) to test it.
(see Chapter 7 for more information on executing and debugging your script in the
Edit Script window).

Dialog/Message Box Description

This is the dialog box when the user initiates it

•The default text in the text box is 12.

•The default item in the list box is Apples.

This is the dialog box when the user changes
these values.

• The user enters 20 in the text box.

• The user clicks Oranges in the list box.

The user clicks OK in the Grocery Order dialog
box, and receives this message box.

The user clicks Cancel in the Grocery Order
dialog box, and receives this message box.
184 Incorporating Your Dialog Box into Your Script

Making Your Dialog Box Dynamic
As shown in the previous section, you can retrieve the values from dialog box
controls after the user dismisses the dialog box by referencing the identifiers in the
dialog record.

You can also retrieve values from a dialog box while the dialog box is displayed. To
do this, you must make your dialog box dynamic.

Using a Dialog Function

With a dialog function, your script can carry out certain actions, such as hiding,
changing, and disabling dialog box controls. This can be done while the dialog box is
active.

Before BasicScript displays a custom dialog box (by executing a Dialog statement or
Dialog() function), it must initialize the dialog box. During this initialization process,
BasicScript checks to see whether you have defined a dialog function as part of your
dialog box and calls it.

After completing its initialization process, BasicScript displays your custom dialog
box. When the user clicks a control, BasicScript will again call your dialog function.

In the dynamic dialog box example below, the dialog function is the Function/End
Function part of the script
Chapter 10: Creating Custom Dialog Boxes 185

Responding to User Actions

A BasicScript dialog function can respond to six types of user actions:

Function FunctionName(ControlName$, Action%, SuppValue%) As Integer

Action Description

1 This action is sent immediately before the dialog box is displayed for the user.

2 This action is sent when:

• A push button is clicked.

• A check box is selected or cleared.

• An option button is clicked.

ControlName$ contains the name of the option button that was
clicked

SuppValue contains the index of the option button as it relates
to the option group (1,2, and so on)

• The current selection is changed in a list box, drop-down list
box, or combo box.

ControlName$ contains the name of the list box, combo box, or
drop list box,

SuppValue contains the index of the new item as it relates to the
list (1,2, and so on).

3 This action is sent when the content of a text box or combo box has been
changed and that control loses focus

4 This action is sent when a control gains the focus

5 This action is sent continuously when the dialog box is idle

6 This action is sent when the dialog box is moved.
186 Incorporating Your Dialog Box into Your Script

The following script contains the important concepts you need to make your dialog
box dynamic.

NOTE: This section does not explain in full detail how to make your dialog box
dynamic. However, the comments in this code do provide you with the
reasoning behind each statement.

’Dim "Fruits" and "Vegetables" arrays here to make them accessible to all procedures.
Dim Fruits(2) As String
Dim Vegetables(2) As String

’Dialog procedure - must precede the procedure that defines the dialog box.
Function DialogControl(ctrl$, action%, suppvalue%) As Integer

Select Case action%
Case 1

’Fill list box with items before dialog box is visible.
DlgListBoxArray "ListBox1", fruits
’Set default value to first item in list box.
DlgValue "ListBox1",0

Case Else
’Fill the list box with names of fruits or vegetables when the user selects an
‘option (radio) button.
If ctrl$ = "OptionButton1" Then

DlgListBoxArray "ListBox1", fruits
DlgValue "ListBox1", 0

ElseIf ctrl$ = "OptionButton2" Then
DlgListBoxArray "ListBox1", vegetables
DlgValue "ListBox1", 0

End If
End Select

End Function

Sub Main()
Dim ListBox1$() 'Initialize array for use by ListBox statement in dialog box.
Dim Produce$ ' ‘Assign values to elements in the "Fruits" and "Vegetables"

‘arrays.

Fruits(0) = "Apples"
Fruits(1) = "Oranges"
Fruits(2) = "Pears"
Vegetables(0) = "Carrots"
Vegetables(1) = "Peas"
Vegetables(2) = "Lettuce"
Chapter 10: Creating Custom Dialog Boxes 187

’Define the dialog box.
Begin Dialog UserDialog,,163,94,"Grocery Order",.DialogControl

Text 13,6,32,8,"&Quantity:",.Text1
’First control in template gets the focus.
TextBox 48,4,28,12,.TextBox1
ListBox 12,28,68,32,ListBox1$,.ListBox1
OptionGroup.OptionGroup1
OptionButton 12,68,48,8,"&Fruit",.OptionButton1
OptionButton 12,80,48,8,"&Vegetables",.OptionButton2
OKButton 112,8,40,14
CancelButton 112,28,40,14

End Dialog

Dim b As UserDialog ‘Create the dialog record.
b.TextBox1 = "12" 'Set the default value of the text box to 1 dozen.
response% = Dialog(b) 'Display the dialog box.

Select Case response%
Case -1

If b.OptionGroup1 = 0 Then
produce$ = fruits(b.ListBox1)

Else
produce$ = vegetables(b.ListBox1)

End If
MsgBox "Thank you for ordering " & b.TextBox1 & " "& produce$ & "."

Case Else
MsgBox "Your order has been canceled."

End Select
End Sub
188 Incorporating Your Dialog Box into Your Script

Dialog box and message boxes

The following table of figures show you what the dynamic dialog box and message
boxes look like. If you entered this script into your Edit Script window, you can run
the appropriate TELEform operation (for example, evaluating a form image) to test it.
(See Chapter 7 for more information on executing and debugging your script in the
Edit Script window.).

Dialog/Message Box Description

This is the dynamic dialog box when the user
initiates it:

• The default text in the text box is 12.

• The default option is Fruit.

• The default item in the list box is
Apples.

This is the dynamic dialog box when the user
clicks on the Vegetables option

• The items in the list box change to
vegetables (this is dynamic).

• The default item in the list box changes
to Carrots.

The user clicks OK in the Grocery Order dialog
box, and receives this message box.
Chapter 10: Creating Custom Dialog Boxes 189

19
The user clicks Cancel in the Grocery Order
dialog box, and receives this message box.

Dialog/Message Box Description
0 Incorporating Your Dialog Box into Your Script

CHAPTER 11

Common Language Elements
About this Chapter
In this chapter, you can reference the commonly used BasicScript language elements.
This list of elements is not exhaustive, but it does provide you with the vocabulary
and syntax that is used regularly by script writers.

Common Language Elements
If you look at Appendix A, you will notice that the BasicScript language includes a
large number of functions, statements, methods and operators. You might wonder
which language elements are necessary to know, and which ones are used sparingly if
at all. In this section, we will describe in detail each of the language elements most
commonly used when writing your scripts.

IMPORTANT: Many of the language elements in this chapter are not explained in
full detail. For the complete description of any of these language
elements, refer to the BasicScript online help.

The following is a list of the BasicScript language elements that are explained in this
chapter, sorted by the category to which they belong.

Variant

A variant is a universal (generic) data type.

 �������

Comments are not part of the compiled and executed script. Comments only
describe the reasoning behind each line (or multiple lines) of the script.

• Comments - page 196
Chapter 11: Common Language Elements 191

Declarations

These are the statements that declare constants, variables and functions in your script:

• Const - page 195

• Dim - page 197

• Public - page 199

Flow Control

These are the conditional and looping statements that control the sequence of events
in your script:

• If...Then...Else - page 199

• For...Next - page 201

Logical Operators

These operators combine two elements in a line of your script:

• And - page 203

• Or - page 205

String Operators

The string operators convert a string into a number, and convert a number into a
string:

• Str$ - page 207

• Val - page 208

User Interface

These statements allow the user to interface with your script actively and passively:

• InputBox$ - page 209

• MsgBox - page 210

• DispMsg - page 212
192 Common Language Elements

File Operators

These elements perform operations on external files:

• Open - page 214

• Close - page 215

• FreeFile - page 217

• FileExists - page 218

Calling Functions

These elements call defined subroutines and functions:

• Sub...End Sub - page 219

• Function...End Function - page 220

• Declare - page 223

• Call - page 226

Reserved Words

These words are reserved by BasicScript. Therefore, you cannot create functions,
statements, etc. using reserved words as names.

• Keywords - page 227

Miscellaneous

Common language elements that do not fit into the above categories

• Nothing - page 229

• Let - page 230
Chapter 11: Common Language Elements 193

Variant
The Variant variable can store any type of data that you want to put in it. BasicScript
interprets the data based on the context with which it is used. You can think of this
variable as a universal variable. Because of this, it is commonly used in BasicScript.
However, be aware of the following BasicScript conventions.

Function Variant
The default data type for a function is Variant. Functions that are declared as Integers
may generate a compile time message indicating that the function data type is
different than a prior declaration.

To correct this problem, function declarations such as this:

declare function myFunc() as integer
function myFunc()

end function

must be changed to:

declare function myFunc() as integer
function myFunc() as integer

end function

Variable Variant
The default data type for a variable is ‘Variant’. You must explicitly declare your
variables in cases where you want a specific data type to be assigned to a variable

For example, the following script:

For i = 0 to Fields.Count - 1
DispMsg Fields(i).Text

Next i

must be changed to:

Dim i as Integer
For i = 0 to Fields.Count - 1

DispMsg Fields(i).Text
Next i

in order to avoid a runtime error message
194 Variant

IMPORTANT: As an alternative to declaring all your variables, you can put the
statement Option Default Integer at the beginning of the script.
Doing so will automatically treat all undeclared variables and
functions as type Integer.

Declarations

Const (statement)
The Const statement declares a constant for use within the current script.

Syntax

Const name [As type] = expression1, name [As type] = expression2...

The name is only valid within the current BasicScript script. Constant names must
follow these rules:

• Must begin with a letter.

• May contain only letters, digits, and the underscore character.

• Must not exceed 80 characters in length.

• Cannot be a reserved word.

NOTE: Constant names are not case-sensitive.

The expression must be assembled from literals or other constants. Calls to functions
are not allowed except calls to the Chr$ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-declaration
character, as shown below:

Const a% = 5 ’Constant Integer whose value is 5
Const b# = 5 ’Constant Double whose value is 5.0
Const c$ = "5” ’Constant String whose value is "5"
Const d! = 5 ’Constant Single whose value is 5.0
Const e& = 5 ’Constant Long whose value is 5

The type can also be given by specifying the As type clause:

Const a As Integer = 5 ’Constant Integer whose value is 5
Const b As Double = 5 ’Constant Double whose value is 5.0
Const c As String = "5" ’Constant String whose value is "5"
Chapter 11: Common Language Elements 195

Const d As Single = 5 ’Constant Single whose value is 5.0
Const e As Long = 5 ’Constant Long whose value is 5

You cannot specify both a type-declaration character and the type:

Const a% As Integer = 5 ’THIS IS ILLEGAL.

Constants defined within a Sub or Function are local to that subroutine or function.
Constants defined outside of all subroutines and functions can be used anywhere
within that script.

Example

This example displays the declared constants in a dialog box (crlf produces a new line
in the dialog box).

Const crlf = Chr$(13) + Chr$(10)
Const s As String = "This is a constant."
Sub Main()

MsgBox s$ & crlf & "The constants are shown above."
End Sub

Comments
Comments can be added to BasicScript code using one of the following three
methods:

1. All text between a single quotation mark and the end of the line is ignored:

MsgBox "Hello" ’Displays a message box.

2. The REM statement causes the compiler to ignore the entire line:

REM This is a comment.

3. BasicScript supports C-style multi-line comment blocks /*...*/, as shown in the
following example:

MsgBox "Before comment"
/* This stuff is all commented out.
This line, too, will be ignored.
This is the last line of the comment. */
MsgBox "After comment"

NOTE: C-style comments can be nested.
196 Comments

Dim (statement)
The Dim statement declares a list of local variables and their corresponding types and
sizes.

