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Abstract

Historically, polynomial multiplication has required a quadratic number of operations.
Several algorithms in the past century have improved upon this. In this work, we focus
on the Toom-Cook algorithm. Devised by Toom in 1963, it is a family of algorithms
parameterized by an integer, n. The algorithm multiplies two polynomials by recur-
sively dividing them into smaller polynomials, multiplying many small polynomials,
and interpolating to obtain the product. While it is no longer the asymptotically
fastest method of multiplying, there is a range of intermediate degrees (typically less
than 1000) where it performs the best.

Some applications, like quantum-resistant cryptosystems, require the use of poly-
nomials whose coefficients belong to the ring of integers modulo a power of 2. A
problem arises with using the Toom-Cook algorithm to multiply these polynomials
because the interpolation step of the algorithm requires division by even numbers.
This results in a loss of 2-adic precision. If too many bits of precision are lost, the
product will be incorrect.

Interpolating a polynomial from some of its values is generally easy, and different
works have solved the interpolation step of the Toom-Cook algorithm with different
equations. In order to track the loss of precision, it is necessary to establish and prove
the general form of the solution to the system of equations. We present three sets of
interpolation formulas: the matrix, natural, and efficient formulas. For any integer
n > 2, we seek to find a general expression for each of the three sets of formulas,
and to prove the respective loss of precision. First, for the efficient interpolation, we
prove the general set of formulas. Then, for the natural interpolation, we conjecture
a general set of formulas that depends on two combinatorial identities. We prove
the first identity and some cases of the second identity. Finally, we prove the loss of
precision of the matrix interpolation formulas.
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Chapter 1

Introduction

1.1 An Overview of Multiplication Al-

gorithms

Multiplying two polynomials of degree d in the simplest way, using distributivity,

requires O(d2) operations. We say schoolbook multiplication to refer to the process

of multiplying polynomials by distributing. This requires O(d2) multiplications be-

tween coefficients, and a few additions. This was improved upon by Karatsuba [16]

in 1963. The Karatsuba algorithm recursively splits the polynomials in half, mul-

tiplying smaller polynomials, and then combining them back together. This has a

complexity of O(dlog2(3)). The Karatsuba algorithm can be viewed as a special case

of the Toom-Cook algorithm, discovered by Toom [28] and formalized by Cook [8].

The Toom-Cook algorithm is a family of algorithms, parameterized by any integer

n ≥ 2. It works by recursively dividing the polynomials into n parts, multiplying

the smaller polynomials, and combining them back together. It achieves a com-
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plexity of O(dlogn(2n−1)). We will explain in more detail how the Karatsuba and

Toom-Cook algorithms work in Chapter 2. In 1971, Schonhage and Strassen intro-

duced a new multiplication algorithm based on the fast Fourier transform (FFT) that

achieves complexity O(d log(d) log(log(d))) [26]. This algorithm is now known as the

Schonhage-Strassen algorithm. This method was refined by Furer [12], and finally

improved to O(d log(d)) by Harvey and van der Hoeven [14].

We are primarily concerned with performing multiplication over (Z/2mZ)[x]. Some

public key cryptosystems require efficient multiplication in such rings. Notable ex-

amples include NIST Post-Quantum Cryptography candidate algorithms NTRU [31]

and Saber [10]. Multiplication algorithms that are based on the FFT (those due to

Schonhage and Strassen, Furer, and Harvey and van der Hoeven) require a ring in

which 2 is a unit, so they are not directly applicable to this situation. This leaves

Toom-Cook as a leading candidate for multiplying polynomials for those applications.

Recent work has shown that multiplication based on the FFT can, with some extra

work, be applied to these situations and potentially result in faster multiplication [7].

1.2 Previous Work on the Toom-Cook

Algorithm

After the Toom-Cook algorithm was discovered in the 1960s, further work has been

done to improve it and apply it to different situations. Knuth gives a thorough

explanation of complexity and implementation aspects [17, pp. 294-318]. Bodrato
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applies the Toom-Cook algorithm to multivariate polynomials in [2], and Bodrato

and Zanoni extend the algorithm to perform multiplication when the operands have

different degrees [3]. Mera, Karmakar, and Verbauwhede optimize the evaluation and

interpolation stages of Toom-Cook by pre-computing and saving results [21]. Kro-

nenburg provides analysis of a multithreaded implementation [18]. Zanoni shows that

the Toom-8 variant of Toom-Cook can efficiently multiply large integers [30]. Dutta,

Bhattacharjee, and Chattopadhyay give a quantum circuit to implement Toom-Cook

multiplication [11], and Maji and Mullins introduce a way that Toom-Cook can speed

up a specific type of neural network [20].

1.3 Structure of this Thesis

In Chapter 2, we formally describe the Toom-Cook algorithm, the loss of precision,

and introduce three sets of interpolation formulas. These are called the efficient, nat-

ural, and matrix formulas. In Chapter 3, we prove the general closed form for the

efficient formulas. In Chapter 4, we conjecture the general closed form for the natural

formulas, and show that the conjecture depends on two combinatorial identities. We

prove the first identity, and present some progress toward the second identity. In

Chapter 5, we apply known results about Vandermonde matrices to prove the loss

of precision of the matrix formulas. In Chapter 6, we discuss methods for tracking

the loss of precision in Toom-Cook interpolation formulas. In Chapter 7, we present

graphs that show which Toom-Cook decompositions are more efficient.
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Chapter 2

The Toom-Cook Algorithm

2.1 Precise Description of the Toom-Cook

Algorithm

We present a brief description of the Toom-Cook algorithm. Suppose we want to

multiply two polynomials f(x) and g(x) of degree d1 and d2, respectively. Then for

d ≥ d1, d2 and n dividing d, we write

f(x) = f0(x) + f1(x)xd/n + f2(x)x2d/n + · · ·+ fn−1(x)x(n−1)d/n

and

g(x) = g0(x) + g1(x)xd/n + g2(x)x2d/n + · · ·+ gn−1(x)x(n−1)d/n
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for some degree d/n polynomials fi, gi, i = 0, . . . , n− 1. Letting X = xd/n, we define

F (X) and G(X) as

F (X) = f0(x) + f1(x)X + f2(x)X2 + · · ·+ fn−1(x)Xn−1

and

G(X) = g0(x) + g1(x)X + g2(x)X2 + · · ·+ gn−1(x)Xn−1.

We define r(X) to be the product of F (X) and G(X), which is a degree 2n − 2

polynomial in the variable X whose coefficients are degree 2d/n polynomials in the

variable x. The strategy of the Toom-Cook algorithm to obtain r(X) is to evaluate

r at 2n− 1 different points, and solve the resulting system of linear equations to find

the coefficients r0(x), r1(x), . . . , r2n−2(x). Since r(X) = F (X)G(X), evaluating r at a

point requires evaluating F and G at the same point and multiplying the results. We

choose to evaluate at the points 0,±1,±2, . . . ,±(n−2), n−1,∞, where evaluation at

infinity means returning the leading coefficient of the polynomial. There are other sets

of evaluation points, but this is the simplest one. It is also used for implementations

of the NTRU cryptosystem [9]. So we perform 2n− 1 multiplications of polynomials
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of degree d/n to find

r(0) = F (0)G(0)

r(1) = F (1)G(1)

r(−1) = F (−1)G(−1)
...

r(n− 1) = F (n− 1)G(n− 1)

r(∞) = F (∞)G(∞).

Given that these values have been computed, it is now a matter of finding the co-

efficients of r(X). This will be discussed later in this chapter. Once we have all of

the coefficients of r(X), we can obtain the product f(x)g(x) by evaluating r(X) at

X = xd/n.

2.2 Loss of Precision

Working over (Z/2mZ)[x], most of the Toom-Cook algorithm is performed just like

it would be over Z[x]. However, the interpolation formulas have divisions. Dividing

by an odd number is acceptable, because odd numbers are invertible and the division

can be replaced with a multiplication by the inverse. Even numbers in Z/2mZ, on

the other hand, do not have multiplicative inverses. One way to avoid this problem is

to perform all computations in Z, and then reduce the final answer modulo 2m. This

is often not applicable, since many situations require the hardware to consistently

6



use a fixed-size integer type (16-bit integers, for example). We use M to denote the

number of bits being used to represent integers. When all arithmetic is done using

M -bit integers, the operations are performed modulo 2M . Moving forward, we as-

sume all computations are done in Z/2MZ and the final product needs to have correct

coefficients in Z/2mZ, for some m ≤ M . In practice, M is likely to be 16 or 32, as

determined by the hardware.

Even though division by 2 is not defined the in ring Z/2MZ, the divisions by 2

in the Toom-Cook algorithm will still result in a well-defined element of Z/2MZ. To

help see why, we define a % 2M .

Definition 2.2.1. For any integer a, let a % 2M be the unique integer between 0 and

2M − 1 such that a % 2M ≡ a mod 2M .

We can still perform divisions by smaller powers of 2 because reducing a to a%2M

does not affect this divisibility.

Lemma 2.2.2. For any integer a, and for any positive integer k < M , if 2k|a, then

2k|a % 2M .

Proof. By definition, there exists some integer j1 such that a % 2M = a− 2Mj1. Since

2k|a, there exists some integer j2 such that a = 2kj2. So

a % 2M = a− 2Mj1 = 2kj2 − 2mj1 = 2k(j2 − 2M−kj1).
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So division by 2 still “works” in the sense that the quotient is an integer, but it

is not guaranteed to be the answer we want. As an example, suppose we want to

compute
101 + 139

16 % 64.

The result is (240/16)%64 = 15. But if we perform the operations in a different order,

and instead compute
(101 + 139) % 64

16 ,

the result is (240 % 64)/16 = 48/16 = 3. This is because dividing by powers of 2 loses

bits of precision. Consider the previous example in terms of binary numbers:

240 = 111100002

and

48 = 001100002.

These numbers agree on the least significant 6 bits (since they are congruent modulo

26), but they disagree on any bits after that. Dividing by 16 has the effect of right

shifting by 4 bits. This means that 4 of the 6 agreeing bits are gone, and only the 2

least significant bits are now shared.

Definition 2.2.3. When the result of a computation is no longer correct in its k

most significant bits, we say that the computation loses k bits of precision.

The loss of precision can be expressed in terms of the 2-adic valuation function.
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Definition 2.2.4. The 2-adic valuation function, v2, is given by

v2(n) = max{v ∈ Z : 2v | n}

if n is even, and v2(n) =∞ if n is odd.

Definition 2.2.5 (Alternate Definition for Loss of Precision). Let a be the correct

result of a computation over Z and b the obtained result over Z/2MZ. Then the loss

of precision of the computation is equal to v2(a− b).

The divisions by even numbers that show up in the Toom-Cook interpolation

formulas can result in a loss of precision. We are interested in finding general forms

for the three sets of interpolation formulas described above, so we can rigorously prove

how many bits are lost.

2.3 Toom-Cook Interpolation Formulas

In this section, we introduce methods of solving the linear system of equations. As

is common in the literature, we say Toom-n to refer to the specific member Toom-

Cook family of algorithms where the polynomials are split into n pieces. Also note

that the Karatsuba algorithm can be viewed as Toom-2. We focus on three sets of

interpolation formulas to solve the system of linear equations.
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2.3.1 The Matrix Formulas

The matrix formulas come from viewing polynomial evaluation as matrix multiplica-

tion. Observe that



r(−(n− 2))

r(−(n− 3))
...

r(n− 1)

r(∞)


=



1 −(n− 2) . . . (−(n− 2))2n−3 (−(n− 2))2n−2

1 −(n− 3) . . . (−(n− 3))2n−3 (−(n− 3))2n−2

... ... . . . ... ...

1 n− 1 . . . (n− 1)2n−3 (n− 1)2n−2

0 0 . . . 0 1





r0

r1

...

r2n−3

r2n−2



Inverting this matrix yields a set of formulas that express the coefficients of r(X)

in terms of the evaluation points. As an example, consider the matrix formulas for

Toom-4:

r0 = r(0)

r6 = r(∞)

r4 = 1
4!(r(−2)− 4r(−1) + 6r(0)− 4r(1) + r(2)− 120r(∞))

r2 = 1
4!(−r(−2) + 16r(−1)− 30r(0) + 16r(1)− r(2) + 96r(∞))

r5 = 1
5!(−r(−2) + 5r(−1)− 10r(0) + 10r(1)− 5r(2) + r(3)− 360r(∞))

r3 = 1
5!(−5r(−2)− 5r(−1) + 50r(0)− 70r(1) + 35r(2)− 5r(3) + 1800r(∞))

r1 = 1
5!(6r(−2)− 60r(−1)− 40r(0) + 120r(1)− 30r(2) + 4r(3)− 1440r(∞)).
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2.3.2 The Natural Formulas

The natural formulas could be derived when solving the set of equations by hand.

