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Abstract

In the following thesis we explore Artin-Schreier curves and their applications to
coding theory and cryptography. We develop an algorithm to compute maximal
curves over finite fields working off of Zeta functions of a class of Artin-Schreier
curves with many automorphisms [1]. We present a list of maximal Artin-Schreier
curves useful for coding theory to be further investigated and analyzed.
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Chapter 1

Algebraic Curve Background

1.1 Affine and Projective Plane Curves

While we will work with projective curves in this thesis, we will describe them via

their associated affine curve. We present this theory here.

Definition 1.1.1. Let F be a field. We define the 2-dimensional projective space over

F, P2(F), to be

P2(F) = {(X, Y, Z) : X, Y, Z ∈ F, (X, Y, Z) 6= (0, 0, 0)}/ ∼

where (X1, Y1, Z1) ∼ (X2, Y2, Z2) if there exists a λ 6= 0, λ ∈ F with

X2 = λX1,

Y2 = λY1,

Z2 = λZ1.
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Definition 1.1.2. Let F be a field, then A2(F) = F2. We call A2(F) the 2-dimensional

affine space.

We can think of A2(F) as a subset of P2(F) in the following manner: In P2(F)

consider (X, Y, Z) ∈ P2(F) such that Z 6= 0. Then, (X, Y, Z) ∼ (X
Z
, Y

Z
, 1). Letting

x = X
Z

and y = Y
Z
, we get that (X, Y, Z) ∈ P2(F) with Z 6= 0 corresponds to a unique

point (x, y) ∈ A2(F). We see that

P2(F) = A2(F) ∪ {(X, Y, Z) ∈ P2(F) : Z = 0}.

We call the set of points

{(X, Y, Z) ∈ P2(F) : Z = 0}

the set of points at infinity.

Definition 1.1.3. Let F be a field. Two polynomials f(x, y), g(x, y) ∈ F[x, y] are said

to be equivalent if there exists a nonzero λ ∈ F such that f(x, y) = λg(x, y). This

forms an equivalence relation on the set of polynomials in F[x, y]. An affine plane

curve is an equivalence class of such non-constant polynomials, via

X = {(x, y) ∈ A2(F) : f(x, y) = 0},

for any f(x, y) in the equivalence class.

Definition 1.1.4. Let F be a field. We associate to any polynomial f of degree d in
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F[x, y] the homogenous polynomial f ∗ ∈ F[X, Y, Z], given by

f ∗(X, Y, Z) = Zdf(X/Z, Y/Z).

We note that in this case, f ∗ is homogenous of degree d.

This homogeneous polynomial allows us to then define a projective plane curve:

Definition 1.1.5. Let f ∈ F[x, y] define an affine plane curve. Then the pro-

jective plane curve associated to this curve is given by the homogeneous equation

f ∗(X, Y, Z) = 0 in P2(F). In other words, a projective plane curve C is given by

X = {(X, Y, Z) ∈ P2(F) : f ∗(X, Y, Z) = 0}.

We thus see that the points of the affine plane curve f(x, y) are all of the points

of the projective plane curve f ∗(X, Y, Z) that are not at infinity and are in A2(F).

Definition 1.1.6. Let X be an affine plane curve given by the polynomial f(x, y) = 0.

A point P = (x, y) on X is simple if

∂f

∂x
(P ) 6= 0

or
∂f

∂y
(P ) 6= 0.

A smooth curve is a curve made up of only simple points.
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1.2 Properties of Curves

For the sake of this thesis, we will be working with only smooth curves and will not

be defining the genus of a curve but will use the following equations.

For the Artin-Schreier curves of the form yp − y = f(x) considered in this thesis,

the genus can be computed as follows:

Lemma 1.2.1 (from section 2 of [2]). Let F be a field and f(x) ∈ F(x). Let yp− y =

f(x) define an Artin-Schreier curve in standard form. Suppose f(x) has r + 1 poles

at the points P1, . . . , Pr+1. The genus of the curve Y : yp − y − f(x) can be expressed

as follows:

gY = ((
r+1∑
j=1

dj + 1)− 2) · p− 1
2 ,

where dj is the order of the pole Pj.

In particular if f ∈ F[x] the only pole is at infinity and it is of order d = deg f ,

and the genus is

gY = (d− 1)p− 1
2 .