Syntax

Dim name [(<subscripts>)] [As [New] type] [,name [(<subscripts>)] [As [New]
type]]...

If a type-declaration character is used when specifying name (such as %, @, &, $, or
!), the optional [As type] expression is not allowed. For example, the following are
allowed:

Dim Temperature As Integer
Dim Temperature%

The type parameter specifies the type of the data item being declared. It can be any of
the following data types: String, Integer, Long, Single, Double, Currency, Object,
data object, built-in data type, or any user-defined data type. When specifying explicit
object types, you can use the following syntax for type:

module.class

Where module is the name of the module in which the object is defined and class is
the type of object. For example, to specify the OLE automation variable for Excel’s
Application object, you could use the following code:

Dim a As Excel.Application

Note: Explicit object types can only be specified for data objects and early bound
OLE automation objects—i.e., objects whose type libraries have been registered with
BasicScript.

• A Dim statement within a subroutine or function declares variables local to that
subroutine or function.

• If the Dim statement appears outside of any subroutine or function declaration,
then that variable has the same scope as variables declared with the Private
statement.

NOTE: Private variables are not visible when you use the Watch Variable function
in the Edit Script window during debug mode.
Chapter 11: Common Language Elements 197

Naming Conventions

Variable names must follow these naming rules:

• Must start with a letter.

• May contain letters, digits, and the underscore character (_); punctuation is not
allowed. The exclamation point (!) can appear within the name as long as it is not
the last character, in which case it is interpreted as a type-declaration character.

• The last character of the name can be any of the following type-declaration
characters: #, @, %, !, &, and $.

• Must not exceed 80 characters in length.

• Cannot be a reserved word

Examples

The following examples use the Dim statement to declare various variable types.

Sub Main()
Dim i As Integer
Dim l& ’Long
Dim s As Single
Dim d# ’Double
Dim c$ ’String
Dim MyArray(10) As Integer ‘10 element integer array
Dim MyStrings$(2,10) ‘2-10 element string arrays
Dim Filenames$(5 to 10) ‘6 element string array
Dim Values(1 to 10, 100 to 200) ‘111 element variant array

End Sub

NOTE: For more information on the Dim statement, refer to the BasicScript online
help system.
198 Comments

Public (statement)
The Public statement declares a list of public variables and their corresponding types
and sizes.

Syntax

Public name [(subscripts)] [As type, name] [(subscripts)] [As type]

Public variables are global to all Subs and Functions in all scripts.

If a type-declaration character is used when specifying name (such as %, @, &, $, or
!), the optional [As type] expression is not allowed.

For example, the following are allowed:

Public foo As integer
Public foo%

Refer to the Dim (statement) section for more information on variables.

Flow Control

If...Then...Else (statement)
The If...Then...Else statement conditionally executes a statement or group of
statements.

Syntax 1

If condition Then statements [Else else_statements]

Syntax 2

If condition Then
[statements]

[ElseIf else_condition Then
[elseif_statements]]

[Else
[else_statements]]

End If

NOTE: There can be as many ElseIf conditions as are required.
Chapter 11: Common Language Elements 199

Syntax 1 Parameters

The single-line conditional statement (syntax 1) has the following parameters:

Syntax 2 Parameters

The multi-line conditional statement (syntax 2) has the following parameters:

Syntax 1 Parameter Description

condition Any expression evaluating to a Boolean value

statements One or more statements separated with colons.
This group of statements is executed when
condition is True

else_statements One or more statements separated with colons.
This group of statements is executed when
condition is False

Syntax 2 Parameter Description

condition Any expression evaluating to a Boolean value.

statement One or more statements to be executed when
condition is True.

else_condition Any expression evaluating to a Boolean value.
The else_condition is evaluated if condition is
False.

elseif_statements One or more statements to be executed when
condition is False and else_condition is True.

else_statements One or more statements to be executed when
both condition and else_condition are False
200 Flow Control

Example

This example inputs a name from the user and checks to see whether it is MICHAEL
or MIKE using three forms of the If...Then...Else statement. It then branches to a
statement that displays a welcome message depending on the user’s name.

Sub Main()
uname$ = UCase$(InputBox$("Enter your name:","Enter

Name"))
if uname$ = "MICHAEL" GoSub MikeName
if uname$ = "MIKE" Then

GoSub MikeName
Exit Sub

Else If uname$ = "" Then
MsgBox "Since you have no name, I’ll call you MIKE!"
uname$ = "MIKE"
GoSub MikeName

Else
GoSub OtherName

End If
Exit Sub

MikeName:
MsgBox "Hello, MICHAEL!"
Return

OtherName:
MsgBox "Hello, " & uname$ & "!"
Return

End Sub

For...Next (statement)
Repeats a block of statements a specified number of times, incrementing a loop
counter by a given increment each time through the loop.

Syntax

For counter = start To end [Step increment]
[statements]
[Exit For]
[statements]

Next [counter [,nextcounter]...]
Chapter 11: Common Language Elements 201

For statement

The For statement takes the following parameters:

The For...Next statement continues executing until an Exit For statement is
encountered or counter is greater than end.

For...Next statements can be nested. In such a case, the Next [counter] statement
applies to the innermost For...Next.

Example

This example adds the numbers 1 through 10 using a For loop:

Sub Main()
Dim i as integer
Dim s as integer
s = 0
For i = 1 to 10

s = s + 1
Next i
DispMsg "The sum is " & str$(s)

End Sub

For Parameter Description

counter Name of a numeric variable. Variables of the
following types can be used: Integer, Long,
Single, Double, Variant

start Initial value for counter. The first time through
the loop, counter is assigned this value

end Final value for counter. The statements will
continue executing until counter is equal to end.

increment Amount added to counter each time through the
loop. If end is greater than start, then increment
must be positive. If end is less than start, then
increment must be negative. If increment is not
specified, then 1 is assumed. The expression
given as increment is evaluated only once.
Changing the step during execution of the loop
will have no effect.

statements Any number of BasicScript statements.
202 Flow Control

Logical Operators

And (operator)
The And operator performs a logical or binary conjunction on two expressions.

Syntax

result = (expression1) And (expression2)

If both expressions are either Boolean, Boolean variants, or Null variants, then a
logical conjunction is performed as follows:

If expression 1
is

and expression
2 is

then the result
is

True True True

True False False

True Null Null

False True False

False False False

False Null False

Null True Null

Null False False

Null Null Null
Chapter 11: Common Language Elements 203

Binary Conjunction

If the two expressions are integer, then a binary conjunction is performed, returning
an integer result. All other numeric types (including Empty variants) are converted to
Long, and a binary conjunction is then performed, returning a Long result.

Binary conjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

Example

Sub Main()
n1 = 9 ‘1001 binary
n2 = 12 ‘1100 binary
b1 = True
b2 = False

'This expression performs a numeric bitwise And operation and
‘stores the result in N3.
n3 = n1 And n2
'This example performs a logical And comparing B1 and B2
'and displays the result.
If b1 And b2 Then

MsgBox "b1 and b2 are both True; n3 is: " & n3
Else

MsgBox "b1 and b2 are not both True; n3 is: " & n3
End If

End Sub

If bit in
expression 1
is

and bit in
expression 2 is

then the result is

1 1 1

0 1 0

1 0 0

0 0 0
204 Flow Control

Or (operator)
The Or statement performs a logical or binary disjunction on two expressions.

Syntax

result = (expression1) Or (expression2)

If both expressions are either Boolean, Boolean variants, or Null variants, then a
logical disjunction is performed as follows:

If expression 1 is and expression 2 is then the result is

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null
Chapter 11: Common Language Elements 205

Binary Disjunction

If the two expressions are integer, then a binary disjunction is performed, returning an
integer result. All other numeric types (including Empty variants) are converted to
Long and a binary disjunction is then performed, returning a Long result.

Binary disjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

Examples

This example shows the use of logical Or.

Dim s$ As String
s$ = InputBox$("Enter a string.")
If s$ = "" Or Mid$(s$,1,1) = "A" Then

s$ = LCase$(s$)
End If

This example shows the use of binary Or.

n1 = 9 ‘1001 binary
n2 = 12 ‘1100 binary
b1 = True
b2 = False
‘This expression performs a numeric bitwise Or operation and stores
‘the result as n3
n3 = n1 Or n2

‘This example performs a logical Or that compares b1 and b2 and
‘displays the result
If b1 Or b2 Then

MsgBox "b1 or b2 are True; n3 is: " & n3
Else

MsgBox "b1 and b2 are both false; n3 is: " & n3
End If

If bit in expression
1 is

and bit in expression
2 is

then the result is

1 1 1

0 1 1

1 0 1

0 0 0
206 Flow Control

String Operators

Str$ (function)
The Str$ function converts a given number into a string. This function is the opposite
of the Val function listed in the next section.

Syntax

Str[$](number)

The number parameter is any numeric expression or expression convertible to a
number. If number is negative, then the returned string will contain a leading minus
sign. If number is positive, then the returned string will contain a leading space.

These functions only output the period as the decimal separator and do not output
thousands separators. Use the CStr, Format, or Format$ function for more control
over these options.

Example

In this example, the Str$ function is used to display the value of a numeric variable.

Sub Main()
x# = 100.22
MsgBox "The string value is: " + Str(x#)

End Sub
Chapter 11: Common Language Elements 207

Val (function)
The Val function converts a given string expression into a number. This function is
the opposite of the Str$ function listed in the previous section.

Syntax

Val(string)

The string parameter can contain any of the following:

• Leading minus sign (for nonhex or octal numbers only)

• Hexadecimal number in the format &Hhexdigits

• Octal number in the format &Ooctaldigits

• Floating-point number, which can contain a decimal point and an
optional exponent

NOTE: Spaces, tabs, and line feeds are ignored.

If string does not contain a number, then 0 is returned.

The Val function continues to read characters from the string up to the first non-
numeric character.

The Val function always returns a double-precision floating-point value. This value is
forced to the data type of the assigned variable.

Example

This example gets a number string from an InputBox and converts it to a number
variable.

Sub Main()
a$ = InputBox$("Enter anything containing a number", "Enter Number")
b# = Val(a$)
MsgBox "The value is: " & b#

End Sub
208 String Operators

User Interface

InputBox$ (function)
The inputbox$ function displays a dialog box with a text box into which the user can
type.

Syntax

InputBox$[prompt],[title],[default],[xpos,ypos],[helpfile,context]

The content of the text box is returned as a String. A zero-length string is returned if
the user selects Cancel.

Some of the named parameters of the InputBox$ function are:

Example

Sub Main()
s$ = InputBox$("File to copy:","Copy","sample.txt")

End Sub

NOTE: For more information on the InputBox$ function, see the BasicScript online
help.

InputBox$ Parameter Description

prompt Text to be displayed above the text box. The
prompt parameter can contain multiple lines,
each separated with an end-of-line (a carriage
return, line feed, or carriage-return/line-feed
pair). A runtime error is generated if prompt is
Null

title Caption of the dialog box. If this parameter is
omitted, then no title appears as the dialog box’s
caption. A runtime error is generated if title is
Null.

default Default response. This string is initially
displayed in the text box. A runtime error is
generated if default is Null.
Chapter 11: Common Language Elements 209

MsgBox (function)
The MsgBox function displays a message in a dialog box with a set of predefined
buttons, returning an Integer representing which button was selected.