For Toom-4, the natural formulas are

r0 = r(0)

r6 = r(∞)

r4 = 1
4!(−4(r(1) + r(−1)) + (r(2) + r(−2)) + 6r0 − 120r6)

r2 = 1
2!((r(1) + r(−1))− 2r0 − 2r4 − 2r6)

r5 = 1
5!(5r(1)− 4r(2) + r(3)− 2r0 + 2r2 − 22r4 − 478r6)

r3 = 1
3!(−2r(1) + r(2) + r0 − 2r2 − 14r4 − 30r5 − 62r6)

r1 = r(1)− r0 − r2 − r3 − r4 − r5 − r6.

2.3.3 The Efficient Formulas

The efficient formulas store the results of some computations as temporary variables

to avoid redundant operations. We are not claiming that they are the most efficient

set of formulas that could exist: we simply mean to convey that they were designed

to, and indeed do, achieve efficiency gains over the other two sets of formulas. As

a trade-off, we will see that they lose more bits of precision. Here are the Toom-4
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efficient formulas:

r0 = r(0)

r6 = r(∞)

E1 = r(1) + r(−1)
2 − r0 − r6

r4 =
((

r(2) + r(−2)
2 − r0 − 64r6

)
/4− E1

)
/3

r2 = E1 − r4

O1 = r(1)− r(−1)
2

O2 =
(
r(2)− r(−2)

4 −O1

)
/3

O3 =
(
r(3)− r0 − 9r2 − 81r4 − 729r6

3 −O1

)
/8

r5 = (O3 −O2)/5

r3 = O2 − 5r5

r1 = O1 − r3 − r5.

2.4 Summary of Results

For each the three sets of Toom-Cook interpolation formulas we are considering (ma-

trix, natural, and efficient), two things need to be shown:

• The exact form of the Toom-n formulas for all n.

• The loss of 2-adic precision of using those formulas, for all n.

For the efficient formulas, we present a proof of the general Toom-n formulas, but we

12



do not have a precise conjecture for the loss of precision. For the natural formulas,

we conjecture a general set of formulas that depends on two combinatorial identities.

We present a proof of the first identity, and some work towards the proof of the

second. We also conjecture that the natural formulas lose the same number of bits

as the matrix formulas. For the matrix formulas, we do not conjecture a general set

of Toom-n formulas, but we prove the number of bits of precision that they lose.
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Chapter 3

The Efficient Formulas

In this chapter, we give a closed form for the set of efficient Toom-n interpolation

formulas and prove the correctness of the closed form. To do so, we introduce a

family of triangles and show how to solve systems of linear equations that satisfy

certain conditions.

3.1 A Family of Triangles

For any positive integer b ≥ 1, we define tb(n, k) to be a triangle given by the recur-

rence relation

tb(n, k) = tb(n− 1, k − 1) + (k + b− 2)2tb(n− 1, k) (3.1)

and the base cases tb(n, 1) = 1, tb(n, n) = 1, and tb(n, k) = 0 if k < 1 or k > n.

Note that indexing starts at 1, so tb(1, 1) is the top point of the triangle. We refer to

equation 3.1 as the “triangle recurrence.”

14



The b = 2 triangle is described on OEIS [27]. It looks like

1
1 1

1 5 1
1 21 14 1

1 85 147 30 1

The subsequent triangles follow a similar pattern, with larger integers. The entries

in these triangles show up in the general efficient formulas.

For brevity, we define

c(k, b) = 2(k − 1)b+ (k − 1)2.

This c stands for “coefficient”, because the values of c(k, b) comprise many of the

coefficients in the efficient formulas. To prove the efficient formulas, we first show

that, for all b ≥ 2, for all n ≥ 1, and for all k ≥ 1,

tb(n, k + 1)c(k, b) = tb+1(n, k)− tb(n, k).

Proposition 3.1.1. For all b ≥ 1, for all n ≥ 1, and for all k ≥ 1,

tb(n, k + 1)c(k, b) = tb+1(n, k)− tb(n, k).

15



Proof. We begin by handling some special cases. If k > n, then tb(n, k + 1) = 0 and

tb+1(n, k) − tb(n, k) = 0 − 0 = 0. If k = n, then tb(n, n + 1) = 0 and tb+1(n, n) −

tb(n, n) = 1 − 1 = 0. Finally, if k = 1, we observe that c(1, b) = 0 and we have

tb+1(n, 1)− tb(n, 1) = 1− 1 = 0.

When 1 < k < n, we proceed by strong induction on n. By the previous special cases,

the recurrence holds for n = 1 and n = 2. For the inductive hypothesis, suppose that

tb(j, k + 1)c(k, b) = tb+1(j, k)− tb(j, k)

for j = 1, 2, . . . , n− 1. We will use this and the triangle recurrence (equation 3.1).

By the triangle recurrence where k is replaced by k + 1, we have

tb(n, k + 1) = tb(n− 1, k) + (k + b− 1)2tb(n− 1, k + 1).

Applying the inductive hypothesis with j = n− 1 yields

tb(n− 1, k + 1)c(k, b) = tb+1(n− 1, k)− tb(n− 1, k).

Using the triangle recurrence where b is replaced by b+ 1, we obtain

(k + b− 1)2tb+1(n− 1, k) = tb+1(n, k)− tb+1(n− 1, k − 1).

By the inductive hypothesis where k is replaced by k − 1 and j = n− 1 (or trivially

if k = 2 since c(1, b) = 0),

tb+1(n− 1, k − 1) = c(k − 1, b)tb(n− 1, k) + tb(n− 1, k − 1).
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Finally, using the triangle recurrence, we have

tb(n, k) = tb(n− 1, k − 1) + (k + b− 2)2tb(n− 1, k).

Putting all of these equations together,

tb(n, k + 1)c(k, b) = c(k, b)(tb(n− 1, k) + (k + b− 1)2tb(n− 1, k + 1))

= c(k, b)tb(n− 1, k) + (k + b− 1)2(tb+1(n− 1, k)− tb(n− 1, k))

= 2(k − 1)btb(n− 1, k) + (k − 1)2tb(n− 1, k)

+ (k + b− 1)2tb+1(n− 1, k)− ((k − 1) + b)2tb(n− 1, k)

= (−b2)tb(n− 1, k) + (k + b− 1)2tb+1(n− 1, k)

= (−b2)tb(n− 1, k) + tb+1(n, k)− tb+1(n− 1, k − 1)

= (−b2)tb(n− 1, k) + tb+1(n, k)− c(k − 1, b)tb(n− 1, k)

− tb(n− 1, k − 1)

= (−b2)tb(n− 1, k) + tb+1(n, k)

− 2(k − 2)btb(n− 1, k)− (k − 2)2tb(n− 1, k)− tb(n− 1, k − 1)

= tb+1(n, k)− (k + b− 2)2tb(n− 1, k)− tb(n− 1, k − 1)

= tb+1(n, k)− tb(n, k).
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3.2 Solving a General System of Equa-

tions

Let n ≥ 5 be a positive integer, and let T1, T2, . . . , Tn−2 be constants. Suppose we

have n−2 variables x1, x2, . . . , xn−2, and a system of n−2 equations given as follows:

T1 = x1 + x2 + · · ·+ xn−2 (3.2)

and, for b = 2, 3, . . . , n− 2,

Tb = x2 + tb(3, 2)x3 + tb(4, 2)x4 + · · ·+ tb(n− 2, 2)xn−2. (3.3)

We give an algorithm to solve the system of equations. As a notational note, we say

“equation (b)” to refer to the equation with Tb on the left side.

3.2.1 Overview of the Solution

We proceed by introducing layers of equations, where each layer consists of equations

that have each eliminated one variable from the previous layer. Layer 1 is defined

to be equations (2) through (n − 2), and equation 3.2 can be thought of as layer 0.

Observe that subtracting consecutive equations from layer 1 will cancel the x2 out,

yielding an equation that contains only the variables x3, . . . , xn−2. We then divide

both sides of that equation by the coefficient on x3 to obtain an equation in layer

2. In this way, layer 2 consists of n− 3 linear equations in the variables x3, . . . , xn−2
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such that the coefficient of x3 is 1. In general, layer L consists of n − L − 1 linear

equations that contain the variables xL+1, . . . , xn−2 such that coefficient of xL+1 is 1.

Layer L + 1 is given by subtracting the n − L − 2 pairs of consecutive equations in

layer L (thus eliminating xL+1), and then dividing each of the resulting equations by

the coefficient of xL+2.

Once we reach layer n−3, it contains only two equations that depend on xn−3 and

xn−2. We directly solve for xn−2. Knowing xn−2, we plug this back into an equation

from the layer n − 3 and solve for xn−3. Now that we know xn−2 and xn−3, we plug

them back into an equation from layer n− 4 (which depended only on xn−4, xn−3 and

xn−2) and solve for xn−4. We continue back through the layers, finding one more xi

from each layer by substituting in the variables we have already solved for. Since

we can choose any equation from each layer to substitute into, we choose the first

equation from each layer.

For convenience, we give a method of indexing the equations in each layer. For

each layer, the first equation is indexed by b = 2. We define, for all n ≥ 1, L ≥ 1 and

b ≥ 2,

ind(n, L, b) = (L− 1)n− (L+ 1)(L+ 2)
2 + 3 + b, (3.4)

and ind(n, 0, 2) = 1. This expression gives the index of the equation corresponding

to b in layer L. Here is an illustration of how the index function works:

19



Layer 1

ind(n, 1, 2) = 2

ind(n, 1, 3) = 3
...

ind(n, 1, n− 2) = n− 2

Layer 2

ind(n, 2, 2) = n− 1

ind(n, 2, 3) = n

...

ind(n, 2, n− 3) = 2n− 5

Layer 3

ind(n, 3, 2) = 2n− 4
...

3.2.2 Explicitly Stating the Formulas

We claim that the system of equations can be solved by the following formulas: for

L from 2 to n− 4, for b from 2 to n− 1− L,

Tind(n,L,b) = Tind(n,L−1,b+1) − Tind(n,L−1,b)

c(L, b) ,
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and

xn−2 = Tind(n,n−4,3) − Tind(n,n−4,2)

c(n− 4, 2) ,

and for i from n− 3 down to 1,

xi = Tind(n,i−1,2) −
n−2∑
j=i+1

t2(j, i)xj.

When n = 8, assume that we are given T1, . . . , T6, as they are constants appearing

in the original equations which we seek to solve. Here is what the system of equations

looks like:
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Layer 2

T7 = (T3 − T2)/5

T8 = (T4 − T3)/7

T9 = (T5 − T4)/9

T10 = (T6 − T5)/11

Layer 3

T11 = (T8 − T7)/12

T12 = (T9 − T8)/16

T13 = (T10 − T9)/20

Layer 4

T14 = (T12 − T11)/21

T15 = (T13 − T12)/27

Variables

x6 = (T15 − T14)/32

x5 = T14 − 55x6

x4 = T11 − 30x5 − 627x6

x3 = T7 − 14x4 − 147x5 − 1408x6

x2 = T2 − 5x3 − 21x4 − 85x5 − 341x6

x1 = T1 − x2 − x3 − x4 − x5 − x6.
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3.2.3 Proving the Correctness of the Formulas

In order for the algorithm to be correct, we need Tind(n,L,b), which is defined by

Tind(n,L,b) = Tind(n,L−1,b+1) − Tind(n,L−1,b)

c(L, b) ,

to also satisfy

Tind(n,L,b) =
n−2∑

j=L+1
tb(j, L+ 1)xj. (3.5)

This will guarantee that the n − L − 1 linear equations in layer L depend only the

variables xL+1, . . . , xn−2 and that the coefficient of xL+1 is 1. This will also confirm

that the formula

xi = Tind(n,i−1,2) −
n−2∑
j=i+1

t2(j, i)xj (3.6)

holds, since that is what we obtain when we solve the first equation in layer i−1 for xi.

We will use the result of Proposition 3.1.1: for all n ≥ 5, b ≥ 2, L ≥ 1, we have

tb(n− 1, L+ 1) = tb+1(n− 1, L)− tb(n− 1, L)
c(L, b) .