Definition 1.2.2. Let F be a field, and V and W be two projective plane curves

defined over F. A map ϕ : V → W is called a morphism of curves if there are

polynomials ϕ1, ϕ2, ϕ3 ∈ F[x1, x2, x3] such that

ϕ((a1, a2, a3)) = (ϕ1(a1, a2, a3), ϕ2(a1, a2, a3), ϕ3(a1, a2, a3))

for all (a1, a2, a3) ∈ V . The map ϕ : V → W is an isomorphism of projective plane

curves if there is a morphism ψ : W → V with ϕ ◦ ψ = 1W and ψ ◦ ϕ = 1V . A map
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ϕ is called an automorphism if it is an isomorphism of V to itself.

Definition 1.2.3. Let X be a projective plane curve, then a divisor on X is a finite

formal sum of points of X. The divisors form a group under addition denoted Div(X)

Definition 1.2.4. Let x be a function on X. Its divisor is

(x) =
∑

P is a
zero of x

nPP −
∑

Q is a
pole of x

nQQ

where np is the order of the zero of x at P and nQ is the order of the pole of x at Q.

Definition 1.2.5. Let D1 = ∑
niPi, D2 = ∑

miPi be divisors on X. We say D1 ≤ D2

if for all i,

ni ≤ mi.

Definition 1.2.6. Let X be a curve, for a divisor A ∈ Div(X) we define the Riemann-

Roch space associated to A by

L(A) := {x a function on X : (x) ≥ −A} ∪ {0}

and its dimension

l(A) = dimL(A).

Definition 1.2.7. Let X be a projective plane curve defined over a finite field Fq,

and given by a polynomial f ∗ ∈ F[X, Y, Z]. We define its set of rational points to be:

X(Fq) = {(X, Y, Z) ∈ P2(Fq) : f ∗(X, Y, Z) = 0}.

Theorem 1.2.8. Let X be a smooth projective plane curve of genus g defined over a
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finite field Fq. Then we have that

|#X(Fq)− q − 1| ≤ 2g√q.

Definition 1.2.9. We say that X is maximal over Fq if

#X(Fq)− q − 1 = 2g√q.

Note that this is only possible if q is a square since #X(Fq)− q − 1 is an integer.

1.3 Properties of Polynomials

We now introduce some properties of polynomials that will be useful later on.

Definition 1.3.1. A polynomial P over F is called separable if it has no multiple

roots (i.e. all of its roots are distinct). P is called additive if for any x, y ∈ F,

P (x+ y) = P (x) + P (y).

Proposition 1.3.2. Let P be a separable additive polynomial of degree pd, defined

over a finite field Fpn. Then its roots form a vector space of dimension d over Fp.

Proof. If the polynomial is additive, then P (x) = ∑d
i=0 aix

pi for some d because

(a+b)p = ap+bp in Fpn . Now let α, β ∈ Fq to be two roots, where Fq is a field extension

of Fpn . Then P (α+ β) = P (α) +P (β) by additivity, and 0 + 0 = 0 so α+ β is also a

root of P . Finally, let a ∈ Fp then P (aα) = ∑d
i=0 ai(ax)pi = a

∑d
i=0 aiα

pi = aP (α) = 0

since ap = a.
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Chapter 2

Code-Based Cryptography

2.1 Coding Theory

Coding theory was developed to help communication over noisy channels. Noisy

channels can interfere with sent messages and create errors, meaning that the received

message differs from the sent message. Coding theory introduces redundancy in a

message by mapping it to a codeword in such a way that when a coded message

acquires errors during transmission, the recipient can correct errors, and return the

original codeword to be decoded into the original message. All information provided

in this section and the next is adapted from Trappe and Washington’s Introduction

to Cryptography with Coding Theory [3].

We begin with some basic definitions:

Definition 2.1.1. Let F be a field. A code C is a nonempty subset of Fn containing

allowable strings called codewords. In other words, codewords are strings of length

n whose entries are in F. A linear code C is a nonempty set of Fn that forms a
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k-dimensional vector subspace of Fn. Equivalently, C is closed under addition and

scalar multiplication. Thus, if c1, c2 ∈ C then c1 + c2 ∈ C and for every scalar α ∈ F,

and codeword c ∈ C, then αc ∈ C.