Syntax

MsgBox[prompt],[buttons],[title],[helpfile,context]

Some of the named parameters of the MsgBox function are:

The MsgBox function returns one of the following values:

MsgBox Parameter Description

prompt Message to be displayed: any expression
convertible to a String. End-of-lines can be used
to separate lines (either a carriage return, line
feed, or both). If a given line is too long, it will
be word-wrapped.

buttons Integer specifying the type of dialog box (see
below).

title Caption of the dialog box. This parameter is any
expression convertible to a String. If it is
omitted, then "BasicScript" is used. A runtime
error is generated if title is Null.

Constant Value Description

ebOK 1 OK was pressed

ebCancel 2 Cancel was pressed

ebAbort 3 Abort was pressed

ebRetry 4 Retry was pressed

ebIgnore 5 Ignore was pressed

ebYes 6 Yes was pressed

ebNo 7 No was pressed
210 User Interface

The buttons parameter is the sum of any of the following values:

The default value for buttons is 0 (display only the OK button, making it the default).

Constant Value Description

ebOKOnly 0 Displays OK buttons only

ebOKCancel 1 Displays OK and Cancel buttons

ebAbortRetryIgnore 2 Displays Abort, Retry and Ignore
buttons

ebYesNoCancel 3 Displays Yes, No, and Cancel
buttons

ebYesNo 4 Displays Yes and No buttons

ebRetryCancel 5 Displays Retry and Cancel buttons

ebCritical 16 Displays the “stop” icon

ebQuestion 32 Displays the “question mark” icon

ebExlamation 48 Displays the “exclamation point”
icon

ebInformation 64 Displays the “information” icon

ebDefaultButton1 0 First button is the default button

ebDefaultButton2 256 Second buton is the default button

ebDefaultButton3 512 Third button is the default button

ebApplicationModal 0 Application Modal - the current
application is suspended until the
dialog box is closed

ebSystemModal 4096 System Modal - all applications are
suspended until the dialog box is
closed.
Chapter 11: Common Language Elements 211

Breaking Text across Lines

The prompt parameter can contain end-of-line characters, forcing the text that follows
to start on a new line. The following example shows how to display a string on two
lines:

MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

The carriage-return or line-feed characters can be used by themselves to designate an
end-of-line.

Example

Sub Main
MsgBox "This is a simple message box."
MsgBox "This is a message box with a title and an

icon.",ebExclamation,"Simple"
MsgBox "This message box has OK and Cancel

buttons.",ebOkCancel,"MsgBox"
MsgBox "This message box is system

modal!",ebSystemModal
End Sub

NOTE: For more information on the MsgBox function, see the BasicScript online
help.

DispMsg (statement)
Messages can be displayed in TELEform using either the MsgBox statement or the
DispMsg statement. For more information on the MsgBox statement, see the
previous language element.

• MsgBox can give the user more than one push button to respond with.

• DispMsg only has an OK button.

IMPORTANT: Using the MsgBox statement during form evaluation will cause
TELEform Reader to halt until the message box is cleared.

Whenever possible, use DispMsg instead of MsgBox so that TELEform Reader can
evaluate forms without being monitored. During evaluation, DispMsg will write the
message to the TELEform Reader Message Log. In all other cases, it will generate a
message box.

Some script entry points, such as Export_Record, can run after evaluation in
TELEform Reader or after correction in TELEform Verifier. In either case, DispMsg
will execute correctly.
212 User Interface

Syntax

DispMsg [message], [mode value]

• message is a string to be displayed

• mode value is an integer describing the severity of the message (mode is
optional).

Mode Values

The values for mode are:

Example

DispMsg "This is a note explaining an event"
DispMsg "This is a warning that should warrant special attention",3

Mode Icon Value

Unused 1

Note - this is the default setting 2

Warning- displays yellow triangle with
exclamation point.

3

Error - displays "Error:" in front of message. 4

Fatal - displays red circle with white X. 5
Chapter 11: Common Language Elements 213

File Operators

Open (statement)
The Open statement opens a file for a given mode, assigning the open file to the
supplied filenumber.

Syntax

Open filename$ [For mode] [Access accessmode][lock] As[#] filenumber[Len =
reclen]

• The filename$ parameter is a string expression that contains a valid filename.

• The filenumber parameter is a number between 1 and 255.

• The FreeFile function (described in the next section) can be used to determine an
available file number. Use of FreeFile is recommended for TELEform scripts.

File Mode Parameter

The mode parameter determines the type of operations that can be performed on that
file. The following table lists each mode value and its description:

*If the mode parameter is missing, then Random is used.

Mode Value Description

Input Opens an existing file for sequential input (filename$ must exist). The value
of accessmode, if specified, must be Read.

Output Opens an existing file for sequential output, truncating its length to zero, or
creates a new file. The value of accessmode, if specified, must be Write.

Append Opens an existing file for sequential output, positioning the file pointer at the
end of the file, or creates a new file. The end-of-file character, if present, is not
removed by BasicScript.

 The value of accessmode, if specified, must be Read Write

Binary Opens an existing file for binary I/O or creates a new file. Existing binary files
are never truncated in length. The value of accessmode, if specified,
determines how the file can subsequently be accessed.

Random* Opens an existing file for record I/O or creates a new file. Existing random
files are truncated only if accessmode is Write. The reclen parameter
determines the record length for I/O operations.
214 File Operators

File Access Parameter

The Access parameter determines what type of I/O operations can be performed on
the file. The following table lists each accessmode value and its description:

Example

This example opens several files in various configurations.

Sub Main()
Open "test.dat" For Output As #2
Close #2
Open "test.dat" For Input As #1
Close #1
Kill "test.dat"

End Sub

NOTE: For more information on the Open statement, see the BasicScript
online help.

Accessmode Value Description

Read Opens the file for reading only. This value is valid only
for files opened in Binary, Random, or Input mode

Write Opens the file for writing only. This value is valid only
for files opened in Binary, Random, or Output mode

Read Write Opens the file for both reading and writing. This value
is valid only for files opened in Binary, Random, or
Append mode.
Chapter 11: Common Language Elements 215

Close (statement)

The Close statement closes the specified files.

Syntax

Close [# numberoffile1], [# numberoffile2], ...

If no arguments are specified, then all files are closed.

Example

This example opens three files and closes them in various combinations. (See the
Open (statement) section above for more information on using Open in your scripts.)

Sub Main()
Open "test1" For Output As #1
Open "test2" For Output As #2
Open "test3" For Random As #3
MsgBox "The next available file number is :" & FreeFile()
Close #1 ’Closes file 1 only.
Close #2, #3 ‘Closes files 2 and 3.

End Sub
216 File Operators

FreeFile (function)
The FreeFile function refers to the integer containing the next available file number.

Syntax

FreeFile [rangenumber]

This function returns the next available file number within the specified range. If
rangenumber is 0, then a number between 1 and 255 is returned. If rangenumber is 1,
then a number between 256 and 511 is returned. If rangenumber is not specified, then
a number between 1 and 255 is returned.

The function returns 0 if there is no available file number in the specified range.

The number returned is suitable for use in the Open statement.

Example

This example assigns f to the next free file number and displays it in a dialog box.

Sub Main()
f = FreeFile()
Open “test1” For Output As #f
MsgBox “We used file number:” & f
Close #f

End Sub
Chapter 11: Common Language Elements 217

FileExists (function)
The FileExists function returns True if filename$ exists, and returns False otherwise.

Syntax

FileExists(filename$)

• This function determines whether a given filename$ is valid.

• This function will return False if filename$ specifies a subdirectory.

Example

This example checks to see whether there is an autoexec.bat, and then displays a
message box that tells the user whether or not the file exists. This file is in the root
directory of the C drive.

Sub Main()
If FileExists("c:\autoexec.bat") Then

Msgbox "This file exists!"
Else

MsgBox "File does not exist."
End If

End Sub
218 File Operators

Calling Functions

Sub...End Sub (statement)
The Sub...End Sub statement declares a subroutine.

Syntax

[Private | Public] [Static] Sub name[(arglist)]
[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments
are allowed):

[Optional] [ByVal | ByRef] parameter[()] [As type]

Some of the parts of the Sub statement are:

• A subroutine terminates when one of the following statements is encountered:

End Sub
Exit Sub

Sub Part Description

Name Name of the subroutine, which must follow BasicScript
naming conventions:

1.Must start with a letter.

2.May contain letters, digits, and the underscore character (_).
Punctuation and type-declaration characters are not allowed.
The exclamation point (!) can appear within the name as long
as it is not the last character.

3.Must not exceed 80 characters in length.

Parameter Name of the parameter, which must follow the same naming
conventions as those used by variables. This name can include
a type-declaration character, appearing in place of As type.

Type Type of the parameter (i.e., Integer, String, and so on). Arrays
are indicated with parentheses. For example, an array of
integers would be declared as follows:

Sub Test(a() As Integer)

End Sub
Chapter 11: Common Language Elements 219

• Subroutines can be recursive.

Passing Parameters to Subroutines

Parameters are passed to a subroutine either by value or by reference, depending on
the declaration of that parameter in arglist.

• If the parameter is declared using the ByRef keyword, then any modifications to
that passed parameter within the subroutine change the value of that variable in
the caller.

• If the parameter is declared using the ByVal keyword, then the value of that
variable cannot be changed in the called subroutine.

• If neither the ByRef nor the ByVal keyword is specified, then the parameter is
passed by reference.

For more information on the Sub...End Sub statement, refer to the BasicScript online
help.

Function...End Function (statement)

The Function...End Function statement creates a user-defined function.

Syntax

[Private | Public] [Static] Function name[(arglist)] [As ReturnType]
[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are
allowed):

[Optional] [ByVal | ByRef] parameter [()] [As type]
220 Calling Functions

Some of the parts of the Function statement are:

• A function returns to the caller when either of the following statements is
encountered:

End Function
Exit Function

• Functions can be recursive.

Function Part Description

Name Name of the function, which must follow BasicScript
naming conventions:

1.Must start with a letter.

2.May contain letters, digits, and the underscore
character (_). Punctuation and type-declaration
characters are not allowed. The exclamation point (!) can
appear within the name as long as it is not the last
character, in which case it is interpreted as a type-
declaration character.

3.Must not exceed 80 characters in length.Additionally,
the name parameter can end with an optional type-
declaration character specifying the type of data returned
by the function (i.e., any of the following characters: %,
&, !, #, @).

Parameter Name of the parameter, which must follow the same
naming conventions as those used by variables. This
name can include a type-declaration character, appearing
in place of As type

Type Type of the parameter (Integer, String, and so on).
Arrays are indicated with parentheses. For example, an
array of integers would be declared as follows:

Function Test(a() As Integer)

End Function

Returntype Type of data returned by the function. If the return type is
not given, then Variant is assumed. The ReturnType can
only be specified if the function name (i.e., the name
parameter) does not contain an explicit type-declaration
character.
Chapter 11: Common Language Elements 221

Returning Values from Functions

To assign a return value, an expression must be assigned to the name of the function,
as shown below:

Function TimesTwo(a As Integer) As Integer
TimesTwo = a * 2

End Function

If no assignment is encountered before the function exits, then one of the following
values is returned:

The type of the return value is determined by the As ReturnType clause on the
Function statement itself.

Value Data Type Returned

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean
222 Calling Functions

Passing Parameters to Functions

Parameters are passed to a function either by value or by reference, depending on the
declaration of that parameter in arglist.

• If the parameter is declared using the ByRef keyword, then any modifications to
that passed parameter within the function change the value of that variable in the
caller.

• If the parameter is declared using the ByVal keyword, then the value of that
variable cannot be changed in the called function.

• If neither the ByRef or ByVal keywords are specified, then the parameter is
passed by reference.