Proposition 3.2.1. Recall the numbers tb(n, k) defined in equation 3.1 and the num-

bers ind(n, L, b) defined in equation 3.4. For all n ≥ 5, L ≥ 1, and b ≥ 2,

Tind(n,L,b) =
n−2∑

j=L+1
tb(j, L+ 1)xj.

Proof. We use induction on L. By our fundamental assumption about the system of

equations, the proposition holds for L = 1. For our inductive hypothesis, suppose
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that the proposition holds for L = k − 1. We will show that it holds for L = k.

Since the expression for each T is linear, the coefficient on xj in the expression for

Tind(n,L,b) depends only on the coefficient on xj in Tind(n,L−1,b) and Tind(n,L−1,b+1). By

the inductive hypothesis and Proposition 3.1.1, we have

Tind(n,k,b) = Tind(n,k−1,b+1) − Tind(n,k−1,b)

c(k, b)

=

n−2∑
j=k

tb+1(j, k)xj −
n−2∑
j=k

tb(j, k)xj

c(k, b)

=
n−2∑
j=k

xj
tb+1(j, k)− tb(j, k)

c(k, b)

=
n−2∑
j=k

xjtb(j, k + 1)

= tb(k, k + 1)xk +
n−2∑
j=k+1

xjtb(j, k + 1)

=
n−2∑
j=k+1

xjtb(j, k + 1).

3.3 Application to the Toom-Cook Al-

gorithm

One step of the Toom-n algorithm requires us to find the coefficients r0, r1, . . . , r2n−2

of a degree 2n − 2 polynomial r(x), given that we know r(−(n − 2)), r(−(n − 3)),
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. . . , r(−1), r(0), r(1), . . . , r(n − 1), and r(∞) (where we recall that r(∞) is defined

to be the leading coefficient of r). It immediately follows that r0 = r(0) and r2n−2 =

r(∞). We start by looking at the even coefficients: r2, r4, . . . , r2n−4. This is n − 2

variables, so we need n− 2 equations. First, we define

E1 = r(1) + r(−1)
2 − r0 − r2n−2

= r2 + r4 + · · ·+ r2n−4.

Then, for b from 2 to n− 2, define

Eb =
((

r(b) + r(−b)
2 − r0 − b2n−2r2n−2

)
/b2 − E1

)
/(b2 − 1). (3.7)

Now we need a couple of lemmas.

Lemma 3.3.1. Let b ≥ 2 be an integer. For all integers k ≥ 1,

b2k − 1
b2 − 1 = b2k−2 + b2k−4 + · · ·+ b2 + 1.

Proof. We shall use induction on k. For the base case,

b2 − 1
b2 − 1 = 1.

For the inductive hypothesis, suppose that the formula holds for a given k. We will
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show that it holds for k + 1. Then

b2k+2 − 1 = b2k+2 − b2k + b2k − 1

= b2k(b2 − 1) + b2k − 1

= (b2 − 1)(b2k + b2k−2 + · · ·+ b2 + 1).

This next lemma is about the tb(n, k) triangles.

Lemma 3.3.2. For all integers b ≥ 2 and for all integers j ≥ 2,

tb(j, 2) =
j−2∑
i=0

b2i.

Proof. We shall proceed by induction on j. For the base case, observe that

tb(2, 2) = tb(1, 1) + (2 + b− 2)2tb(1, 2) = 1 + 0 = 1.

For our inductive hypothesis, assume that

tb(j, 2) =
j−2∑
i=0

b2i
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for some j ≥ 2. Then

tb(j + 1, 2) = tb(j, 1) + (2 + b− 2)2tb(j, 2)

= 1 + b2(1 + b2 + · · ·+ b2j−4)

= 1 + b2 + b4 + · · ·+ b2j−2

=
j+1−2∑
i=0

b2i.

Now, we can show what we want: that the even Toom-n coefficients satisfy a

system of equations of the form studied in this chapter, and hence can be obtained

with the method derived above.

Lemma 3.3.3. Recall that Eb was defined in equation 3.7. For b from 2 to n− 2,

Eb = r4 + tb(3, 2)r6 + tb(4, 2)r8 + · · ·+ tb(n− 2, 2)r2n−4.
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Proof. Using the two previous lemmas,

Eb =
((

r(b) + r(−b)
2 − r0 − b2n−2r2n−2

)
/b2 − E1

)
/(b2 − 1)

=
((

2r0 + 2b2r2 + · · ·+ 2b2n−2

2 − r0 − b2n−2r2n−2

)
/b2 − E1

)
/(b2 − 1)

=
(

(b2r2 + b4r4 + · · ·+ b2n−4r2n−4)/b2 − E1

)
/(b2 − 1)

=
(

(b2 − 1)r4 + (b4 − 1)r6 + · · ·+ (b2n−6 − 1)r2n−4

)
/(b2 − 1)

= r4 + (b2 + 1)r6 + · · ·+
n−4∑
j=0

b2j

 r2n−4

= r4 + tb(3, 2)r6 + tb(4, 2)r8 + · · ·+ tb(n− 2, 2)r2n−4.

So we can now solve for r2, r4, . . . , r2n−4 using equation 3.6.

Now, we know r0, r2, . . . , r2n−2 and we need to find r1, r3, . . . , r2n−3, which is n−1

variables. We define

O1 = r(1)− r(−1)
2

= r1 + r3 + · · ·+ r2n−3.
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For b = 2, . . . , n− 2, we define

Ob =
(
r(b)− r(−b)

2b −O1

)
/(b2 − 1)

=
(

2br1 + 2b3r3 + · · ·+ 2b2n−3r2n−3

2b −O1

)
/(b2 − 1)

=
(
r1 + b2r3 + · · ·+ b2n−4r2n−3 −O1

)
/(b2 − 1)

=
(

(b2 − 1)r3 + (b4 − 1)r5 + · · ·+ (b2n−4 − 1)r2n−3

)
/(b2 − 1)

= r3 + (b2 + 1)r5 + · · ·+
n−3∑
j=0

b2j

 r2n−3

= r3 + tb(3, 2)r5 + tb(4, 2)r7 + · · ·+ tb(n− 1, 2)r2n−3.

But we need one more equation to match form of equations 3.2 and 3.3, since we have

n− 1 variables. We get the last equation as follows:

On−1 =


r(n− 1)−

n−1∑
i=0

(n− 1)2ir2i

n− 1 −O1

 /((n− 1)2 − 1
)

=
(

(n− 1)r1 + · · ·+ (n− 1)2n−3r2n−3

n− 1 −O1

)
/
(
(n− 1)2 − 1

)
=
(

((n− 1)2 − 1)r3 + ((n− 1)4 − 1)r5 + · · ·+ ((n− 1)2n−4 − 1)r2n−3

)
/
(
(n− 1)2 − 1

)
= r3 +

(
(n− 1)2 + 1

)
r5 + · · ·+

n−3∑
j=0

(n− 1)2j

 r2n−3.

And now the odd coefficients can be found using equation 3.6 with n replaced by

n+ 1.
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Chapter 4

The Natural Formulas

4.1 Introduction

We conjecture a general set of natural formulas that relies on two combinatorial

identities:
m∑
j=1

(−1)m+j
(

2m
m− j

)
j2m = (2m)!/2 (4.1)

and
m∑
j=1

(−1)m+j
(

2m
m− j

)
ji = 0 (4.2)

if i = 2, 4, 6, . . . , 2m− 2. We provide a combinatorial proof for the first identity, and

a proof using Gosper’s algorithm for the i = 2, 4, . . . , 50 cases of the second identity.

We note that a similar pair of identities are known to be true:

m∑
j=0

(
m

j

)
(m− j)m(−1)j = m!
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and, for all i = 1, 2, . . . ,m− 1,

m∑
j=0

(
m

j

)
(m− j)i(−1)j = 0.

These appear as exercises in [1, p. 89-90], and they can be proven with an elementary

combinatorial argument. We hoped to find an analogous combinatorial argument for

the new identities, but we have not been successful.

4.2 Conjecturing the Formulas

The objective is to find an efficient and generalizable method of solving the system of

linear equations. Recall that, for all a, r(a) and ra are really degree 2d/n polynomials

in x, but we leave off the functional notation for brevity. Since r(0) and r(∞) are

just the first and last coefficients, respectively, we know that r0 = r(0) and r2n−2 =

r(∞). We use some notation to display the conjectured formulas for the even-indexed

coefficients (r2m) and the odd-indexed coefficients (r2m−1). Let

ej = (−1)m+j
(

2m
m− j

)

in the r2m formulas and let

oj = (−1)m+j
(

2m− 1
m− j

)
2j

m+ j

in the r2m−1 formulas. We present the following conjecture for the formula of ri for

any i satisfying 1 ≤ i ≤ 2m− 3.
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Conjecture 4.2.1. Let r be a polynomial of degree 2n − 2 with coefficients ri and

denote the evaluation of r at the point x = a by r(a). Then for all m = 1, 2, 3, . . . , n−

2,

r2m = 1
(2m)!

 m∑
j=1

(
ej
(
r(j) + r(−j)

))
−

 n−1∑
k=m+1

m∑
j=1

(2ejj2k)r2k +
m∑
j=1

2ejr0


and for all m = 1, 2, 3, . . . , n− 1,

r2m−1 = 1
(2m− 1)!

 m∑
j=1

ojr(j)−
n−1∑
k=0

m∑
j=1

(ojj2k)r2k +
n−1∑

k=m+1

m∑
j=1

(ojj2k−1)r2k−1

 .
As an example, consider the case when n = 4. Assume that we have computed

r(0), r(±1), r(±2), r(3), and r(∞). According to our conjecture, we should have

r0 = r(0)

r6 = r(∞)

r4 = 1
24(−4(r(1) + r(−1)) + (r(2) + r(−2)) + 6r0 − 120r6)

r2 = 1
2(r(1) + r(−1)− 2r0 − 2r4 − 2r6)

r5 = 1
120(5r(1)− 4r(2) + r(3)− 2r0 + 2r2 − 22r4 − 478r6)

r3 = 1
6(−2r(1) + r(2) + r0 − 2r2 − 14r4 − 30r5 − 62r6)

r1 = r(1)− r0 − r2 − r3 − r4 − r5 − r6.

In this case, the correctness of these formulas can easily be verified by substituting

in for the values of r(a) and simplifying.
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4.3 Stating the Identities

This proof of the conjecture relies on identities 4.1 and 4.2:

2
m∑
j=1

(−1)m+j
(

2m
m− j

)
j2m = (2m)!

and, for all i = 2, 4, . . . , 2m− 2,

2
m∑
j=1

(−1)m+j
(

2m
m− j

)
ji = 0.

Proposition 4.3.1. If identities 4.1 and 4.2 both hold, then Conjecture 2.1 holds.

Proof. We begin by considering the even case. Suppose identities 4.1 and 4.2 hold.

Then
m∑
j=1

(2ejj2m) = 2
m∑
j=1

(−1)m+j
(

2m
m− j

)
j2m = (2m)!

and
m∑
j=1

(2ejji) = 2
m∑
j=1

(−1)m+j
(

2m
m− j

)
ji = 0

for i = 0, 2, . . . , 2m− 2. Since, for any j,

r(j) = r0 + r1j + · · ·+ r2n−2j
2n−2,

we have

r(j) + r(−j) = 2r0 + 2r2j
2 + · · ·+ 2r2n−2j

2n−2

and

ej(r(j) + r(−j)) = 2ejr0 + 2ejr2j
2 + · · ·+ 2ejr2n−2j

2n−2.
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For m = 0, 1, . . . , n− 2, we can isolate the r2m term to obtain

2ejr2mj
2m = ej(r(j) + r(−j))− 2ejr0 − · · · − 2ejr2m−2j

2m−2 − 2ejr2m+2j
2m+2

− · · · − 2ejr2n−2j
2n−2

= ej(r(j) + r(−j))−
m−1∑
k=0

2ejr2kj
2k −

n−1∑
k=m+1

2ejr2kj
2k.

Summing over j from 1 to m on both sides, this becomes

m∑
j=1

(2ejj2m)r2m =
m∑
j=1

ej(r(j) + r(−j))−
m−1∑
k=0

m∑
j=1

(2ejj2k)r2k −
n−1∑

k=m+1

m∑
j=1

(2ejj2k)r2k.