Definition 2.1.2. A linear code is called a [n, k]-code if n is the dimension of the

surrounding space and k is the dimension of the space of allowable messages. In this

case we call n the length of the code and k its dimension.

Consider the following example of a [3, 2] repetition code:

Example 2.1.3.

C = {000, 111} ⊆ F3
2

where the two codewords correspond to the messages m = 0,m = 1 respectively.

Two key characteristics of a code are its Hamming weight and Hamming distance.

These quantities are what allow us to measure how well two codewords can be differ-

entiated as well as recovered when there is interference in a noisy channel.

Definition 2.1.4. Let C be a code over F and c be a codeword in C. We define the

Hamming weight of c to be the number of nonzero digits or entries in c, written as

wt(c).

Definition 2.1.5. We define the Hamming distance between 2 codewords c0, c1 to be

the number of entries where c0 and c1 differ, written as d(c0, c1).

Proposition 2.1.6. The Hamming distance is a metric. That is to say that, for all

c1, c2, c3 ∈ C we have

1. d(c1, c2) ≥ 0 and

d(c1, c2) = 0 if and only if c1 = c2,
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2. d(c1, c2) = d(c2, c1), and

3. d(c1, c2) ≤ d(c1, c3) + d(c3, c2).

Example 2.1.7. We receive a message 001 which we know was encrypted using a

repetition code with allowable codewords {000, 111}. Using the nearest neighbor

decoding method, we deduce the sent codeword was 000 since it has the smallest

Hamming distance from the received codeword.

The Hamming distance allows us to define an important invariant of a code:

Definition 2.1.8. Let C be a code with codewords cn. The minimum distance of C

is:

d(C) = min{d(ci, cj) : ci, cj ∈ C and ci 6= cj}.

Definition 2.1.9. A linear code is called a [n, k, d]-code if n is its length, k is its

dimension, and d is the minimum distance of the code.

By analyzing the repetition code, we can see that there is a limit to the number

of errors allowed before our decryption method becomes inaccurate.

Definition 2.1.10 (From chapter 18 of [3]). We say that a code can detect up to

s errors if changing a codeword in at most s places cannot change it to another

codeword. The code can correct up to t errors if, whenever changes are made at t or

fewer places in a codeword c, then the closest codeword is still c.

We now can see the significance of the minimum distance of a code:

Theorem 2.1.11. Let C be a code:

1. C can detect up to s errors if d(C) ≥ s+ 1.

2. C can correct up to t errors if d(C) ≥ 2t+ 1.
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2.2 McEliece Cryptosystem

The McEliece cryptosystem uses coding theory to encrypt and decrypt messages. Its

security relies on the hardness of decoding, which for a general linear code is known

to be NP-hard. Typically, McEliece’s algorithm is used alongside algebraic geometry

(AG) codes for their simple decoding algorithm [4]. Before receiving a message, the

recipient must generate a private and public key, using the following algorithm:

Algorithm 1 Generating a key
INPUT: a [n, k]-linear code C capable of correcting t errors with an efficient decod-

ing algorithm given by a k × n generator matrix G for the code C
OUTPUT: a public key (G′, t) and a private key (S,G, P )

1: select a random k × k binary non-singular matrix S
2: select a random n× n permutation matrix P
3: compute the matrix G′ = SGP

Then anyone who has access to the public key can encrypt a message using the

following algorithm:

Algorithm 2 Encryption
INPUT: a message m and a public key (G′, t)
OUTPUT: a ciphertext c

1: generate a random error vector e with wt(e) ≤ t
2: calculate the ciphertext c = mG′ + e
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After receiving the message, the recipient decrypts it with this algorithm:

Algorithm 3 Decryption
INPUT: a ciphertext c and the private key (S,G, P )
OUTPUT: a decoded message m

1: calculate y = cP−1

2: utilize the specific decoding algorithm for C to retrieve m′
3: compute the message m = m′S−1

The following proof shows that the decoding algorithm recovers the original mes-

sage:

Proof. Let m be a message, then by the encryption algorithm, our codeword c is

c = mG′ + e,

where G′ = SGP and e is our error vector. Thus we substitute to get

c = mSGP + e.