You can override passing a parameter by reference by enclosing that parameter within
parentheses. For instance, the following example passes the variable j by reference,
regardless of how the third parameter is declared in the arglist of UserFunction:

i = UserFunction(10,12,(j))

For more information on the Function...End Function statement, see the BasicScript
online help.

Declare (statement)
The declare statement creates a prototype for either an external routine or a
BasicScript routine that occurs later in the source module or in another source
module.

Syntax

Declare Sub | Function name[TypeChar] [CDecl | Pascal | System |StdCall] [Lib]_
"LibName$" [Alias "AliasName$"] [ParameterList] As [type]

• Declare statements must appear outside of any Sub or Function declaration.

• Declare statements are only valid during the life of the script in which they
appear.

For more information on the Declare statement, refer to the BasicScript online help.

Where ParameterList is a comma-separated list of the following (up to 30
parameters are allowed):

[Optional] [ByVal | ByRef] [ParameterName]() As
[ParameterType]
Chapter 11: Common Language Elements 223

Some of the parameters of the Declare statement are:

Declare Parameter Description

name Any valid BasicScript name. When you declare functions, you can include a type-
declaration character to indicate the return type. This name is specified as a
normal BasicScript keyword— i.e., it does not appear within quotes.

“LibName$” Must be specified if the routine is external. This parameter specifies the name of
the library or code resource containing the external routine and must appear
within quotes.

The “LibName$” parameter can include an optional path specifying the exact
location of the library or code resource.

“AliasName$” Alias name that must be given to provide the name of the routine if the name
parameter is not the routine’s real name.

Use an alias when the name of an external routine conflicts with the name of a
BasicScript internal routine or when the external routine name contains invalid
characters.

The AliasName$ parameter must appear within quotes.

As type Indicates the return type for functions. For external functions, the valid return
types are: Integer, Long, String, Single, Double, Date, Boolean, and data objects

NOTE: Currency, Variant, fixed-length strings, arrays, user-defined types, and
OLE Automation objects cannot be returned by external functions.

ParameterName Name of the parameter, which must follow BasicScript naming conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character (_).

3. Punctuation and type-declaration characters are not allowed. The exclamation
point (!) can appear within the name as long as it is not the last character, in
which case it is interpreted as a type-declaration character.

4. Must not exceed 80 characters in length.

Additionally, ParameterName can end with an optional type-declaration
character specifying the type of that parameter (i.e., any of the following
characters: %, &, !, #, @).
224 Calling Functions

Example

Declare Function IsLoaded% Lib "Kernel" Alias "GetModuleHandle" (ByVal name$)
Declare Function GetProfileString Lib "Kernel" (ByVal SName$,ByVal KName$,_

ByVal Def$,ByVal Ret$,ByVal Size%) As Integer
Sub Main()

SName$ = "Int" ‘Win.ini section name.
KName$ = "sCountry” ‘Win.ini country setting.
ret$ = String$(255, 0) 'Initialize return string.
If GetProfileString(SName$,KName$,"",ret$,Len(ret$)) Then

MsgBox "Your country setting is: " & ret$
Else

MsgBox "There is no country setting in your win.ini file."
End If
If IsLoaded("Explorer") Then

MsgBox "Explorer is loaded."
Else

MsgBox "Explorer is not loaded."
End If

End Sub

NOTE: For much more information on the Declare statement, refer to the
BasicScript online help.

ParameterType Specifies the type of the parameter (e.g., Integer, String, Variant, and so on). The
As ParameterType clause should only be included if ParameterName does not
contain a type-declaration character.

In addition to the default BasicScript data types, ParameterType can specify any
user-defined structure, data object, or OLE Automation object.

If the data type of the parameter is not known in advance, then the Any keyword
can be used. This forces the BasicScript compiler to relax type checking,
allowing any data type to be passed in place of the given argument.The Any data
type can only be used when passing parameters to external routines.

Declare Parameter Description
Chapter 11: Common Language Elements 225

Call (statement)
The Call statement transfers control to the given subroutine, optionally passing the
specified arguments.

Syntax

Call subroutine_name [arguments]

Using this statement is equivalent to:

subroutine_name [arguments]

Use of the Call statement is optional. The Call statement can only be used to execute
subroutines; functions cannot be executed with this statement.

The subroutine to which control is transferred by the Call statement must be declared
outside of the Main procedure, as shown in the following example.

Example

This example demonstrates the use of the Call statement to pass control to another
function.

This subroutine is declared externally to Main and displays the text passed in the
parameter s$.

Sub Example_Call(s$)
MsgBox "Call: " & s$

End Sub

This subroutine assigns a string variable to display, then calls subroutine
Example_Call, passing parameter S$ to be displayed in a message box within the
subroutine.

Sub Main()
s$ = "DAVE"
Example_Call s$
Call Example_Call("SUSAN")

End Sub
226 Calling Functions

Reserved Words

Keyword
A keyword is any word or symbol recognized by BasicScript as part of the language.

All keywords are reserved by BasicScript. Therefore, you cannot create a variable,
function, constant, or subroutine with the same name as a keyword. However, you are
free to use all keywords as the names of structure members.

All of the following are keywords that you must restrict your use for:

For all other keywords in BasicScript (such as MsgBox, Str, and so on), the following
restrictions apply:

• You can create a subroutine or function with the same name as a keyword.

Access Alias And Any Append As

Base Begin Binary Boolean ByRef ByVal

Call CancelButton Case CDecl CheckBox Chr

ChrB ChrW Close ComboBox Compare Const

CStrings Currency Date Declare Default DefBool

DefCur DefDate DefDbl DefInt DefLng DefObj

DefSng DefStr DefVar Dialog Dim Do

Double DropListBox Else ElseIf End Eqv

Error Exit Explicit For Function Get

Global GoSub Goto GroupBox HelpButton If

Imp Inline Input InputB Integer IsLen

Let Lib Like Line Listbox Lock

Long Loop LSet Mid MidB Mod

Name New Next Not Nothing Object

Off OKButton On Open Option Optional

OptionButton OptionGroup Or Output ParamArray Pascal

Picture PictureButton Preserve Print Private Public

PushButton Put Random Read ReDim REM

Resume Return RSet Seek Select Set

Shared Single Spc Static StdCall Step

Stop String Sub System Tab Text

TextBox Then Time To Type Unlock

Unit Variant WEnd While Width Write

Xor
Chapter 11: Common Language Elements 227

• You can create a variable with the same name as a keyword as long as the
variable is first explicitly declared with a Dim, Private, or Public statement.

Getting Around Reserved Words in BasicScript
The Fields collection provides a solution for calling reserved field names from a
script. The ability of the Fields collection to accept a string allows you to rename
variables so that they do not conflict with reserved BasicScript words.

For example:

Statement Validity

Name.Text =

"Fred Jones"

Illegal, "Name" is reserved.

Fields("Name").Text =

"Fred Jones"

Legal

Dim Full_Name as Field
Set Full_Name = Fields("Name")

Define an alias to "Name"

Full_Name.Text =

"Fred Jones"

Legal
228 Reserved Words

Miscellaneous

Nothing
Any property or Collection element that identifies another object may not always
refer to a valid object. In these cases, the resulting object is Nothing. The reserved
word Nothing can be used to determine whether an object variable is uninitialized.

Uninitialized object variables reference no object. In cases where it is possible for an
object variable to be uninitialized, the user is expected to write scripts to take this into
account by comparing an object with Nothing.

Examples

If Fields("foo") is Nothing Then
DispMsg "No field named ’foo’!"

End If

You cannot use Nothing to check for an empty field value:

Incorrect

If Fields("fieldname").Name is Nothing Then

Correct

If Fields("fieldname") is Nothing Then ’no such field exists.

Incorrect

If fieldname.text is Nothing Then

Correct

If fieldname.text = "" Then ’ the field has an empty value.
Chapter 11: Common Language Elements 229

Let (statement)
The Let statement assigns the result of an expression to a variable.

Syntax

[Let] variable = expression

The use of the word Let is supported for compatibility with other implementations of
BasicScript. Normally, this word is dropped.

When assigning expressions to variables, internal type conversions are performed
automatically between any two numeric quantities. Thus, you can freely assign
numeric quantities without regard to type conversions. However, it is possible for an
overflow error to occur when converting from larger to smaller types. This happens
when the larger type contains a numeric quantity that cannot be represented by the
smaller type.

For example, the following code will produce a runtime error:

Dim amount As Long
Dim quantity As Integer
amount = 400123 ’Assign a value out of range for int.
quantity = amount ’Attempt to assign to Integer.

Example

Sub Main()
Let a$ = "This is a string."
Let b% = 100
Let c# = 1213.3443

End Sub
230 Miscellaneous

CHAPTER 12

BasicScript Language Reference
About this Chapter
This chapter contains a summary of the BasicScript Language.

NOTE: The functions listed here may or may not be available in Windows 95, 98
and Windows NT (and therefore TELEform). See the next section for more
information

Notes on this Reference
The following table summarizes the functions, statements, methods and other items
that belong to the BasicScript language. Items are grouped by the tasks you want to
perform. Full descriptions of each item can be viewed and printed from the online
help system.

As previously noted, function availability will vary from one operating system to
another. This availability is indicated at the bottom of each function’s description in
the Online Help. Only functions marked ‘All Platforms’ or ‘Win32’ (referring to
Windows 95, 98 and Windows NT) are available in TELEform. Functions marked
‘Windows’ (referring to Windows 3.x) are not available in TELEform.

NOTE: Full descriptions of each language element in this list can be viewed and
printed from the BasicScript Online Help.
Chapter 12: BasicScript Language Reference 231

Language Element Categories
The following table contains a description of each language element category in
“Summary of the BasicScript Language” on page 235:

Language Element Category Description Refer to

Arrays Contains elements that describe an array. An
array is a collection (set) of objects.

page 235

BasicScript Information Contains elements that relate to the CPU, the
platform, the operating system and
BasicScript

page 236

Clipboard Contains elements that control and describe
the contents of the Clipboard.

page 237

Comments Contains elements that allow for comments
(which are neither compiled nor executed)

page 237

Controlling Other Applications Contains elements that describe and control
external applications

page 238

Controlling Menus in Other
Applications

Contains elements that describe and control
the menu commands in external applications

page 239

Controlling Windows in Other
Applications

Contains elements that describe and control
the windows in external applications

page 240

Conversion Contains elements that convert one type of
object into another type of object, and
describe whether or not an object can be
converted

page 241

Date/Time Contains elements that control and describe
the system date and time, and manipulate
objects that are related to the date and time

page 241

Desktop Contains elements that manipulate the icons,
windows and background of the desktop

page 243

Dialog Manipulation Contains elements that describe and
manipulate the controls and values of a dialog
box

page 244

Dynamic Data Exchange (DDE) Contains elements that control the DDE
conversation with other applications

page 245
232 Language Element Categories

Event Queue Contains elements that describe and
manipulate the system events

page 246

Error Handling Contains elements that describe and
manipulate the properties and attributes of the
Error object

page 247

File I/O Contains elements that describe and
manipulate the operations of external files

page 248

File System Contains elements that describe and
manipulate the organization and attributes of
the files in the File system

page 249

Financial Contains elements that perform financial
calculations

page 251

Flow Control Contains elements that control the flow
(sequence of events) of statements and
functions

page 252

INI Files and Registry Contains elements that describe and control
the INI files and registry of your system

page 253

Logical/Binary Operators Contains elements that perform logical or
binary operations on two expressions

page 253

Math Contains elements that perform mathematical
operations on a number or an angle

page 254

Miscellaneous Contains elements that do not belong to any
of the other categories in this table

page 255

Network Contains elements that describe and control
the environment and configuration of your
network

page 256

Numeric Operators Contains elements that perform numeric
operations on two expressions

page 256

Objects Contains elements that describe and create
OLE automation objects and compare object
variables

page 257

Language Element Category Description Refer to
Chapter 12: BasicScript Language Reference 233