Apply identities 4.1 and 4.2 to obtain

r2m = 1
(2m)!

 m∑
j=1

(
ej
(
r(j) + r(−j)

))
−

 n−1∑
k=m+1

m∑
j=1

(2ejj2k)r2k +
m∑
j=1

2ejr0

 ,
as desired.

We consider the odd case. For m = 1, 2, . . . , n− 1,

m∑
j=1

ojr(j) =
m∑
j=1

2n−2∑
k=0

ojrkj
k =

2n−2∑
k=0

m∑
j=1

ojrkj
k.

We split this summation into four pieces: when k is even, when k is odd and less than
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2m− 1, when k = 2m− 1, and when k is odd and greater than 2m− 1. This yields

m∑
j=1

ojr(j) =
n−1∑
k=0

m∑
j=1

ojr2kj
2k +

m−1∑
k=1

m∑
j=1

ojr2k−1j
2k−1 +

m∑
j=1

ojr2m−1j
2m−1

+
n−1∑

k=m+1

m∑
j=1

ojr2k−1j
2k−1 (4.3)

For any integer k,

m∑
j=1

ojj
2k−1 =

m∑
j=1

(−1)m−j
(

2m− 1
m− j

)
2j

m+ j
j2k−1

= m

m

m∑
j=1

(−1)m−j (2m− 1)!
(m− j)!(m+ j − 1)!

2j
m+ j

j2k−1

= 1
m

m∑
j=1

(−1)m−j (2m)!
(m− j)!(m+ j)!j

2k

= 1
m

m∑
j=1

(−1)m−j
(

2m
m− j

)
j2k.

Applying identities 4.1 and 4.2, this implies that

m∑
j=1

ojj
2k−1 = 1

m

(2m)!
2 = (2m− 1)!

if k = m and
m∑
j=1

ojj
2k−1 = 0

if k = 1, 2, . . . ,m− 1. So equation 4.3 becomes

m∑
j=1

ojr(j) =
n−1∑
k=0

m∑
j=1

ojr2kj
2k + r2m−1(2m− 1)! +

n−1∑
k=m+1

m∑
j=1

ojr2k−1j
2k−1.

Solving for r2m−1 yields the desired formula.
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4.4 Proof of Identity 4.1

In this section, we show that

2
m∑
j=1

(−1)m−j
(

2m
m− j

)
j2m = (2m)!

4.4.1 Preliminary Definitions

We begin by presenting some definitions.

Definition 4.4.1 (Permutations). A permutation of the set X = {1, 2, 3, . . . , n} is a

bijection from X to itself.

We represent permutations by writing their range in order. For example, if σ(1) =

2, σ(2) = 4, σ(3) = 3, and σ(4) = 1, then we write σ = (2, 4, 3, 1).

Definition 4.4.2 (Inverse Descents). Suppose σ is a permutation of {1, 2, . . . , n}.

For any integer i ∈ {1, 2, . . . , n− 1}, we say σ has an inverse descent at the element

i if σ−1(i) > σ−1(i+ 1).

For example, if σ = (2, 4, 3, 1), then σ has an inverse descent at 1 since σ−1(1) = 4

and σ−1(2) = 1. Additionally, σ has an inverse descent at 3, but not at 2. An inverse

descent happens whenever i+ 1 appears before i in our representation of σ.

Definition 4.4.3 (IDes). Given a permutation σ, IDes(σ) denotes the number of

inverse descents of σ. In mathematical notation,

IDes(σ) =
∣∣∣∣{i ∈ {1, 2, . . . , 2m− 1} | i+ 1 occurs to the left of i in σ

}∣∣∣∣.
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Definition 4.4.4 (Reverse of a Permutation). Let σ = (a1, a2, . . . , an) be a permu-

tation. Then the reverse of σ, denoted σ̂, is the permutation (an, an−1, . . . , a2, a1).

For example, if σ = (2, 4, 3, 1) then σ̂ = (1, 3, 4, 2).

For our proof, we will only deal with permutations of an even number of elements.

Definition 4.4.5 (S2m). For m ≥ 1, we define S2m to be the set of permutations of

{1, 2, . . . , 2m}.

Suppose σ ∈ S2m. It is clear that IDes(σ) = 2m−1− IDes(σ̂), since σ̂ reverses the

order of every pair. From this, we see that IDes(σ) ≤ m− 1 ⇐⇒ IDes(σ̂) > m− 1.

Since mapping a permutation to its reverse is an involution and no permutation is

its own reverse, exactly (2m)!/2 of the permutations of {1, 2, . . . , 2m} have m− 1 or

fewer inverse descents.

Definition 4.4.6 (S2m). Let S2m be the set of permutations σ ∈ S2m such that

IDes(σ) ≤ m− 1.

Dividing both sides of identity 4.1 by 2, we obtain

(2m)!
2 =

m∑
j=1

(−1)m+j
(

2m
m− j

)
j2m.

This suggests that the identity may be proven by establishing a bijection between

S2m and another set of cardinality
m∑
j=1

(−1)m+j
(

2m
m−j

)
j2m. This set will be the set of

so-called “minimal" strings of length 2m with characters in {1, 2, . . . ,m}. The main

work of this section is to define these strings, after which counting them will be

straightforward.
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4.4.2 Results About Strings

Definition 4.4.7 (Strings). Let {1, 2, . . . , k}2m denote the set of strings of length 2m

made from the characters 1 through k.

We represent strings with parentheses and commas, the same notation as we use

for permutations.

Definition 4.4.8 (Indexing Strings). For any s ∈ {1, 2, . . . , k}2m and for any i ∈

{1, 2, . . . , 2m}, let si be the ith character of s (with indexing starting at 1).

We now define a function which maps strings in {1, 2, . . . ,m}2m to permutations

in S2m.

Definition 4.4.9 (Standardization). Let the standardization map, A : {1, 2, . . . ,m}2m

→ S2m, be defined as follows: Given a string s, define n1, n2, . . . , nm such that s has

ni copies of the character i. Then A(s) is obtained by replacing the n1 copies of 1

from left to right with 1, 2, . . . , n1, replacing the n2 copies of 2 from left to right with

n1 +1, n1 +2, . . . , n1 +n2, and in general, replacing the ni copies of i from left to right

with n1 + n2 + · · ·+ ni−1 + 1, n1 + n2 + . . . ,+ni−1 + 2, . . . , n1 + n2 + · · ·+ ni−1 + ni.

Since s has at most m distinct characters, the image of s has at most m− 1 inverse

descents and is contained in S2m.

This definition was used in [25]. Helpful descriptions of standardization can be

found in [13] and [19]. As an example, when m = 4, we have

A((4, 1, 1, 2, 2, 4, 3, 2)) = (7, 1, 2, 3, 4, 8, 6, 5).
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Note that this map is not one-to-one, since

A((3, 1, 1, 1, 1, 3, 2, 1)) = (7, 1, 2, 3, 4, 8, 6, 5).

So A−1 is not a well-defined function. Instead, we define B : S2m → {1, 2, . . . , 2m}2m

that maps σ to an element of the inverse image of σ under A by the inverse stan-

dardization algorithm.

Algorithm 1 Inverse Standardization Algorithm
INPUT: A permutation σ ∈ S2m.
OUTPUT: A string s ∈ {1, 2, . . . ,m}2m such that A(s) = σ.

1: Set previous_index to be 0.
2: Set current_character to be 1.
3: for each integer i from 1 to 2m do
4: Let j be the index of i in σ.
5: if j < previous_index then
6: current_character = current_character +1.
7: end if
8: Set sj to be current_character.
9: Set previous_index to be j.

10: end for

For example, B((7, 1, 2, 3, 4, 8, 6, 5)) = (3, 1, 1, 1, 1, 3, 2, 1). Let B(σ) = s, where s

is the result of applying the inverse standardization algorithm to σ. By the definition

of this algorithm, it is clear that A(B(σ)) = σ (so B is a right inverse of A). This

algorithm also tells us something about strings that map to a given σ: the number

of inverse descents in a permutation σ forces any string which standardizes to σ to

have a certain number of distinct characters.

Proposition 4.4.10. If σ is a permutation of {1, 2, . . . , 2m} and s ∈ {1, 2, . . . , 2m}2m

such that A(s) = σ, then the number of distinct characters in s is at least IDes(σ)+1.
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Proof. Let σ be a permutation of {1, 2, . . . , 2m} and let s ∈ {1, 2, . . . , 2m}2m such that

A(s) = σ. Suppose σ−1(i1) > σ−1(i1 + 1), σ−1(i2) > σ−1(i2 + 1), . . . , σ−1(iIDes(σ)) >

σ−1(iIDes(σ) + 1), with ij < ij+1 for all j. For any j from 1 to IDes(σ), sσ−1(ij+1) must

be strictly greater than sσ−1(ij). Otherwise, σ−1(ij + 1) would be less than σ−1(ij)

since A(s) = σ. This contradicts the assumption that σ−1(ij) > σ−1(ij + 1). So we

have

sσ−1(i1) < sσ−1(i1+1) ≤ sσ−1(i2) < sσ−1(i2+1) ≤ · · · < sσ−1(iIDes(σ)).

So s has at least IDes(σ) + 1 distinct characters.

Note that the inverse standardization algorithm only adds in a new character at each

inverse descent of the permutation. Hence if a permutation σ has m − 1 or fewer

inverse descents, then B(σ) ∈ {1, 2, . . . ,m}2m. Since B is a right inverse of A, we

have found a string in {1, 2, . . . ,m}2m that maps to σ under A. The inverse of this

statement also holds, since a string with m characters can only map to a permutation

with m− 1 or fewer inverse descents. So we have the following lemma:

Lemma 4.4.11. For any permutation σ ∈ S2m, σ ∈ S2m if and only if there exists

some s ∈ {1, 2, . . . ,m}2m such that A(s) = σ.

By the lemma above, every permutation in S2m has a preimage under A, which is

given by some string in {1, 2, . . . ,m}2m.

4.4.3 Incrementing Strings

We now introduce the idea of an increment. Given a string s of length 2m and an

index j with 1 ≤ j ≤ 2m, the idea of an increment of s at the index j is to find the
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string t such that A(s) = A(t), tj = sj + 1, and for every other index i, ti = si if

possible and ti = si + 1 otherwise.

For example, consider the string s = (2, 1, 2, 2, 1, 1, 2, 2) when m = 4. Then

A(s) = (4, 1, 5, 6, 2, 3, 7, 8).

If we increment s at j = 1, then we must replace the first 2 with a 3: (3, 1, 2, 2, 1, 1, 2, 2).

But this does not map to the same permutation under A, so we will have to add 1

to other entries. In this situation, we will be forced to replace every 2 with a 3, but

every 1 can remain. We introduce this notation: the increment of string s at index i

is s inc i. So in our example,

(2, 1, 2, 2, 1, 1, 2, 2) inc 1 = (3, 1, 3, 3, 1, 1, 3, 3).

Definition 4.4.12 (Incrementing a String). Let s be a string. Then we define its

increment at the jth position, s inc j, by

(s inc j)i =




si if si ≤ sj

si + 1 if si > sj

if i < j


si if si < sj

si + 1 if si ≥ sj

if i ≥ j

Since we are only considering strings in {1, 2, . . . ,m}2m, the increment map is un-

defined on s if and only if s contains the character m. If we try to increment at some
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index j where sj = m, the result will bem+1 at that index, and if we try to increment

at an index j where sj < m, then the m will still get replaced with an m+1. But if no

m appears in s, then s inc j will be a valid element of {1, 2, . . . , 2m}2m for any index j.

For our proof, we need to learn how to invert an increment. We define s inc −1j

to be the string t such that t inc j = s, if such a t exists. In what situations would an

inverse increment not exist? Obviously, we cannot subtract 1 from 1, because 0 is not

an allowed character. Also, the incrementing function will result in strings that have

a certain structure. This gives us a criteria to identify which strings can be inverse

incremented.

Remark 4.4.13. Suppose t = s inc j. First, let i be an index less than j. We claim

that ti 6= sj + 1. By the definition of the incrementing function, either ti = si or

ti = si + 1. If si = sj, then the incrementing function will not change it, meaning

ti = sj. If si = sj+1, then the incrementing function will add one to it. So ti = sj+2.

This means that no instance of sj + 1 will occur to the left of the index j in the string

t. A similar argument shows that no instance of sj will occur to the right of j in t.

We refer to these absences of certain characters as “gaps.”