Open Database Connectivity
(ODBC)

Contains elements that describe and
manipulate the ODBC functionality in
general and a single database in particular

page 257

Operating Environment Contains elements that describe the operating
environment and allows the starting and
exiting of this operating environment.

page 258

Parsing Contains elements that describe and return
the attributes of a string

page 258

Predefined Dialogs Contains elements that describe and
manipulate the functionality of predefined
dialog and message boxes

page 260

Printer Contains elements that describe and control
the current printer orientation

page 261

Printing Contains elements that allow for the printing
of certain objects and data

page 261

Procedures Contains elements that call external routines,
predefined subroutines and predefined
functions

page 261

Screen Resolution Contains elements that describe the screen
and dialog resolution

page 262

Strings Contains elements that describe and
manipulate the attributes of one or more
strings

page 262

User Dialog Boxes Contains elements that set up and describe
user-defined dialog boxes (see Chapter 9 for
more information on creating these dialog
boxes in BasicScript)

page 264

Variables and Constants Contains elements that define constants,
declare variables and set data types

page 266

Variants Contains elements that describe the attributes
of a variant

page 267

Viewport Contains elements that control the Viewport page 267

Language Element Category Description Refer to
234 Language Element Categories

Summary of the BasicScript Language

Arrays

Array Language Element Tasks

ArrayDims
(function)

Return the number of dimensions of an
array

ArraySort
(statement)

Sort an array

Erase
(statement)

Erase the elements in one or more arrays

LBound
(function)

Return the lower bound of a given array
dimension

Option Base
(statement)

Change the default lower bound for array
declarations

ReDim
(statement)

Re-establish the dimensions of an array

UBound
(function)

Return the upper bound of a dimension
of an array
Chapter 12: BasicScript Language Reference 235

BasicScript Information

BasicScript Information
Language Element

Task

Basic.Architecture$ (property) Return the CPU architecture of the current
system

Basic.Capability (method) Returns the capabilities of the platform

Basic.CodePage (property) Returns the code page of the current locale

Basic.EoIn$ (property) Returns the end-of-line character for the
platform

Basic.FreeMemory (property) Returns the available memory

Basic.HomeDir$ (property) Return the directory where BasicScript is
located.

Basic.Locale (property) Return the locale of the current system

Basic.OperatingSystem$ (property) Return the name of the current operating system

Basic.OperatingSystem Vendor$
 (property)

Return the name of the vendor of the current
operating system

Basic.OperatingSystem Version$
(property)

Return the version of the current operating
system

Basic.OS (property) Return the platform ID

Basic.PathSeparator (property) Return the path separator character for the
platform

Basic.Processor$ (property) Return the name of the CPU of the current
system

Basic.ProcessorCount (property) Return the number of CPU’s installed on the
current system

Basic.Version$ (property) Return the version of BasicScript
236 Summary of the BasicScript Language

Clipboard

Comments

Clipboard Language
Element

Task

Clipboard$
 (function)

Return the content of the clipboard as a string

Clipboard$
 (statement)

Set the content of the clipboard

Clipboard.Clear
(method)

Clear the clipboard

Clipboard.GetFormat
(method)

Get the type of data stored in the clipboard

Clipboard.GetText
(method)

Get the text from the clipboard

Clipboard.SetText
(method)

Convert the content of the clipboard to text

Comments Language
Element

Task

REM (statement) Comment to end-of-line

’ (keyword) Add a comment
Chapter 12: BasicScript Language Reference 237

Controlling other Applications

Controlling other Applications
Language Element

Task

AppActivate (statement) Activate the application

AppClose (statement) Close an application

AppFileName$ (function) Return the file name corresponding to an application

AppFind, AppFind$ (functions) Return the full name of an application

AppGetActive$ (function) Return the name of the active application

AppGetPosition$ (function) Get the position and size of an application

AppGetState (function) Get the window state of an application

AppHide (statement) Hide an application

AppList (statement) Fill an array with a list of running applications

AppMaximize (statement) Maximize an application

AppMinimize (statement) Minimize an application

AppMove (statement) Move an application

AppRestore (statement) Restore an application

AppSetState (statement) Set the state of an application’s window

AppShow (statement) Show an application

AppSize (statement) Change the size of an application

AppType (function) Return the type of an application

DoKeys (statement) Simulate keystrokes in another application

SendKeys (statement) Send keystrokes to another application
238 Summary of the BasicScript Language

Controlling Menus in other Applications

Shell (function) Execute another application

Controlling Menus...
Language Element

Task

Menu (statement) Execute a menu command in another application

MenuItemChecked
 (function)

Determine if a menu item is checked in another
application

MenuItemEnabled
(function)

Determine if a menu item is enabled in another
application

MenuItemExists
(function)

Determine if a menu item exists in another
application

Controlling other Applications
Language Element

Task
Chapter 12: BasicScript Language Reference 239

Controlling Windows in other Applications

Controlling Windows...
Language Element

Task

WinActivate (statement) Activate a window

WinClose (statement) Close a window

WinFind (function) Given a window’s name, find it

WinList (function) Fill an array with window objects, one for each
top-level window

WinMaximize (statement)
WinMinimize (statement)
WinRestore (statement)
WinSize (statement)

Change the size of a window

WinMove (statement) Move a window

HLine (statement) Scroll the active window left/right by a specified
number of lines

HPage (statement) Scroll the active window left/right by a specified
number of pages

HScroll (statement) Scroll the active window left/right to a specified
absolute position

VLine (statement) Scroll the active window up/down by a specified
number of lines

VPage (statement) Scroll the active window up/down by a specified
number of pages

VScroll (statement) Scroll the active window up/down to a specified
absolute position
240 Summary of the BasicScript Language

Conversion

Conversion Language
Element

Task

Asc, AscB, AscW
(functions)

Return the value of a character

CBool, CCur, CDate, CDbl,
CInt, CLng, CSng, CStr,
CVar, CVDate, Fix, Int
(functions)

Convert one numeric value to another

Chr, Chr$, ChrB, ChrB$,
ChrW, ChrW$
(functions)

Convert a character value to a string

CVErr (function) Convert a character to an error

Hex, Hex$
(functions)

Convert a number to a hexadecimal string

IsDate (function) Determine if an expression can be converted to a
date

IsError (function) Determine if a variant contains a user-defined
error value

IsNumeric (function) Determine if an expression can be converted to a
number

Oct. Oct$ (functions) Convert a number to an octal string

Str, Str$ (functions) Convert a number to a string

Val (function) Convert a string to a number
Chapter 12: BasicScript Language Reference 241

Date/Time

Date/Time Language
Element

Task

Date, Date$
(functions)

Return the current date

Date, Date$
(statements)

Change the system date

DateAdd (function) Add a number of date intervals to a date

DateDiff (function) Subtract a number of date intervals from a date

DatePart (function) Return a portion of the date

DateSerial (function) Assemble a date from date parts

DateValue (function) Convert a string to a date

Day, Hour, Minute, Month,
Second, Weekday, Year
(functions)

Return a component of the date value

Now (function) Return the current date and time

Time, Time$
(functions)

Return the current system time

TIme, Time$
(statements)

Set the system time

Timer (function) Return the number of elapsed seconds since
midnight

TimeSerial (function) Assemble a date/time value from time
components

TimeValue (function) Convert a string to a date/time value
242 Summary of the BasicScript Language

Desktop

Desktop Language
Element

Task

Desktop.ArrangeIcons
(method)

Arrange the icons on the desktop

Desktop.Cascade (method) Cascades all non-minimized applications

Desktop.SetColors
(method)

Set the desktop colors

Desktop.SetWallpaper
(method)

Set the desktop wallpaper

Desktop.Snapshot (method) Capture an image, placing it in the clipboard

Desktop.Tile (method) Tiles all non-minimized applications
Chapter 12: BasicScript Language Reference 243

Dialog Manipulation

Dialog Manipulation
Language Element

Task

ActivateControl (statement) Activate a control

ButtonEnabled,
CheckBoxEnabled,
ComboBoxEnabled,
EditEnabled,
ListBoxEnabled,
OptionEnabled
(functions)

Determine if a control in another application’s
dialog box is enabled

ButtonExists,
CheckBoxExists,
ComboBoxExists,
EditExists, ListBoxExists,
OptionExists
(functions

Determine if a control in another application’s
dialog box exists

GetCheckBox,
GetComboBoxItem$,
GetComboBoxItemCount,
GetEditText$,
GetListBoxItem$,
GetListBoxItemCount,
GetOption
(functions)

Retrieve a value from a control in another
application’s dialog box

SelectButton,
SelectComboBoxItem,
SelectListBoxItem
(statements)

Select a control in another application’s dialog
box

SetCheckBox, SetEditText,
SetOption
(statement)

Set the state of a control in another application’s
dialog box
244 Summary of the BasicScript Language

Dynamic Data Exchange (DDE)

DDE Language Element Task

DDEExecute (statement) Execute a command in another application

DDEInitate (function) Initiate a DDE conversation with another
application

DDEPoke (statement) Set a value in another application

DDERequest,

DDERequest$

(functions)

Return a value from another application

DDESend (statement) Establish a DDE conversation, then set a
value in another application

DDETerminate

DDETerminateAll

(statements)

Terminate one or more conversations

DDETimeOut (statement) Set the timeout used for non-responding
applications
Chapter 12: BasicScript Language Reference 245

Event Queue (all statements)

Event Queue
Language Element

Task

QueEmpty Empty a queue

QueFlush Play back all events stored in a queue

QueKeyDn Add key down event to the queue

QueKeys Add key down/up events to the queue

QueKeyUp Add key up event to the queue

QueMouseClick Add mouse click to the queue

QueMouseDblClk Add mouse double-click to the queue

QueMouseDblDwn Add mouse down--up--down event to the queue

QueMouseDn Add mouse down event to the queue

QueMouseMove Add mouse move event to the queue

QueMouseMoveBatch Add many mouse move events to the queue

QueMouseUp Add mouse up event to the queue

QueSetRelativeWindow Make all mouse positions in a queue relative to a
window
246 Summary of the BasicScript Language

Error Handling

Error Handling
Language Element

Task

Err.Clear (method) Clear the properties of the Error object

Err.Description (property) Set or retrieve the description of the Error object

Err.HelpContext (property) Set or retrieve the help context ID of the Error
object

Err.HelpFile (property) Set or retrieve the help file associated with the
Error object

Err.LastDLLError
(property)

Return the last error generated by a call to a DLL

Err.Number (property) Return or set the number of the Error object

Err.Raise (method) Generate a runtime error

Err.Source (property) Set or retrieve the source of a runtime error

Erl (function) Set the value of the error

Error (statement) Simulate a trappable runtime error

Error, Error$
(functions)

Return the text of a given error

On Error (statement) Trap an error

Resume (statement) Continue execution after an error trap
Chapter 12: BasicScript Language Reference 247

File I/O

File I/O Language
Element

Task

Close (statement) Close one or more files

Eof (function) Determine if the end-of-file has been reached

FreeFile (function) Return to the next available file number

Get (statement) Read data from a random or binary file

Input# (statement) Read data from a sequential file into variables

Input, Input$, InputB,
InputB$ (functions)