So we observe that a string which has been incremented at a given index will have

certain properties. The converse also holds: if all three of the conditions in Remark

4.4.13 are true of t at the index j, then there does exist a string s ∈ {1, 2, . . . ,m}2m

such that t = s inc j. This gives us the following proposition:

Proposition 4.4.14. Let s be a string. Then s inc −1j exists if and only if
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1. sj 6= 1

2. for all i < j, si 6= sj

3. for all i > j, si 6= sj − 1.

Here is the rule to compute an inverse increment:

(s inc −1j)i =




si if si ≤ sj

si − 1 if si > sj

if i < j


si if si < sj

si − 1 if si ≥ sj

if i ≥ j

Definition 4.4.15 (Minimal Strings). We define a string s to be minimal if, for all

j, s inc −1j does not exist.

We will need a couple of theorems here. Before we can state them, we present

some definitions and lemmas.

Definition 4.4.16. Let s be a string. Then we define s to be the string that consists

of the entries of s sorted in weakly increasing order.

Recall that ni is defined to be the number of occurrences of i in s (with context

making it clear which string ni is referring to).

Lemma 4.4.17. Let s be a string. If sj = i and

s = 1, 1, . . . , 1︸ ︷︷ ︸
n1

, . . . , i, i, . . . , i︸ ︷︷ ︸
ni

, . . . ,m,m, . . . ,m︸ ︷︷ ︸
nm

,
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then

s inc j = 1, 1, . . . , 1︸ ︷︷ ︸
n1

, . . . , i, . . . , i, i+ 1, . . . , i+ 1︸ ︷︷ ︸
ni

, i+ 2, . . . , i+ 2︸ ︷︷ ︸
ni+1

, . . . ,m+ 1, . . . ,m+ 1︸ ︷︷ ︸
nm

.

Proof. By the definition of the increment of a string at j, every instance of i to the

right of sj gets increased by 1, and every entry greater than i also gets increased by

1. But every instance of i to left of sj remains unchanged.

As a reminder, the standardization map Amaps strings to permutations by tracing

through the entries in weakly increasing order, from left to right. So if A(s) = A(t)

for strings s and t, then s and t have the same relative ordering of their elements.

As an illustration, consider s = (1, 3, 2, 3) and t = (1, 5, 4, 6). They both map to

(1, 3, 2, 4) under A, and si ≤ sj if and only if ti ≤ tj for any indices i and j.

Lemma 4.4.18. Let s and t be strings. If s = t and A(s) = A(t), then s = t.

Proof. Since A(s) = A(t), when s and t are both sorted in weakly increasing order,

the resulting permutation of the entries will be the same (the index of si in s must

be the same as the index of ti in t). Since s = t, it must be that si = ti for all i. So

s = t.

Theorem 4.4.19 (Increments Commute). Let s be a string. Then (s inc j) inc k =

(s inc k) inc j.

Proof. Without loss of generality, suppose position j is to the left of position k. Sup-

pose sj = d and sk = e. By Lemma 4.4.17, in both (s inc j) inc k and (s inc k) inc j,

every character after that instance of e has 2 added to it, and every character be-

tween that instance of d but before that instance of e has 1 added to it. There-
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fore, (s inc j) inc k = (s inc k) inc j. Since A((s inc j) inc k) = A((s inc k) inc j),

Lemma 4.4.18 implies that (s inc j) inc k = (s inc k) inc j.

Theorem 4.4.20. If s can be inverse incremented at two distinct indices j and k,

then there exists some t such that t inc j = s inc −1k and t inc k = s inc −1j. As a

result, if a string can be inverse incremented in two different locations, then it can be

inverse incremented twice.

Proof. Without loss of generality, suppose sj < sk. We begin by showing that

s inc −1j can be inverse incremented at k. When we compute s inc −1j, all instances

of sj are replaced by sj−1 and all instances of sk are replaced by sk−1. Additionally,

since sk − 1 ≥ sj, all instances of sk − 1 are replaced by sk − 2. This guarantees that

k is the first instance of sk− 1 in s inc −1j. And we know that there are no instances

of sk− 2 to the right of k in s inc −1j since s has no occurrences of sk− 1 to the right

of k. So s inc −1j can be inverse incremented at k.

Now we will show that s inc −1k can be inverse incremented at j. Since sj < sk, all

instances of sj are unchanged, so j is still the first occurrence of sj in s inc −1k. Also,

since s contains no instances of sj − 1 to the right of j, s inc −1k also contains no

instances of sj − 1 to the right of j. So s inc −1k can be inverse incremented at j.

Now will show that (s inc −1j) inc −1k = (s inc −1k) inc −1j. Compared to s, both

(s inc −1j) inc −1k and (s inc −1k) inc −1j will have 2 subtracted from every entry af-

ter sk, and 1 subtracted from every entry after sj but before sk. So (s inc −1j) inc −1k =

(s inc −1k) inc −1j. By Lemma 3.5, (s inc −1j) inc −1k = (s inc −1k) inc −1j.

Let s be a string, and choose r different indices to increment it at. Then this

resulting string has r different strings directly incrementing to it. But could there be
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more strings that map to it? We have found that the answer is no, as long as the

original string is minimal.

Lemma 4.4.21. A string s is minimal if and only if s = B(A(s)).

Proof. (⇒) Suppose s is minimal. Then for every index i, either si = 1, or si appears

to the left of i, or si − 1 appears to the right of i. Let c > 1 be a character in s.

Consider the leftmost location, i, of c. Since we cannot inverse increment s at that

index, there must be an instance of c− 1 to the right of i. So whenever s contains c,

s also contains c − 1: if r is the maximum character occurring in s, then s contains

all of 1, 2, . . . , r. For all c > 1, the first occurrence of c in s must be in one-to-one

correspondence with the inverse descents of A(s). Suppose s has nc occurrences of

the character c. So the standardization map starts by putting down 1, 2, 3, . . . , n1

where the 1’s are, from left to right. After the last 1, it goes back to the first 2, and

puts down n1 + 1, n1 + 2, . . . , n1 + n2 where the 2’s are, from left to right. Then it

goes back and puts n1 + n2 + 1 where the first 3 is, and so on. Now suppose we are

computing B(A(s)). We will trace through 1, 2, . . . , n1 and put 1’s in those spots.

Then n1 + 1 occurs to the left, so we put a 2 in that spot, and so on. The result is

that B(A(s)) = s.

(⇐). Suppose s = B(A(s)). By the definition of B, any entry c of B(A(s)) is either

equal to 1, or it is the first occurrence of c (in which case it is the result of an inverse

descent, so c − 1 occurs to the right), or it is a later occurrence of c (in which case

another c is to the left of it). In any situation, B(A(s)) cannot be inverse incremented

at c. So s is a minimal string.

Every permutation σ has a single string s such that s = B(σ). So there is exactly

one minimal string in the set A−1(σ). And we know that, if a string can be inverse
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incremented in two different places, then it can be inverse incremented twice. Suppose

a minimal string and some other string can both be incremented to make s. Then

it would have to be possible to inverse increment the minimal string by Theorem

3.7, which is a contradiction. So if a minimal string increments to make s, no other

strings can be incremented to make s. If a string is 1 increment above a minimal

string, then exactly one string increments to it. Suppose s is two distinct increments

above a minimal string, a. Then there exist distinct t1 and t2 both one increment

above a and both one increment below s. Could any other strings increment to s?

Since a is the only minimal string in A−1(A(s)), any string that increments to s must

ultimately inverse increment to a. Recall that incrementing a string always increases

the maximal character by 1, so if a string is k increments above its minimal string,

then its maximal character is k higher than the maximal character of the minimal

string. Likewise, an inverse increment always decreases the maximal character by 1.

Lemma 4.4.22. For any string s, if j 6= k, then s inc j 6= s inc k.

Proof. Without loss of generality, suppose j < k. If sj ≤ sk, then (s inc j)j = sj + 1

and (s inc k)j = sj. If sj > sk, then (s inc j)k = sk and (s inc k)k = sk + 1.

Lemma 4.4.23. If t is a minimal string and s = ((t inc j1) inc j2) . . . inc jr, then

s can be inverse incremented at ji for all i from 1 to r, and at no other indices.

Proof. We will prove this by induction on r. When r = 1, s = t inc j1. Since t is

minimal and s is a single increment above t, only t can increment to s. If s can be

inverse incremented at some other index k, then we would have t inc j1 = t inc k,

contradicting the previous lemma.

For the inductive step, suppose that for some positive integer r, if t is a minimal
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string and s = ((t inc j1) inc j2) . . . inc jr, then s can be inverse incremented at ji

for all i from 1 to r, and at no other indices. So consider some index k such that

k 6= ji for all i. Either sk = 1, or sk occurs to the left of k, or sk − 1 occurs to the

right of k. Now suppose we increment s at jr+1 for some index jr+1 6= k.

Case 1: If sk < sjr+1 , then all instances of sk and sk − 1 do not get changed by

incrementing s at jr+1, and we still cannot inverse increment at k.

Case 2: Suppose sk = sjr+1 . If position k is to the right of position jr+1, then both

sk and srj+1 get incremented, and we cannot then inverse increment at k. Otherwise,

position k is to the left of position jr+1, and we will consider the three subcases

separately. If some instance of sk appears to the left of k, then both sk and that

other instance will not be incremented. So we still can’t inverse increment at k. If

some instance of sk − 1 appears to the right of k, then neither will get incremented,

so we still can’t inverse increment at k. Finally, if sk = 1, then this 1 will not get

incremented because it is to the left of jr+1. So we can still not inverse increment at

k.

Case 3: Suppose sk > sjr+1 . Then sk will have 1 added to it, making sk+1 at position

k. If an instance of sk is to the left of k, it will also have 1 added to it. If an instance

of sk − 1 appears to the right of k, then either sk − 1 > sj and it gets 1 added to it,

or sj = sk − 1, and sj itself gets 1 added to it to make an instance of sk appear to

the right of position k. And sk could not be 1, since sk is strictly than sjr+1 , which is

at least 1. In any situation, s inc jr+1 cannot be inverse incremented at k.

So this lemma tells us that if s is two increments above minimal a (meaning s =

(a inc j inc k)), then only a inc j and a inc k increment to s. If s = ((a inc j1) inc j2)

inc j3, then only three strings increment directly to s.
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4.4.4 Inclusion-Exclusion Proof

Theorem 4.4.24. For all positive integers m,

2
m∑
j=1

(−1)m+j
(

2m
m− j

)
j2m = (2m)!

Proof. We will count the number of permutations σ such that IDes(σ) ≤ m − 1.

As defined earlier, this is the set S2m, which has size (2m)!/2. This is equivalent to

counting the number of minimal strings we can make of length 2m from {1, 2, . . . ,m}.

There are m2m total strings. Many of those are not minimal. We know that a string

is not minimal if and only if it can be inverse incremented. A string s can be inverse

incremented if and only another string can be incremented to make s. A string can

be incremented if and only if the string does not contain any m’s. So if we take every

string from {1, 2, . . . ,m − 1}2m and increment them at each of their 2m indices, we

will definitely cover every non-minimal string.

So we subtract off (2m)(m− 1)2m. But we subtracted off too much, because some

strings can be inverse incremented in more than one place. A string can be inverse

incremented in two places if and only if it can be inverse incremented twice (at dif-

ferent indices). A string s can be inverse incremented twice (at different indices) if

and only if there is some other string that can be incremented at two different indices

to make s. So we take all strings that can be incremented twice (those which do

not use m or m− 1) and increment them in two distinct indices, and we will get ev-

49



ery string who can be inverse incremented in two places. So we add on
(

2m
2

)
(m−2)2m.

But some strings can get double-inverse-incremented to more than one string.

Those are the strings who can be inverse incremented in at least 3 different indices.

A string can be inverse incremented in three distinct indices if it is the triple increment

of some other string that doesn’t use m,m − 1,m − 2. So we can definitely get rid

of all the duplicates by subtracting off
(

2m
3

)
(m − 3)2m. And this is going to keep

happening, until we have to either add on or subtract off all strings that can be

inverse incremented m− 1 times. These are made from taking a string using only 1’s

and incrementing it in m − 1 indices. There is only one string made from all 1’s: it

is 1, 1, 1, . . . , 1, and it is minimal. Since this string is minimal, any string made from

incrementing it at m − 1 distinct indices cannot be inverse incremented anywhere

else. And since increments commute, this means the string with all 1’s is the unique

(m− 1)−degree inverse increment of these strings. So we have not over-counted this

time. This shows that

m∑
j=1

(−1)m+j
(

2m
m− j

)
j2m = (2m)!/2.
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4.5 Work Towards a Proof of Identity

4.2

Recall that identity 4.2 says

m∑
j=1

(−1)m+j
(

2m
m− j

)
ji = 0

for i = 2, 4, . . . , 2m− 2. In this section, we demonstrate how to prove small cases of

the identity (like i = 2, i = 4, etc...) first using Gosper’s algorithm, and also using

an inductive polynomial argument.