Read a specified number of bytes from a file

Line Input # (statement) Read a line of text from a sequential file

Loc (function) Return the record position of the file pointer within a file

Lock, Unlock
(statements)

Lock or unlock a section of a file

Lof (function) Return the number of bytes in an open file

Open (statement) Open a file for reading or writing

Print # (statement) Print data to a file

Put (statement) Write data to a binary or random file

Reset (statement) Close all open files

Seek (statement/
function)

Set/Return the byte position of the file pointer within a
file

Width# (statement) Specify the line width for sequential files

Write# (statement) Write data to a sequential file
248 Summary of the BasicScript Language

File System (see also predefined dialogs)

File System
Language Element

Task

ChDir (statement) Change the current directory

ChDrive (statement) Change the current drive

CurDir, CurDir$
(functions)

Return the current directory

Dir, Dir$
(functions)

Return files in a directory

DiskDrives
(statement)

Filll an array with valid disk drive letters

DiskFree (function) Return the free space on a given hard drive

FileAttr (function) Return the mode in which a file is open

FileCopy (statement) Copy a file

FileDateTime
(function)

Return the date and time when a file was last
modified

FileDirs (statement) Fill an array with a subdirectory list

FileExists (function) Determine if a file exists

FileLen (function) Return the length of a file in bytes

FileList (statement) Fill an array with a list of files

FileParse$ (function) Return a portion of a file name

FileType (function) Return the file type

GetAttr (function) Return the attributes of a file

Kill (statement) Delete files from hard disk drive
Chapter 12: BasicScript Language Reference 249

MacID (function) Return a value representing a collection of
same-type files on the Macintosh

MkDir (statement) Create a subdirectory

Name (statement) Rename a file

RmDir (statement) Remove a subdirectory

SetAttr (statement) Change the attributes of a file

File System
Language Element

Task
250 Summary of the BasicScript Language

Financial (all functions)

Financial Language
Element

Task

DDB Return depreciation of an asset using double-
declining balance method

FV Return the future value of an annuity

IPmt Return the interest payment for a given period of
an annuity

IRR Return the internal rate of return for a series of
payments and receipts

MIRR Return the modified internal rate of return

NPer Return the number of periods of an annuity

NPV Return the net present value of an annuity

Pmt Return the payment of an annuity

PPmt Return the principal payment for a given period
of an annuity

PV Return the present value of an annuity

Rate Return the interest rate for each period of an
annuity

SLN Return the straight-line depreciation of an asset

SYD Return the Sum of Years’ Digits depreciation of
an asset
Chapter 12: BasicScript Language Reference 251

Flow Control

Flow Control Language
Element

Task

Call (statement) Call a subroutine

Choose (function) Return a value at a given index

Do...Loop (statement) Execute a group of statements repeatedly

DoEvents (statement/func.) Yield control to other applications

End (statement) Stop execution of a script

Exit Do/For (statement) Exit a Do/For loop

For...Next (statement) Execute a block of statements repeatedly

GoSub (statement) Execute at a specific label, allowing control to
return later

Goto (statement) Execute at a specific label

If...Then...Else (statement) Conditionally execute one or more statements

IIf (function) Return one of two values depending on a
condition

Main (statement) Define a subroutine where execution begins

Return (statement) Continue execution after the most recent GoSub

Select...Case (statement) Execute one of a series of statements

Sleep (statement) Pause for a specified number of milliseconds

Stop (statement) Suspend execution, returning to a debugger (if
present)

Switch (statement) Return one of a series of expressions depending
on a condition
252 Summary of the BasicScript Language

INI Files and Registry

Logical/binary operators (all operators)

INI Files and Registry
Language Element

Task

DeleteSetting (statement) Delete a setting from the system registry or an
INI file

GetAllSettings (statement) Return the values of all keys or settings within
the system registry

GetSetting (function) Return the value of a key or setting within the
system registry

ReadIni$ (function) Read a string from an INI file

ReadIniSection (statement) Read all of the item names from a given section
of an INI file

SaveSetting (statement) Update the value of a key or setting within the
system registry

WriteIni (statement) Write a new value to an INI file

Operator Language
Element

Task

And, Eqv , Imp, Not, Or, Xor Perform logical or binary operations on two
expressions
Chapter 12: BasicScript Language Reference 253

Math (all functions)

Math Language Element Task

Abs Return the absolute value of a number

Atn Return the arc tangent of a number

Cos Return the cosine of an angle

Exp Return e raised to a given power

Fix Return the integer part of a number

Int Return the integer portion of a number

Log Return the natural logarithm of a number

Random Return a random number between two values

Randomize Initialize the random number generator

Rnd Generate a random number between 0 and 1

Sgn Return the sign of a number

Sin Return the sine of an angle

Sqr Return the square root of a number

Tan Return the tangent of an angle
254 Summary of the BasicScript Language

Miscellaneous

Misc. Language Element Task

#Const (directive) Define a preprocessor constant for the
BasicScript compiler

#If... Then... #Else (directive) Direct the BasicScript compiler to include or
exclude sections of code based on conditions

() (keyword) Force parts of an expression to be evaluated
before others

_ (keyword) Add a line continuation character

Beep (statement) Make a sound

IMEStatus (function) Return the status of the Input Method Editor

Inline (statement) Allows execution or interpretation of a block of
text

MacScript (statement) Execute an AppleScript script

Mci (function) Execute an MCI command

Option Default (statement) Set the default data type of variables and return
values

Option Explicit (statement) Prevent implicit declarations of variables and
return values

PrintFile (function) Print a file using the application to which the file
belongs
Chapter 12: BasicScript Language Reference 255

Network (all methods)

Numeric Operators (all operators)

Network Language
Element

Task

Net.AddCon$ Redirect a local device to a shared device on a
network

Net.Browse$ Display a dialog box requesting a network
directory or printer resource

Net.CancelCon Cancel a network connection

Net.Dialog Display a dialog box allowing configuration of
the network

Net.GetCaps Return information about the capabilities of the
network

Net.GetCon$ Return the name of the network resource
associated with a local device

Net.User$ Return the name of the user on the network

Numeric Operators
Language Element

Task

* Multiply

+ Add

- Subtract

/ Divide

\ Integer divide

^ Raise to a power

Mod Determine the remainder
256 Summary of the BasicScript Language

Objects

Open Database Connectivity (ODBC) (all functions)

Objects Language
Element

Task

CreateObject (function) Create an OLE automation object

GetObject (function) Return an OLE automation object from a file, or
return a previously created OLE automation
object

Is (operator) Compare two object variables

Dim Declare a local variable

Nothing Value indicating no valid object

ODBC Language Element Task

SQLBind Specify where to place results with SQLRetrieve

SQLClose Close a connection to a database

SQLError Return error information when an SQL function fails

SQLExecQuery Execute a query against a database and return the
number of rows or columns affected by the query

SQLGetSchema Return information about the structure of a database

SQLOpen Establish a connection with a database

SQLRequest Run a query against a database, returning the results as
an array

SQLRetrieve Retrieve all or part of a query

SQLRetrieveToFile Place the results of a query in a file
Chapter 12: BasicScript Language Reference 257

Operating Environment

Parsing

Operating Environment Language Element Task

Command, Command$ (functions) Return the command line

HWND.Value (property) Return the operating system value of a window

Environ, Environ$ (functions) Return the value of an environment variable

System.FreeMemory (property) Return the free memory in the operating
environment

System.FreeResources (property) Return the free resources in the operating
environment

System.TotalMemory (property) Return the total available memory in the
operating environment

System.WindowsDirectory$ (property) Return the directory containing Windows

System.WindowsVersion$ (property) Return the Windows version

System.Exit (method) Exit the operating environment

System.MouseTrails (method) Toggle mouse trails on and off

System.Restart (method) Restart the operating environment

Parsing Language Element Task

Item$ (function) Return a range of items from a string

ItemCount (function) Return the number of items in a string

Line$ (function) Retrieve a line from a string

LineCount (function) Return the number of lines in a string
258 Summary of the BasicScript Language

.Word$ (function) Return a sequence of words from a string

WordCount (function) Return the number of words in a string

Parsing Language Element Task
Chapter 12: BasicScript Language Reference 259

Predefined Dialogs

Predefined Dialogs Language
Element

Task

AnswerBox (function) Display a dialog box asking a question

AskBox, AskBox$$
(functions)

Display a dialog box allowing the user to type a response

AskPassword, AskPassword$ (functions) Display a dialog box where the user enters a password

InputBox, InputBox$ (functions) Display a dialog box allowing the user to type a response

MsgBox (function) Display a dialog box containing a message and some
buttons

Msgbox (statement) Display a dialog box containing a message and some
buttons

Msg.Close (method) Close a modeless message box

Msg.Open (method) Open a modeless message box

Msg.SetText (property) Set the message contained within a modeless message
box

Msg.SetThermometer (property) Set the percentage of the thermometer in a modeless
message box

OpenFilename$ (function) Display a dialog box requesting a file to open

PopupMenu (function) Display a popup menu containing items from an array

SaveFilename$ (function) Display a dialog box requesting the name of a new file

SelectBox (function) Display a dialog box allowing the selection of an item
from an array
260 Summary of the BasicScript Language

Printer

Printing

Procedures

Printer Language
Element

Task

PrinterGetOrientation
(function)

Retrieve the current printer orientation

PrinterSetOrientation
(statement)

Set the printer orientation

Printing Language
Element

Task

Print (statement) Print data to the screen

Spc (function) Print a number of spaces within a Print statement

Tab (function) Used with Print to print spaces up to a column
position

Procedures Language
Element

Task

Declare (statement) Define an external routine or a forward reference

Exit Function (statement) Exit a function

Exit Sub (statement) Exit a subroutine

Function...End (statement) Create a user-defined function

Sub...End (statement) Create a user-defined subroutine
Chapter 12: BasicScript Language Reference 261

Screen Resolution

Strings (see also Parsing, Conversion)

Screen Resolution
Language Element

Task

Screen.DlgBaseUnitsX
(property)

Return the x dialog base units

Screen.DlgBaseUnitsY
(property)

Return the y dialog base units

Screen.Height (property) Return the height of the display, in pixels

Screen.TwipsPerPixelX
(property)

Return the number of twips per pixel in the x
direction

Screen.TwiipsPerPixelY
(property)

Return the number of twips per pixel in the y
direction

Screen.Width (property) Return the width of the display, in pixels

Strings Language Element Task

& (operator) Join two strings together

Format, Format$
(functions)

Return a string formatted to a given specification

InStr, InStrB
(functions)

Return the position of one string with another

LCase, LCase$
(functions)

Convert a string to lower case

Left, Left$, LeftB, LeftB$
(functions)

Return the left portion of a string

Len, LenB
(functions)

Return the length of a string or the size of a data
item

Like (function) Compare a string against a pattern
262 Summary of the BasicScript Language

LSet (function) Left align a string or user-defined type within
another

LTrim, LTrim$
(functions)

Remove leading spaces from a string

Mid, Mid$, MidB, MidB$
(functions)

Return a substring from a string

Mid, Mid$, MidB, MidB$
(statements)

Replace one part of a string with another

Option Compare (statement) Change the default comparison between text and
binary

Option CStrings (statement) Allow interpretation of C-style escape sequences
in strings

Right, Right$, RightB,
RightB$
(functions)

Return the right portion of a string

RSet (statement) Right align a string within another

RTrim, RTrim$ (functions) Remove trailing spaces from a string

Space, Space$ (functions) Return a string of spaces

StrComp (function) Compare two strings

StrConv (function) Convert a string based on a conversion
parameter

String, String$
(functions)

Return a string consisting of a repeated character

Trim, Trim$
(functions)

Trim leading and trailing spaces from a string

UCase, UCase$
(functions)

Return the upper case of a string

Strings Language Element Task
Chapter 12: BasicScript Language Reference 263

User Dialog Boxes

User Dialog Boxes
Language Element

Task

Begin Dialog (statement) Begin definition of a dialog box

CancelButton, CheckBox,
ComboBox, DropListBox,
GroupBox, ListBox,
OKButton, OptionButton,
OptionGroup, Picture,
PictureButton, PushButton,
Text, TextBox
(statements)

Add a control to a dialog box

Dialog (function) Initiate a dialog box, and return the button that
was selected by the user

Dialog (statement) Initiate a dialog box

DlgCaption (function) Return the caption of a dynamic dialog box

DlgCaption (statement) Change the caption of a dynamic dialog box

DlgControlID (function) Return the ID of a control in a dynamic dialog
box

DlgEnable (function) Determine if a control is enabled in a dynamic
dialog box

DlgEnable (statement) Enables or disables a control in a dynamic dialog
box

DlgFocus (function) Return the control with the focus in a dynamic
dialog box

DlgFocus (statement) Set the focus to a control in a dynamic dialog
box

DlgListBoxArray
(statement)

Set the content of a list box or combo box in a
dynamic dialog box

DlgSetPicture (statement) Set the picture of a control in a dynamic dialog
box
264 Summary of the BasicScript Language

DlgText (statement) Set the content of a list box or combo box in a
dynamic dialog box

DlgText$ (function) Return the content of a control in a dynamic
dialog box

DlgValue (function) Return the value of a control in a dynamic dialog
box

DlgValue (statement) Set the value of a control in a dynamic dialog
box

DlgVisible (function) Determine if a control is visible in a dynamic
dialog box

DlgVisible (statement) Set the visibility of a control in a dynamic dialog
box

User Dialog Boxes
Language Element

Task
Chapter 12: BasicScript Language Reference 265

Variables and Constants (all statements)

Variables/Constants
Language Element

Task

= Assignment

Const Define a constant

DefBool, DefCur, DefDate,
DefDbl, DefInt, DefLng,
DefObj, DefSng, DefStr,
DefVar

Set the default data type

Dim Declare a local variable

Global Declare variables for sharing between scripts

Let Assign a value to a variable

Private Declare variables accessible to all routines in a
script

Public Declare variables accessible to all routines in all
scripts

Set Assign an object variable

Type Declare a user-defined data type
266 Summary of the BasicScript Language

Variants (all functions)

Viewport (all methods)

Variant Language
Element

Task

IsEmpty Determine if a variant has been initialized

IsError Determine if a variant contains a user-defined
error

IsMissing Determine if an optional parameter was
specified

IsNull Determine if a variant contains valid data

IsObject Determine if an expression contains an object

VarType Return the type of data stored in a variant

Viewport Language
Element

Task

Viewport.Clear Clear the contents of the viewport

Viewport.Close Close the viewport

Viewport.Open Open a viewport
Chapter 12: BasicScript Language Reference 267

268 Summary of the BasicScript Language

A

about BasicScript 1
accelerator keys

assigning 89
for Custom scripts 89
for dialog box controls 167

Add Watch button 137
adding a Watch Variable 145
adding comments to a script 130
adding elements to a dialog box 161
adding items to a list box 180
adding TELEform references

field reference 123
object class reference 123
property reference 124

And (operator) 203
Annual Maintenance and Support Plan 17
Append Mode Supported 61
Append property 64
AppleScript script

Language Element 255
Arrays

Array Language Element 235
assigning accelerator keys to... 167
Auto Export Setup 67
Automatic Field Lookups 114

B

BasicScript
about... 1
capabilities 3
introducing... 1
overview of class properties 8
overview of data types 8
overview of entry points 5
overview of object classes 7
summary of script types 4
tour of... 10

BasicScript Debugger 141
BasicScript Information Language Element 236

Batch
Object Class 7

Batch class objects 77
Batch class properties 107
Batch.Flags property values 81
Batch.State property values 80
BatchCommit_End 76
BatchCommit_Start 76
BatchDir 103
BatchNo 103
BatchPgCnt 103
BatchPgDta 103
BatchScan_End 76
BatchSetup 75
BatchTrack 103
Bottom (member of the TopChoice class) 109
Bottom property (member of the Field class) 38
Bottom* 109
breaking statements across lines 131
Breakpoints

removing 145
breakpoints 144
buttons

Dialog Editor window 150
Edit Script window toolbar 119

C

Call (statement) 226
Calling Functions

defined 193
Calls button 137
capabilities (export) 60
Capabilities property 63
capturing a dialog from an application 173
check box 155
checking your dialog box functions 175
Choices

Object Class 7
Choices (Field class) property 37
Choices (TopChoice class) property 109
Index 269

Choices class
single choice vs. mulit-choice fields 44

Choices class properties 43
class 66
Class properties 29, 30

Batch 85
Field 32, 66, 110
Form 30, 66

ClassificationReview
Batch Class Property 107

Clipboard
uses in editing script 119
Using the Clipboard 126

combining Mask and Text properties (Field class)
102
combo box 155
Comment (batch) property 79
comments (adding to a script) 130
Comments syntax 196
CommitCount (batch) property 80
common language elements 191
commonly used language elements

calling functions 219
categories of... 191
Comments 196
Declarations 195
declarations 195
File Operators 214
flow control 199
logical operators 203
miscellaneous 229
Reserved Words 227
reserved words 227
string operators 207
user interface 209
Variant 194

compiling scripts 133
Confidence property 109
Connect Agent Evaluations 50
Const (statement) 195
constant names 39
Controlling

Windows in other Applications 240
controls

adding pictures to... 168

adding to a dialog box 161
attributes of 165
creating 157
deleting 171
duplicating 171
moving and sizing 167
positioning with grid 159
selecting 161

Conversion Language Element 241
Copy button 119
copying script text 127
Count property 33, 37, 43, 64
CPU architecture 236
CSID 103
CurRow property 37
Custom (Menu) scripts 88

assigning accelerator keys to... 89
changing the menu name of... 88
entry points of... 97
executing... 98
opening... 94
overview of... 88

custom dialog boxes
displaying 182

using Dialog statement 181
using Dialog() function 181

retrieving values from 182, 183
Custom script entry point 97
Custom Status messages 101
Cut button 119
cutting and copying script text 126

D

data types (introducing) 8
DataReview

Batch Class Property 107
DataReview Entry Points 46
DataReviewMethod

Batch Class Property 107
DataReviewNumber

Batch Class Property 107
Date (batch) property 79
Date/Time Language Element 242
DDE Language Element 245
270 Index

Debugger 141
Form_Check and export entry points 147
identifying procedure calls 143
instruction pointer 141
keyboard shortcuts 137
overview of 136
overview of... 141
setting Breakpoints 144
skipping execution of one or more lines 143
starting... 138
toolbar 137
tracing script execution with... 141
using the Watch Variable feature 145

Debugging
partway through a script 144
selected portions 145

debugging a long script 144
debugging export entry points 147
debugging Form_Check entry points 147
debugging your script 136
Declarations

defined 192
Declare (statement) 223
default data type 194
default function return type 194
default variable data type 194
Define a preprocessor constant 255
deleting dialog box elements 171
deleting script text 126
Designer_Exit 75
Designer_Init 75
Desktop Language Element 243
detail group rows (Row class) 110
diagram of Export script entry points 59
diagram of Form script entry points 24
diagram of System script entry points 74
dialog boxes

adding a title to... 159
adding elements to 161
adding to your script 177
attributes of 163
changing the font of 164
creating 154
dynamic... 185
editing dialog box script 174

getting information into 179
getting into a script 178
incorporating... into your script 177
planning 157
saving 158
testing 174
using an existing... 172

dialog controls
deleting all controls 171
setting the attributes of... 165

Dialog Editor
adding a dialog box to your script 177
adding controls to a dialog box 161
changing the font of your dialog box 164
creating controls efficiently 157
dialog box grid 159
Information dialog box of... 162
keyboard shortcuts 153
picture libraries 169
selecting your dialog box 162
selecting your elements 161
setting attributes in... 162
setting dialog box attributes 163
status bar 152
summary of control and design elements 154
toolbar 150
undoing editing operations 171, 176
window 150

Dialog Editor window 150
Dialog Manipulation Language Element 244
dialog record 178
Dim (statement) 197
Directory (batch) property 79
displaying custom dialog boxes 182

using Dialog statement 181
using Dialog() function 181

displaying messages 212
DispMsg 213
Documentation 15
Double Key 47
drop-down list box 155
Duplicating and Deleting Controls 171
duplicating dialog box elements 171
dynamic dialog boxes

responding to user actions 186
using dialog function 185
Index 271

using in script 185

E

Edit Script window
adding a dialog box to your script 132
adding TELEform references in... 122
compiling your script 133
deleting text 126
exiting... 134
keyboard shortcuts of... 121
navigating with... 120
pressing ENTER in... 122
pressing TAB in 122
searching for and replacing text 129
searching for text 128
selecting text 124
status bar 119
toolbar 119
undoing edits 126

editing existing dialog box script 174
editing your script 119
End button 137
end-of-line characters 212
entry points

Field-specific in Form scripts 27
in Custom scripts 97
in Export scripts 59
in Library scripts 97
in Periodic scripts 97
in System scripts 74

Error Handling Language Element 247
Event Queue Language Element 246
Export

Object Class 7
Export class objects 62
Export Format Name 61
Export Option 61
export routines

for use in TELEform virtual fields 41
Export scripts

classes and properties of... 62
entry points of... 59
executing... 67
Export class 62
exporting detail groups with... 66
opening... 58

overview of... 57
samples of... 68
saving for the first time 60

Export_End 59
Export_Record 59
Export_Setup 59
Export_Start 59
exporting detail groups 66
Ext (batch) property 79

F

Field
Object Class 7

Field class properties 33
Field class property

LoseFocus 106
FIELD LIMITS 61
FieldGotFocus 26, 48
FieldHasFocus 26, 48
FieldLostFocus 26, 48
Fields

Object Class 7
Fields (Row) property 111
Fields collection properties 32
Fields, Virtual 103
Field-specific Form script entry points 27
File I/O Language Element 248
File Operators

defined 193
File System Language Element 249
Financial Language Element 251
finding text in Scripts 128
Flags property 78
Flags Value 81
Flow Control

defined 192
Flow Control Language Element 252
For...Next (statement) 201
Form

Object Class 7
Form class objects 30
Form scripts

classes and properties of... 30
diagram of entry points 24
272 Index

entry points of... 24
executing... 48
field-specific entry points of... 27
Form class 30
in TELEform Verifier 51
opening... 23
overview of... 21
Samples of... 51

Form Validation Script
example 53

Form.CurField property 30
Form.CurGroup property 30
Form.Image property 30
Form.Mode property values 31
Form.Status property 30
Form.Status property values 31
Form_Check 25, 48
Form_Evaluate 25, 48
Form_Export 26, 49
Form_HasUnloaded 26, 46, 49
Form_ID 104
Form_Load 26, 46, 48, 49
Form_Merge 25, 48
Form_Pri 104
Form_Unload 26, 46, 49
Form_Verify 26, 49
Format property 64
FormID (batch) property 79
FormID property 30
Forms (batch) property 78
FormsEvaluated (batch) property 78
Function...End Function (statement) 220