4.5.1 Gosper’s Algorithm

Gosper’s algorithm seeks to find a closed formula for the sum
n∑
j=1

tj by finding another

term zj such that tj = zj+1 − zj for all indices j [23, p. 73-75]. When the algorithm

succeeds, one can use a telescoping series to simplify a summation as follows:

n∑
j=1

tj = zn+1 − z1.

We use a Mathematica implementation of Gosper’s algorithm from [22]. We demon-

strate the result of Gosper’s algorithm on our identity when i = 2. Let

zj = −(j − 1)(j +m)
2j(m− 1) (−1)j+m

(
2m
m− j

)
j2.
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Observe that

zj+1 − zj = − (j)(j + 1 +m)
2(j + 1)(m− 1)(−1)j+1+m

(
2m

m− j − 1

)
(j + 1)2

+ (j − 1)(j +m)
2j(m− 1) (−1)j+m

(
2m
m− j

)
j2

= j(j + 1 +m)(−1)m+j(2m)!(j + 1)2

2(j + 1)(m− 1)(m− j − 1)!(m+ j + 1)!

+ (j − 1)(j +m)(−1)j+m(2m)!j2

2j(m− 1)(m− j)!(m+ j)!

= j2(m− j)(−1)m+j(2m)!(j + 1)2

2j(j + 1)(m− 1)(m− j)!(m+ j)!

+ (j + 1)(j − 1)(m+ j)(−1)m+j(2m)!j2

2j(j + 1)(m− 1)(m− j)!(m+ j)!

= (−1)m+j
(

2m
m− j

)(
j2(m− j)(j + 1)2 + (j + 1)(j − 1)(m+ j)j2

2j(j + 1)(m− 1)

)

= (−1)m+j
(

2m
m− j

)(
j(2mj − 2j)

2m− 2

)

= (−1)m+j
(

2m
m− j

)
j2,

which implies that

m∑
j=1

(−1)m+j
(

2m
m− j

)
j2 =

m∑
j=1

(zj+1 − zj) = zm+1 − z1 = 0− 0 = 0.

We tested this up to i = 50 on Mathematica, and the identity was true every time.

But when we input i = 2m − 2, i = 2m − 4, or i = 2m − 2k for any integer k, the

algorithm failed to find zj.
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4.5.2 Polynomial Induction

We now present a second possible proof technique for identity 4.2. This proof will be

done by induction. We make the substitution k = m− j to rewrite the identity as

m−1∑
k=0

(−1)k
(

2m
k

)
(m− k)i = 0

for all i = 2, 4, . . . , 2m− 2. For any positive integers m and i, we define

Pm,i(x) =
m−1∑
k=0

(−1)k
(

2x
k

)
(x− k)i.

Since Pm,i(m) =
m−1∑
k=0

(−1)k
(

2m
k

)
(m− k)i, it suffices to show that (x−m) is a factor of

Pm,i(x). We start by considering i = 2.

Lemma 4.5.1. For all integers m ≥ 2,

Pm,2(x) = (−1)m−1 2m−1

(m− 1)!(x−m)(x− (m− 1))

m−1∏
j=0

(x− j/2)

x− 1 .
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Proof. For the base case, let m = 2.

P2,2(x) =
1∑

k=0
(−1)k

(
2x
k

)
(x− k)2

=
(

2x
0

)
(x− 0)2 −

(
2x
1

)
(x− 1)2

= x2 − 2x(x− 1)2

= −2x(x− 2)(x− 1/2)

= (−1)1 21

1! (x− 2)(x− 1)

1∏
j=0

(x− j/2)

x− 1 ,

as desired. For the inductive hypothesis, we assume that the proposition holds for

some m. We now show that it also holds for m+ 1. By the definition of Pm,i(x),

Pm+1,2(x) = Pm,2(x) + (−1)m
(

2x
m

)
(x−m)2.
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Using the inductive hypothesis and simplifying, we obtain

Pm+1,2(x) = (−1)m−1 2m−1

(m− 1)!(x−m)(x− (m− 1))

m−1∏
j=0

(x− j/2)

x− 1

+ (−1)m
(

2x
m

)
(x−m)2

= (−1)m−1 2m−1

(m− 1)!(x−m)(x− (m− 1))

m−1∏
j=0

(x− j/2)

x− 1

+ (−1)m (x−m)2

m!

m−1∏
j=0

(2x− j)

=
(−1)m x−m

(2x− 2)m!

m−1∏
j=0

(2x− j)
 (−m(x−m+ 1) + (x−m)(2x− 2))

=
(−1)m x−m

(2x− 2)m!

m−1∏
j=0

(2x− j)
 (2x−m)(x− (m+ 1))

= (−1)m2m
m! (x− (m+ 1))(x−m)

m∏
j=0

(x− j/2)

x− 1 ,

as desired.

Since (x − m) is a factor of Pm,2(x), this gives us an alternate proof that the

identity is true in the i = 2 case. We applied the same method to i = 4, and similarly

found a proof. We omit this, since it is nearly identical to the previous proof. The

only difference is that there is more algebra.

Lemma 4.5.2. For all integers m ≥ 3,

Pm,4(x) = (−1)m−1 2m−1

(m− 1)!(x−m)(x− (m− 1))Q4(x)

m−1∏
j=0

(x− j/2)

(x− 2)(x− 1) ,
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where

Q4(x) = x3 − (2m)x2 + (m2 +m− 2)x− (m2 −m).

We conjecture that there is a general form for these polynomials.

Conjecture 4.5.3. For all positive even integers i and for all integers m ≥ i− 1,

Pm,i(x) = (−1)m−1 2m−1

(m− 1)!(x−m)(x− (m− 1))Qi(x)

m−1∏
j=0

(x− j/2)

i/2∏
j=0

(x− j)
,

where Qi(x) is a degree 3(i − 1)/2 polynomial whose coefficients are polynomials of

degree i− 2 or less in the variable m.

We have not been able to conjecture an exact formula for the coefficients of Qi(x).
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Chapter 5

The Matrix Formulas

In this chapter, we seek a general expression for the matrix Toom-n formulas. As

stated in Chapter 2, this is done by viewing polynomial evaluation as matrix mul-

tiplication, and finding the inverse of the matrix. While we do not find a general

formula for the inverse, the process of trying to derive it leads us to a proof of the

loss of precision of the matrix formulas.

5.1 A Review of Relevant Properties of

Matrices

In this section, we discuss the process of inverting a matrix, Vandermonde matrices,

and their determinants.

We now review how to invert a matrix, V . First, we need the matrix of minors,

M . The entry Ma,b is equal to the determinant of the submatrix of V formed by
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removing the ath column and the bth row from V (with indexing starting at 1). Then

we compute the cofactor matrix, C, given by Ca,b = (−1)a+bMa,b. The inverse of the

original matrix is given by

V −1 = 1
det(V )C

T .

The most substantial step in this process is computing the matrix of minors. So if

we can easily find determinants of submatrices of V , inverting is easy.

Now we discuss Vandermonde matrices. A matrix V is said to be Vandermonde

if, for some real numbers c1, . . . , cn,

V =



1 c1 c2
1 . . . cm−1

1

1 c2 c2
2 . . . cm−1

2
... ... ... . . . ...

1 cm c2
m . . . cm−1

m


.

It is well-known that the corresponding determinant is given by

det(V ) =
∏

1≤k<j≤m
(cj − ck).

Computing the matrix of minors of V is less straightforward, because the result of

removing a column is no longer a Vandermonde matrix. However, a formula for the

determinants of the submatrices is given in [24]. That work uses the notation

Sk(c1, . . . , cm) =
∑

1≤i1<···<ik≤m
ci1ci2 . . . cik ,
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with

S0(c1, . . . , cm) = 1.

Suppose the matrix Vb is given by

Vb =



1 c1 c2
1 . . . cb−1

1 cb+1
1 . . . cm−1

1

1 c2 c2
2 . . . cb−1

2 cb+1
2 . . . cm−1

2
... ... ... . . . ... ... . . . ...

1 cm c2
m . . . cb−1

m cb+1
m . . . cm−1

m


.

Then its determinant is given by the expression

det(Vb) = Sm−b(c1, . . . , cm)
∏

1≤k<j≤m
(cj − ck).

Finally, recall that for any matrix M , if the ath row of M consists of a 1 in the

bth entry and 0’s everywhere else, then the determinant is given by

det(M) = (−1)a+bMa,b.

5.2 Work on Inverting the Toom-n Ma-

trix

In this section, we apply properties of Vandermonde matrices to work toward an

expression for the inverse of the Toom-n matrix. Recall that the Toom-n matrix is
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defined to be

V (n) =



1 −(n− 2) . . . (−(n− 2))2n−3 (−(n− 2))2n−2

1 −(n− 3) . . . (−(n− 3))2n−3 (−(n− 3))2n−2

... ... . . . ... ...

1 n− 1 . . . (n− 1)2n−3 (n− 1)2n−2

0 0 . . . 0 1


.

We note that monomial anti-symmetric functions could provide another direction of

future work finding the inverse.

5.2.1 Computing the Determinant of V (n)

First, we note that this is nearly a Vandermonde matrix: only the bottom row is not

of the correct form. But the presence of a single 1 in the midst of 0’s implies that the

determinant of V (n) is given by

det(V (n)) = (−1)(2n−1)+(2n−1)V (n)2n−1,2n−1.

Let sV (n) denote the submatrix formed by removing the (2n− 1)th row and the

(2n− 1)th column. This submatrix is a Vandermonde matrix, where m = 2n− 2 and
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ci = i− (n− 1). So

det(V (n)) = det(sV (n))

=
∏

1≤k<j≤2n−2
(cj − ck)

=
∏

1≤k<j≤2n−2
(j − (n− 1)− (k − (n− 1)))

=
2n−2∏
j=1

j−1∏
k=1

(j − k)

=
2n−2∏
j=1

(j − 1)!

= 0!× 1!× · · · × (2n− 3)!

This product of factorials is called a superfactorial, and it is denoted by (2n − 3)$.

For reference, the first few values are

n n$

0 1

1 1

2 2

3 12

4 288

5 24560

6 24883200

So the overall determinant of V (n), which we have already stated is 1 times the
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determinant of sV (n), is

det(V (n)) = (2n− 3)$.

5.2.2 Determinants of Submatrices of V (n)

In order to invert V (n), we need the determinant of the submatrix of V (n) with the

ath row and the bth column removed, for all a, b ∈ {1, 2, . . . , 2n − 2}. One special

case is

V (n)2n−2,2n−2 = (2n− 3)$,

since removing the last column and the last row leaves sV (n). The other special case

is that when we remove the last column, and some row other than the bottom row.

In this case,

V (n)a,2n−2 = 0

since the bottom row would then be entirely 0’s.

For any value of b 6= 2n−2, removing the bth column will cause the new submatrix

to no longer be a Vandermonde matrix since a power will be absent. So we need

something different to compute V (n)a,b when b 6= 2n − 2. There is a special case: if

a = 2n− 2, then the last column will still contribute to the determinant because the

bottom row will not be there. For now, let us assume a 6= 2n− 2 and b 6= 2n− 2. In

this case, the bottom row will still be all 0’s with a 1 at the right side, implying that

V (n)a,b = sV (n)a,b.
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So let c1, c2,. . . , c2n−3 = −(n− 2), −(n− 3), . . . , a− n, a− n+ 2, . . . , n− 1. Then

V (n)a,b = sV (n)a,b

= S2n−2−b(c1, . . . , c2n−3)
∏

1≤k<j≤2n−3
(cj − ck).

Note that subscript on the S is 2n− 2− b because the (b− 1)th power is absent from

the rows of the matrix, and 2n− 3− (b− 1) = 2n− 2− b.

We now address the special case when a = 2n−2 and b 6= 2n−2. In this situation,

c1, c2,. . . , c2n−3 = −(n−2), −(n−3), . . . , n−1. None of the rows are omitted. Also,

compared to the expression for V (n)a,b when both a and b were not equal to 2n− 2,

the upper limit of the product indices is 2n − 2 instead of 2n − 3 because the last

column is not omitted. So

V (n)2n−2,b = S2n−2−b(c1, . . . , c2n−3)
∏

1≤k<j≤2n−2
(cj − ck)

= S2n−2−b(c1, . . . , c2n−3) det(V (n))

= S2n−2−b(c1, . . . , c2n−3)(2n− 3)$. (5.1)

We need to find a general expression for sum and product components of those

formulas. For brevity, we introduce the notation

∑
(a, b) = S2n−2−b(c1, . . . , c2n−3)
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and ∏
(a) =

∏
1≤k<j≤2n−3

(cj − ck),

where the ci’s are determined by the context. Both expressions depend on a, because a

determines which ci’s are included. The next section will discuss our progress on both.

5.3 Sums and Products

In this section, we derive a general formula for ∏(a) and provide an explanation as

to why ∑(a, b) is more challenging.

5.3.1 A General Expression for the Product

As some helpful notation, we let a? = a− (n− 1). This converts from the row index

to the number being exponentiated in that row of V (n). The values for ∏(a), for

n = 4, are shown in the following table.

a a?
∏(a)

1 -2 288

2 -1 1440

3 0 2880

4 1 2880

5 2 1440

6 3 288

Observe that these values are all divisible by 288, which is a superfactorial number.
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Furthermore, dividing them by 288 yields 1, 5, 10, 10, 5, 1, which is a row of Pascal’s

triangle. This leads us to the following result.

Proposition 5.3.1. Let n > 2 be a positive integer, let a ∈ {1, 2, . . . , 2n − 2}, and

let a? = a− (n− 1). Let c1, . . . , c2n−3 = −(n− 2), . . . , a?− 1, a? + 1, . . . , n− 1. Then

∏
1≤k<j≤2n−3

(cj − ck) =
(

2n− 3
a− 1

)
(2n− 4)$.

Proof. Let d1, d2, . . . , d2n−2 = −(n− 2),−(n− 3), . . . , n− 1. From the calculation of

det(V (n)), we know that

∏
1≤k<j≤2n−2

(dj − dk) = (2n− 3)$.

Since the list of ci’s is equal to the list of di’s with a? removed, we can divide (2n−3)$

by the contributions from a?:

∏
1≤k<j≤2n−3

(cj − ck) = (2n− 3)$(
(a?−1)∏

c=−(n−2)
(a? − c)

)(
n−1∏

c=a?+1
(c− a?)

) .

These two products involving a? can be simplified to

(a?−1)∏
c=−(n−2)

(a? − c) = (a? + n− 2)!

and
n−1∏

c=a?+1
(c− a?) = (n− 1− a?)!.
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Substituting these in and rearranging, we obtain

∏
1≤k<j≤2n−3

(cj − ck) = (2n− 3)$
(a? + n− 2)!(n− 1− a?)!

= (2n− 4)$(2n− 3)!
(a? + n− 2)!(n− 1− a?)!

= (2n− 4)$
(

2n− 3
a? + n− 2

)

= (2n− 4)$
(

2n− 3
a− 1

)
.

5.3.2 Work Towards a General Expression for

the Sum

We have not found a general formula for ∑(a, b). Recall that

∑
(a, b) = S2n−2−b(c1, . . . , c2n−3) =

∑
1≤i1<···<ik≤2n−2−b

(ci1ci2 . . . cik),

where c1, . . . , c2n−3 = −(n − 2), . . . , a? − 1, a? + 1, . . . , n − 1. The following table

contains ∑(a, b) in the (a, b)th entry, for n = 4:
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a?\b 1 2 3 4 5 6

-2 0 -6 -5 5 5 1

-1 0 -12 -16 -1 4 1

0 12 4 -15 -5 3 1

1 0 12 -8 -7 2 1

2 0 6 -1 -7 1 1

3 0 4 0 -5 0 1

We also present the table for n = 5:

a?\b 1 2 3 4 5 6 7 8

-3 0 48 28 -56 -35 7 7 1

-2 0 72 54 -71 -60 -2 6 1

-1 0 144 180 -16 -65 -9 5 1

0 -144 -36 196 49 -56 -14 4 1

1 0 -144 108 88 -39 -17 3 1

2 0 -72 18 89 -20 -18 2 1

3 0 -48 4 64 -5 -17 1 1

4 0 -36 0 49 0 -14 0 1

There are some visible patterns, but we do not have a formula to compute ∑(a, b) in

general. Without this, we cannot discover a general expression for the inverse of the

Toom-n matrix. However, we make two observations about the values of ∑(a, b) that

will be sufficient to prove the loss of precision of the matrix formulas:

• Every value of ∑(a, b) is an integer, since it is a sum of products of integers.
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• For all n and for all a, ∑(a, 2n−2) = 1 since S0(c1, . . . , c2n−3) = 1 by definition.

5.4 Loss of Precision

5.4.1 Preliminary Discussion about Losing Pre-

cision

In this section, we use the progress of the previous section to prove the loss of precision

of the matrix formulas. Recall that for an integer x, v2(x) denotes the 2-adic valuation

of x. This is also equal to the largest power of 2 dividing x. We also introduce some

notation: for any integer n ≥ 2, L(n) denotes the loss of precision of the matrix Toom-

n formulas. Recall that a bit of precision is lost when a division by 2 is performed.

This effect has the potential to stack if an expression that has already lost bits is

then divided by another power of 2. The loss of precision is easier to trace in the

matrix formulas (as compared to the natural and efficient formulas) because all of

the coefficients (r0, . . . , r2n−2) are calculated explicitly in terms of the r(a) values.

To illustrate this point, compare the equation for r2 in the Toom-4 matrix formulas:

r2 = 1
4!

(
− r(−2) + 16r(−1)− 30r(0) + 16r(1)− r(2) + 96r(∞)

)

to that of the Toom-4 natural formulas:

r2 = 1
2!

(
(r(1) + r(−1))− 2r0 − 2r4 − 2r6

)
.
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The latter depends on r0, r4, and r6, while the former does not. This is significant,

because the computation of r4 has already lost precision.

Because the coefficients ri and rj are computed independently of each other in the

matrix formulas, the loss of precision is equal to the largest power of 2 that appears

in the denominator of any entry in the Toom-n matrix. For example, the Toom-4

matrix formulas lose 3 bits of precision because the largest power of 2 that appears

in a denominator 23. This is caused by the denominators 4! and 5!, which factor as

(23)(3) and (23)(15), respectively.

We now describe the entries of the Toom-n matrix. The transposing and the

multiplication by (−1)a+b have no effect on the largest power of 2 appearing in a

denominator, so we will disregard those steps. Therefore, we only need to look at

Ma,b/ det(V (n)) as a and b range from 1 to 2n− 2. There are four cases to consider.

If a = b = 2n− 2, then

M2n−2,2n−2

(2n− 3)$ = (2n− 3)$
(2n− 3)$ = 1.

If a 6= 2n− 2 and b = 2n− 2, then

Ma,2n−2

(2n− 3)$ = 0
(2n− 3)$ = 0.
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If a 6= 2n− 2 and b 6= 2n− 2, then

Ma,b

(2n− 3)$ =
∏(a)∑(a, b)

(2n− 3)$

=

(
2n−3
a−1

)
(2n− 4)$∑(a, b)
(2n− 3)$

=

(
2n−3
a−1

)∑(a, b)
(2n− 3)!

=
∑(a, b)

(a− 1)!(2n− 2− a)! .

If a = 2n− 2 and b 6= 2n− 2, then by equation 5.1,

Ma,b

(2n− 3)$ = (2n− 3)$∑(a, b)
(2n− 3)$

=
∑

(a, b).

Since the first two cases have no denominator and ∑(a, b) is always an inte-

ger, the loss of precision is less than or equal to the largest power of 2 dividing

(a− 1)!(2n− 2− a)!, as a ranges from 1 to 2n− 2.

Proposition 5.4.1. L(n) ≤ max
{
v2((a− 1)!(2n− 2− a)!)

}2n−2

a=1
.

So we seek the maximum value of v2((a− 1)!(2n− 2− a)!) as a ranges from 1 to

2n− 2.
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5.4.2 Proving the Loss of Precision

In this section, we prove that the matrix Toom-n formulas lose v2((2n − 4)!) bits of

precision.

Proposition 5.4.2. Let n > 2. Then max
{
v2((a−1)!(2n−2−a)!)

}2n−2

a=1
= v2((2n−

4)!).

Proof. Let f(a) = v2((a − 1)!(2n − 2 − a)!). This function is symmetric about a =

n− 1/2, since

f(n− 1/2− x) = v2((n− 1/2− x− 1)!(2n− 2− (n− 1/2− x))!)

= v2((n− 2 + 1/2 + x)!(n− 1/2− x− 1)!)

= v2((n− 1/2 + x− 1)!(n− 2 + 1/2− x)!)

= v2((n− 1/2 + x− 1)!(2n− 2− (n− 1/2 + x))!)

= f(n− 1/2 + x).

So we can consider only a = 1, 2, . . . , n − 1. We now demonstrate that f(1) ≥ f(a)

for all a in that range. We present three helpful facts:

• f(1) = v2((0)!(2n− 3)!) = v2((2n− 3)!).

• Suppose i, j, k ∈ Z such that i+ j = k. Then j = k− i. So i!j! = i!(k− i)!, and

i!(k − i)! | k! since binomial coefficients are always integers.

• Suppose x, y ∈ Z such that x | y. Then v2(x) ≤ v2(y).
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For any a ∈ 1, 2, . . . , n− 1, (a− 1) + (2n− 2− a) = 2n− 3. This implies that

v2((a− 1)!(2n− 2− a)!) ≤ v2((2n− 3)!).

So f(a) ≤ f(1) for a = 1, 2, . . . , n− 1. Thus,

max
{
v2((b+ n− 2)!(n− b− 1)!)

}2n−2

a=1
= f(1) = v2((2n− 3)!) = v2((2n− 4)!),

as desired.

The next result follows.

Corollary 5.4.3. Let n > 2 and let L denote the loss of precision of the Toom-n

matrix formulas. Then L(n) ≤ v2((2n− 4)!).

So we know that the largest power of 2 that a denominator could have is v2((2n−

4)!). This will occur for certain when a = 1 and a = 2n − 2, since the denominator

is (2n − 3)! and v2((2n − 3)!) = v2((2n − 4)!). The loss of precision could be less, if

the numerator ∑(a, b) is even whenever a = 1 or a = 2n− 2. However, it will always

be the case that some corresponding value of ∑(a, b) is odd.

Proposition 5.4.4. Let n > 2 and let L denote the loss of precision of the Toom-n

matrix formulas. Then L(n) ≥ v2((2n− 4)!).

Proof. By the definition of Sk(c1, . . . , cm), S0 = 1. Therefore, ∑(2n− 2, 0) = 1 for all

n. By the previous result, the entry in the inverse matrix corresponding to that will be

1 divided by (2n−3)!. The loss of precision due to that term will be v2((2n−4)!).
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This proves the loss of precision.

Theorem 5.4.5. Let n > 2 and let L denote the loss of precision of the Toom-n

matrix formulas. Then L(n) = v2((2n− 4)!).
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Chapter 6

Loss of Precision

In this chapter, we conjecture the loss of precision of the natural and efficient formulas

based on data from simulations. We also discuss future approaches to tracking the

loss of precision.

6.1 Simulating Loss of Precision

We used a Python program to simulate the loss of precision for each of the interpo-

lation methods. The program performs multiplication on many random polynomials

in (Z/2mZ)[x], and records the largest number of bits that were lost. The results are

shown in the following table.
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n Matrix Natural Efficient

3 1 1 1

4 3 3 4

5 4 4 4

6 7 7 8

7 8 8 9

8 10 10 11

9 11 11 11

10 15 15 16

11 16 16 17

12 18 18 19

13 19 19 20

14 22 22 23

15 23 23 24

The first observation we make is that the data for the matrix formulas agrees with

the result of the previous section: L(n) = v2((2n − 4)!). Next, we observe that the

natural formulas appear to lose the same number of bits as the matrix formulas.

Conjecture 6.1.1. For all n ≥ 3, the loss of precision of the natural formulas is

equal to the loss of precision of the matrix formulas.

Finally, we observe that the efficient formulas usually lose one extra bit of preci-

sion compared to the matrix formulas, but they have the same loss for n = 3, 5, 9.

We do not have a conjecture for exactly when this happens.
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6.2 Steps Toward Proving Loss of Pre-

cision

In this section, we present methods that have the potential to be used to prove the

loss of precision for any set of Toom interpolation formulas.