G

getting information into dialog boxes 179
Global Form Script 22

accessing 22
Entry Points 28
Opening 23

GotFocus 27
grid (Dialog Editor) 159
group box 156

H

HasChoices property 36
HasMask property 35
Header property 65
Help

Documentation 15
Online Help 16
Technical Support 17
Troubleshooting 19

hidden (TELEform Virtual) fields 41

I

i 108
identifying procedure calls in a subroutine 143
If...Then...Else (statement) 199
Image_Seq 103
ImageOrientation property 38
ImagePageNumber property 37
incorporating your dialog box into your script 177
Information Dialog Box 162
Information dialog box (in the Dialog Editor) 162
INI Files and Registry Language Element 253
InputBox$ (function) 209
inserting

a new dialog box into your script 132
inserting text in the Script Editor 122
instruction pointer 141
introduction to BasicScript 1
isolate

a particular entry point 48

J

Job QC status
Batch Class Property 107

K

keyboard shortcuts
Dialog Editor 153
editing in script editor 121
navigational in Script Editor 120

Keyword 227
Index 273

L

Language Element
Arrays 235
BasicScript Information 236
Clipboard 237
Comments 237
Controlling Menus 239
Controlling other Applications 238

Left property (member of the Field class) 38
Left property (member of the TopChoice class) 109
Left* 109
Length property 35
Let (statement) 230
Library script entry points 97
Library scripts 93

entry points of... 97
executing... 98
opening... 94
overview of... 93

list box 155
Logical Operators

defined 192
LoseFocus Field Property 106
LostFocus 27

M

making your dialog box dynamic 185
Mask property 35
Master property 65
Math Language Element 254
MaxFields property 64
MaxNameLen property 64
MaxWidth property 64
MCI command

Language Element 255
merging dialog boxes with a script 178
Missing property 34
Mode property 30
monitoring selected variables 145
MsgBox (function) 210
multi-line script statements 131

N

Name property (member of the Field class) 34, 38,
47, 104
navigating in the Edit Script window 120
navigating shortcuts 120
navigating within a script 120
Network Language Element 256
NonForms (batch) property 79
Nothing 229
NULL Values Supported 61
Numeric Operators Language Element 256

O

Object Class
Classes 7

object properties (introducing) 8
Objects Language Element 257
ODBC Language Element 257
opening your script in the script editor

Custom (Menu) script 94
Export script 58
Form script 23
System script 73

Operating Environment Language Element 258
option button 155
Or (operator) 205
OrigPgSeq 104
overview of class properties 8
overview of commonly used language elements 191
overview of data types 8
overview of entry points 5
overview of object classes 7
overview of the Dialog Editor 149
overview of the Edit Script window 118

P

Pages property 78
PagesEvaluated (batch) property 78
Parsing Language Element 258
Paste button 119
Pasting script text 127
Path property 63
Pause button 137
274 Index

PDF+Forms 50
Period script

executing... 98
Periodic script

changing the period of... 92
entry points of... 97
opening... 94
overview of... 92

Periodic script entry points 97
Periodic scripts 92
picture 156
picture button 155
picture libraries, creating or modifying 169
Pictures (specifying) 168
Predefined Dialogs Language Element 260
Prefix (batch) property 79
pressing enter in the script editor 122
pressing TAB in the script editor 122
Print_Exit 75
Print_Init 75
Printer Language Element 261
Procedures Language Element 261
Product Support 17
Properties

Batch class objects 77
Choices class objects 43
Export class objects 62
Field class objects 33
Fields collection objects 32
Form class objects 30
introducing... 8
Row class object 110
TopChoices class objects 108

Public (statement) 199
Public Variables 72
Public variables 72, 84
push button 155

R

radio button 155
Reader_Exit 75
Reader_Init 75
RecordCount (batch) property 80
Redirect a local device 256

referencing class information
Batch class 77
Export class 62
Field 33
Fields... 33
Row 110
TopChoice class 108

remarks (adding comments) 130
Remote_Bid 104
Remote_Cmp 104
Remote_Fax 105
Remote_Phn 105
removing Breakpoints 145
replacing text in scripts 129
Reserved Words

defined 193
restricted accelerator keys 90
Result property 65
retrieving values from custom dialog boxes 182, 183
reversing editing operations 126
Right 109
Right property (member of the Field class) 38
Right property (member of the TopChoice class)
109
right-click feature (in the script editor) 122
Route_To 105
Row

Object Class 7
Row class example 112
Row class properties 110
Row collection 110
Row property 37

S

sample BatchScan_End script 85
sample BatchSetup script 85
Sample Export script 68
sample FieldGotFocus script 55
Sample Form Validation script 52
sample Form_Merge script 55
Sample System script 84
Save Script As dialog box (for Export scripts) 60
Screen Resolution Language Element 262
Script
Index 275

go to a line number in... 121
script editor

keyboard shortcuts 121
toolbar 119

Script Path Name 61
Scripts

adding dialog box elements to... 177
Custom 88
Export 57, 99
finding text in 128
Form 21
Library 93
Periodic 92
System 71

scripts
adding TELEform references to 122
Custom (Menu) 88
navigating within 120
stepping through scripts 142
tracing execution 141

searching and replacing text in scripts 128
selecting script text 124

with a mouse 124
with the keyboard 125

SetFocus property 37, 106
SetFocus property (use of...) 52
setting Breakpoints 144
setting default text in text box 180
Single Step button 137
SKFI Database Groups 114
SKFI zones

Automatic Field Lookups 114
in Fields Collection (Array) 32
in Sub Form_Unload 26
used in Form Script Entry Point 25

skip-and-fill logic 51
Standard (Virtual) TELEform Fields 41
Start button 137
starting debug mode 138
State property 78
Status (Custom) messages 101
Status property (member of the Field class) 34
stepping through a script 142
storing dialog box values 178
Str$ (function) 207

String Operators
defined 192

Strings Language Element 262
Sub BatchCommit_End 76
Sub BatchCommit_Start 76
Sub BatchScan_End 76
Sub BatchSetup 75
Sub Designer_Exit 75
Sub Designer_Init 75
Sub Export_End 59
Sub Export_Record 59
Sub Export_Setup 59
Sub Export_Start 59
Sub FieldGotFocus 26
Sub FieldHasFocus 26
Sub FieldLostFocus 26
Sub FieldName_GotFocus 27
Sub FieldName_HasFocus 27
Sub FieldName_LostFocus 27
Sub Form_Check 25
Sub Form_Evaluate 25
Sub Form_Export 26
Sub Form_HasUnloaded 26, 46
Sub Form_Load 26, 46, 49
Sub Form_Merge 25
Sub Form_Unload 26, 46, 49
Sub Form_Verify 26
Sub Print_Exit 75
Sub Print_Init 75
Sub Reader_Exit 75
Sub Reader_Init 75
Sub Verifier_Exit (script) End Sub 76
Sub Verifier_Init 76
Sub...End Sub (statement) 219
summary of script types 4
Support and Maintenance Plan 17
Support, Technical 17
SuspenseFile 105
syntax checks (script compiling) 133
System script

Batch class 77
class and properties of... 77
common examples of... 84
entry points 74
276 Index

executing... 83
opening 73
overview of... 71
Public Variables and... 72

System Script Editor
entry points 74

System Scripts 71

T

TabIndex property 36
TabStop property 36
Technical Support 17
TELEform Connect Agent Evaluations 50
TELEform Virtual Fields

table of... 103
TELEform Virtual fields 41
Teleglob.ini 92
testing your dialog box 174
text box 155
text boxes

setting default text in 180
Text property 43
Text property (member of the Field class) 34
Time (batch) property 80
Time_Stamp 105
Title property 30
Toggle Breakpoint button 137
toolbar

debugger 137
dialog editor 150
script editor 119

Top property (member of the Field class) 38
Top property (member of the TopChoice class) 109
TopChoices

Object Class 7
TopChoices class properties 108
TopChoices collection 108
TopChoices property 36
TopChoicesProperty 108
tour of BasicScript 10
tracing script execution 141
TrackId (batch) property 79
Troubleshooting 19
TrueAddress Constant Name 100

TrueAddress Status values (Field class) 100
TrueAddress Value 100
Type property (member of the Field class) 34
Type property values (member of Field class) 39
typing in the script editor 122

U

undo
in Dialog Editor 171, 176
in Script Editor 126

Undo button 119
undoing editing operations 126
Uninitialized Object Variables 229
User Dialog Boxes Language Element 264
User Interface

defined 192
UserName (batch) property 79
using an existing dialog box 172
using dynamic dialog boxes in script 185

V

Val (function) 208
Validation Script 53
validation script (sample) 52
validation scripts 21
Value property 43
Value property (member of the Field class) 34
variables

in the debugger 145
Variables/Constants Language Element 266
Variant 194
variant

defined 191
Variant Language Element 267
Verifier_Init 76
Viewport Language Element 267
Virtual Fields 103

W

Watch Variables
adding 145
deleting 147
modifying the value of... 147
Index 277

Web site (Cardiff) 16
writing text in the script editor 122
writing your scripts 117
WSName property 79
278 Index

	CHAPTER 1 Introducing BasicScriptTM for TELEform
	About BasicScript
	About this Chapter
	Why use BasicScript?
	BasicScript Capabilities
	How BasicScript Works with TELEform
	BasicScript Tour

	CHAPTER 2 Technical Resources
	Need Answers?

	CHAPTER 3 Form and Global Form Scripts
	About this Chapter
	Overview of Form Scripts
	Overview of Global Form Script
	Opening a Form Script for Script writing
	Form Script Entry Points
	Global Form Script Entry Points
	Form Script Classes and their Properties
	Data Review Functionality
	Executing Your Form Scripts
	PDF+Forms, Pdf+forms for Livelink, and HTML+Forms Evaluations
	Sample Form Scripts

	CHAPTER 4 Export Scripts
	About this Chapter
	Overview of Export Scripts
	Opening an Export Script for Script Writing
	Export Script Entry Points
	Saving Your Export Script
	Export Classes and their Properties
	Executing Your Export Scripts
	Sample Export Script

	CHAPTER 5 System Script
	About this Chapter
	Overview of the System Script
	System Script Entry Points
	System Script Classes and their Properties
	Executing Your System Script
	Common Examples of a System Script

	CHAPTER 6 Custom, Periodic and Library Scripts
	About this Chapter
	Overview of Custom, Periodic, and Library Scripts
	Opening a Custom, Periodic, or Library Script for Script Writing
	Custom, Periodic and Library Script Entry Points
	Executing Your Custom, Periodic and Library Scripts

	CHAPTER 7 Advanced Features of Scripts
	About this Chapter

	CHAPTER 8 Writing and Editing Your Scripts
	About this Chapter
	Writing Scripts
	Editing Your Script
	Compiling Your Script (Checking the Syntax)
	Exiting the Edit Script window

	CHAPTER 9 Executing and Debugging Your Scripts
	About this Chapter
	Executing Your Scripts
	Debugging Your Scripts

	CHAPTER 10 Creating Custom Dialog Boxes
	About this Chapter
	What You Can Use Custom Dialog Boxes for
	Overview of the Dialog Editor
	Creating a Custom Dialog Box
	Using an Existing Dialog Box
	Testing Your Dialog Box
	Adding an Element to Your Script
	Adding Your Dialog Box to Your Script
	Incorporating Your Dialog Box into Your Script

	CHAPTER 11 Common Language Elements
	About this Chapter
	Common Language Elements
	Variant
	Declarations
	Comments
	Flow Control
	String Operators
	User Interface
	File Operators
	Calling Functions
	Reserved Words
	Miscellaneous

	CHAPTER 12 BasicScript Language Reference
	About this Chapter
	Notes on this Reference
	Language Element Categories
	Summary of the BasicScript Language

	Index