6.2.1 Analyzing Loss of Precision in the Natu-

ral Formulas

In this section, we explain why determining the loss of precision of the natural formu-

las is much harder than it was for the matrix formulas. Suppose, for example, that

we want to compute the loss of precision of the natural Toom-4 formulas. Recall that
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these formulas are

r0 = r(0)

r6 = r(∞)

r4 = 1
4!(−4(r(1) + r(−1)) + (r(2) + r(−2)) + 6r0 − 120r6)

r2 = 1
2!((r(1) + r(−1))− 2r0 − 2r4 − 2r6)

r5 = 1
5!(5r(1)− 4r(2) + r(3)− 2r0 + 2r2 − 22r4 − 478r6)

r3 = 1
3!(−2r(1) + r(2) + r0 − 2r2 − 14r4 − 30r5 − 62r6)

r1 = r(1)− r0 − r2 − r3 − r4 − r5 − r6.

If we assume that the loss of precision always accumulates as more divisions by 2 are

performed on expressions that have already lost precision, we will overestimate the

true loss. It is true that r4 loses 3 bits of precision since the term r(2)/24 has 23 in

the denominator. When we say that an expression, like r4 loses 3 bits of precision, we

mean that if we multiplied the same polynomials with Toom-4 in Z[x], then both ver-

sions of r4 are congruent to each other modulo 2m−3, and no higher power of 2. And

r2 also loses 3 bits, since the equation for r2 contains the term 2r4/2. But one might

expect r5 to lose a total of 5 bits, because it contains (2r2−22r4)/5! = (r2−11r4)/60.

However, it turns out that the expression 2r2−22r4 regains some of the precision that

r2 and r4 had lost. In total, the natural Toom-4 formulas do lose 3 bits of precision.

This can be seen by carefully tracing through each step and representing the variables

entirely in terms of r(−2), r(−1), . . . , r(3), r(∞). This process is extremely tedious,
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and does not provide a general method for proving the loss of precision for all n.

6.2.2 Tracking p-adic Precision

A possible method of proving the loss of precision due to a set of interpolation formulas

is by applying the results of Caruso, Roe, and Vaccon [4]. This work describes how

to propagate p-adic precision though computations. It can be applied to functions

that fit certain conditions. Since the set of Toom-n formulas is a linear function

from (Z/2mZ)2n−1 to (Z/2mZ)2n−1, the results could be applied to determine the loss

of precision. Caruso, Roe, and Vaccon also created a Sage package to track p-adic

precision in practice [5]. Further work applying their results has the potential to

prove the loss of precision for any given set of Toom-n interpolation formulas.
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Chapter 7

Comparing Implementations of

Toom-Cook in Practice

In this chapter, we start by describing how the overhead costs of splitting and in-

terpolation stages of Toom-n multiplication outweigh the asymptotic complexity for

small degrees. Then, we show how different n-values can be combined, and present

graphs comparing different interpolation and decomposition strategies.

7.1 Thresholds

When first introduced, it was mentioned that the Toom-Cook algorithm is recursive.

When multiplying with Toom-n, one could split the original polynomials into n parts,

and to multiply those smaller polynomials, recursively split them into n parts. For

large degrees, many rounds of Toom-n may need to be performed. In this chapter, we

use Toom-n to refer to a single iteration of Toom-n, and Toom-n− · · · − n︸ ︷︷ ︸
k

to refer

to k recursive iterations.
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When the degree is small enough, schoolbook multiplication performs better than

Toom-Cook. This is due to the extra work of splitting and interpolating the polyno-

mials. Although these steps do not affect the complexity, they significantly increase

the runtime for smaller degrees in practice. For any n, we can plot the average CPU

time to determine the degree where a single iteration of Toom-n becomes faster than

schoolbook multiplication. We refer to this intersection point as the threshold of

Toom-n versus schoolbook. This has also been called a “crossover point” in [29, pp.

221-247]. First, we determine the threshold between Toom-2 and the schoolbook

algorithm.

The first observation we make is that the graph of Toom-2 is not smooth. This is

because, if the degree is even (meaning the number of terms is odd), then our im-

plementation pads the polynomials with an extra 0 to make the number of terms

even. In general, the graph of Toom-n will approximate a step function that jumps

up after every multiple of n. Next, we see that the threshold is near to 45. This
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means that schoolbook is faster when the degree is less than 45, and Toom-2 is faster

when the degree is greater than 45. The exact value of the threshold depends on the

implementation. For highly-optimized Toom-2 implementations, this threshold can

be closer to 30 [9] or even 20 [15].

We can make an analogous plot for Toom-3.

This shows that the threshold for Toom-3 is close to 50, a little higher than it was

for Toom-2.

We can also compare thresholds between Toom-n1 and Toom-n2 for distinct n1

and n2. If n1 < n2, then Toom-n2 is asymptotically faster than Toom-n1, but also

has a higher overhead for small degrees. The following graph compares schoolbook,

Toom-5, and Toom-10.
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This shows that the threshold between Toom-5 and Toom-10 is around 300.

7.2 Comparing Interpolation Methods

We have claimed that the efficient interpolation formulas ought to be faster than the

natural and matrix formulas. In addition, we expect the matrix formulas to be the

slowest, because they do not save any results of computations to avoid duplicating

calculations. We have a graph to support these expectations.
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This shows that the matrix formulas are significantly slower than the other two, and

that the efficient formulas are a tiny bit faster than the natural formulas. We made

many graphs like this for different values of n and different ranges of degrees. They

all look similar to this one.

7.3 Choosing Decompositions in Theory

7.3.1 Introducing Decompositions

When using the Toom-Cook algorithm recursively, there is no requirement that n

has to remain the same. One could start by splitting the original polynomials with

Toom-3, then recursively split the smaller polynomials with Toom-10, and then mul-

tiply these polynomials using schoolbook. We would call this Toom-3-10. The term

decomposition refers to the order which different values of n are recursively applied.

For example, Toom-3-10, Toom-5, and Toom-2-2-2 are different decompositions that
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could be used to multiply polynomials.

The most important property of a decomposition is how small it makes the polyno-

mials that are handled by schoolbook multiplication. In general, Toom-n1-n2-. . . -nk

splits each original degree d polynomial into n1 parts, and then splits those into n2

parts, and so on. After the final split, the small polynomials to be multiplied by

schoolbook how have degree d/(n1n2 . . . nk). For example, suppose we are multiply-

ing degree 300 polynomials. Then Toom-3-10 would create degree 300/(3× 10) = 10

polynomials, Toom-5 would create degree 300/5 = 60 polynomials, and Toom-2-2-2

would create degree 300/(2×2×2) = 38 polynomials (rounding up). This is evidence

that Toom-3-10 might not be the most efficient of those three algorithms, since 10

not is close to the threshold where schoolbook stops being the fastest (45). Toom-3-

10 would also not be optimal because it applies Toom-10 to degree 100 polynomials

(recall that Toom-10 is slower than Toom-5 until around degree 300). This can be

seen in the following graph.
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In general, we say the division of the decomposition given by Toom-n1-n2-. . . -nk is

equal to n1 × n2 × · · · × nk.

For any degree d, there should be a decomposition that performs best at that

degree. Let t denote the threshold where Toom-2 becomes faster than schoolbook for

the given implementation. The most likely candidates will be those decompositions

whose divisions are close to d/t, since this will ensure that schoolbook is not being

applied to degrees that are too large, and that Toom-Cook is not being applied to

degrees that are too small.

7.3.2 Ordering of Decompositions

In the last section, we considered Toom-3-10. Toom-10-3 has the same division (be-

cause both decompositions result in degree 10 polynomials being multiplied by school-

book), but the following graph shows that it is faster than Toom-3-10.
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This is because more splitting (higher n) is better asymptotically but has a higher

overhead cost. It is always faster to have the decomposition in decreasing order. From

now on, we only consider decompositions Toom-n1-n2-. . . -nk where n1 ≥ n2 ≥ . . . nk.

7.4 Comparing Decompositions in Prac-

tice

In this section, we use the NTRU cryptosystem as an example to determine the ideal

decomposition for a given degree. All interpolation will be done using the natural

formulas.

7.4.1 Precision of Decompositions

Since multiplication is being done in (Z/2mZ)[x], we have to keep track of the loss of

precision. We make two major assumptions:

• Our conjectured loss of precision from Chapter 6 is correct.

• Loss of precision is additive in Toom decompositions.

Based on many simulations, we have much confidence in our conjectured loss of pre-

cision. Also based on simulations and intuition, we believe that the precision adds

up. For example, performing Toom-6-4 loses 7 + 3 = 10 bits of precision. This makes

sense, because the smaller polynomials that Toom-4 multiplies lose 3 bits of preci-

sion. Then Toom-6 interpolates based on this lower-precision polynomials, and loses
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7 more bits. We do not have a proof of this, but we note that [15] agrees.

Given some integer m such that we are working over (Z/2mZ)[x] and some larger

integer M based on the data type used to store coefficients (like M = 16 for 16-bit

ints), we can only use decompositions that lose M − m or fewer bits of precision.

This means that the fastest decomposition for a certain degree in Z[x] might not give

correct results.

7.4.2 Decompositions for NTRU

We consider three specific NTRU parameter sets [6], listed as (N,m) pairs (where

N − 1 is the polynomial degree and q = 2m determines the coefficient ring Z/qZ):

1. (509, 11).

2. (677, 11).

3. (821, 12).

As noted in [15], the current NTRU implementations that use 16-bit ints are re-

stricted to using combinations of Toom-2, Toom-3, and Toom-4 due to the loss of

precision. We also note that Toom-5 can be used. We seek to determine how much

multiplication could be sped up if we used 32-bit ints, thus allowing higher-order

Toom decompositions.

For parameter set 1, we can afford to lose up 5 bits of precision with 16-bit ints,
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and 21 bits of precision with 32-bit ints. We begin with a plot of the most reasonable

decompositions that give a correct result with 16-bit ints:

This shows that Toom-5-3 (which loses exactly 5 bits of precision) is the fastest for

degree 508 polynomials. For the decompositions that give a correct result with 32-bit

ints, we have
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In this case, Toom-5-4 (which loses 7 bits of precision) is the fastest for degree 508

polynomials. Comparing these directly yields the following plot:

The saving in this case is very minimal. However, current implementations only make

use of Toom-4 and Toom-3. Comparing Toom-4-3 to Toom-5-4 is more dramatic:

When the degree of the polynomial is 508, the running time of Toom-4-3 is about 1.1
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times the running time Toom-5-4.

For parameter set 2, we can also afford to lose up 5 bits of precision with 16-bit

ints, and 21 bits of precision with 32-bit ints. We begin with a plot of the most

reasonable decompositions that give a correct result with 16-bit ints:

This shows that Toom-5-2-2 (which loses 4 bits of precision) is the fastest for degree

676 polynomials. For the decompositions that give a correct result with 32-bit ints,

we have
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In this case, Toom-7-3 (which loses 9 bits of precision) is the fastest for degree 676

polynomials. Comparing these directly yields the following plot:

As with parameter set 1, the fastest 16-bit algorithm takes 1.1 times as long to run

as the fastest 32-bit algorithm.
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For parameter set 4, we can only afford to lose up 4 bits of precision with 16-bit

ints, and 20 bits of precision with 32-bit ints. We begin with a plot of the most

reasonable decompositions that give a correct result with 16-bit ints:

This shows that Toom-4-3-2 (which loses exactly 4 bits of precision, provided we

use the natural formulas) and Toom-3-3-3 (which loses only 3 bits of precision) are

virtually tied for being the fastest for degree 820 polynomials. Since simplicity is

preferred when possible, we select Toom-3-3-3 as the winner. For the decompositions

that give a correct result with 32-bit ints, we have
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In this case, Toom-8-4 (which loses 13 bits of precision) is the fastest for degree 820

polynomials. Comparing these directly yields the following plot:

This time, the fastest 16-bit algorithm takes 1.17 times as long to run as the fastest

32-bit algorithm. We conjecture, that as N increases, the ratio of the fastest 16-bit

decomposition’s running time to that of the fastest 32-bit decomposition will increase.
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We conclude that using 32-bit ints instead of 16-bit ints could speed up polynomial

multiplication for NTRU. However, the implementations of schoolbook multiplication

for small polynomials are highly optimized for 16-bit ints, and switching to 32-bit ints

could cancel out any benefits.
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