Following the decoding algorithm,

y = cP−1 = mSG+ eP−1

where the weight of eP−1 is less than or equal to t, the number of correctable errors,

since P is a permutation matrix, so wt(e) = wt(eP−1). Then we decode y with the

given decoding algorithm to find m′ = mS. Finally by multiplying by S−1 we retrieve

the original message m.
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2.3 Algebraic Geometry Codes

We now describe a method to generate codes with an efficient decoding algorithm.

We define an algebraic geometry code associated to a curve X:

Definition 2.3.1 ( [5]). Let X be a curve defined over a finite field Fq and P1, . . . , Pn, P∞

be points defined over Fq. Then we define a code

C(P1, . . . , Pn, P∞) = {(x(P1), ..., x(Pn)) : x ∈ L(mP∞)} ⊆ Fn
q

where the vector space L(mP∞) := {f ∈ Fq(X) : degf ≤ m− 1}

Theorem 2.3.2 (adapted from [5]). The code C(P1, . . . , Pn, P∞) is an [n, k, d]-code

with k = l(mP∞)− l(mP∞ − P1 − P2 − . . .− P∞) and d ≥ n−m.

From this theorem we see that it is desirable to chooseX to have many Fq -rational

points. Indeed, this will give a larger value of n, which will give a larger value of

d, which will allow the code to correct more errors. As errors are what make the

encryption more secure, the ability to correct more errors is valuable.

Describing the decoding algorithm for AG codes would take us too far afield for

this thesis. There is an efficient decoding algorithm for the dual of this code, given

by Duursma [6], building on work of Feng and Rao [7] which itself was built on work

of Skorobogatov and Vladut [8]. We note that the connection between a code and its

dual is such that computing a parity check matrix for the AG code presented above,

gives a generating matrix for the dual code which can easily be decoded. Therefore,

the dual is what is most often used, but the theory behind the original code is what

allows the dual code to be created.
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Chapter 3

Generating Maximal Artin-Schreier

Curves

Maximal curves are valuable in code-based cryptography because they, by definition,

have the largest possible number of rational points for their genus, which allows us to

create codes with a large length n relative to the dimension k. To construct maximal

curves, we will restrict our attention to a family of curves called Artin-Schreier curves.

Artin-Schreier curves have more structure than a typical curve, which will make it

much easier to determine when the curve is maximal.

3.1 A family of Artin-Schreier Curves

We begin by defining a family of curves we will consider.

Definition 3.1.1. An Artin-Schreier curve is a curve which admits a model of the

form yp − y = f(x).
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Even more specifically, we will be focusing on the family

yp − y = xR(x)

where R(x) is an additive polynomial of degree ph for h ≥ 0 and p is odd, with

coefficients in the field Fpr , or in other words R is of the form

R(x) =
h∑

i=0
aix

pi

.

We can then compute the genus of CR to be ph(p−1)
2 .

Lemma 3.1.2. The curve CR has a unique point at infinity.

Proof. Consider first the case of h = 0. Then CR is of the form yp − y = ax2 and

p > 2 since p ≥ 3. Thus the projective model for the curve is

Y p − Zp−1Y = aX2Zp−2.

If Z = 0 then Y p = 0, so Y = 0. Since Y = Z = 0, X 6= 0. Therefore the unique

point at ∞ on CR is (1, 0, 0).

Otherwise if h > 0, then CR is of the form yp−y = xR(x) and deg xR(x) ≥ p+1 > p.

So the projective model for the curve is

Y pZph−1+1 − Y Zph = ahX
ph+1 + Zf(X,Z), ah 6= 0

where f(X,Z) is a polynomial in X,Z. Then if Z = 0, 0 = ahX
ph+1 so X = 0. Since

X = Z = 0, Y 6= 0. Therefore the unique point at ∞ on CR is (0, 1, 0).
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3.2 Automorphisms of CR

The reason we understand curves in this family is because of their unusually large

automorphism group, which we can describe explicitly.

Theorem 3.2.1 (From section 4 of [1]). Let R be monic and assume that R(x) /∈

{x, xp}. Then Aut(CR) = Aut0(CR), where Aut0(CR) is the subgroup of automor-

phisms of CR that fix the unique point at infinity.

To describe these automorphisms explicitly we will need to define some auxiliary

polynomials, the first of which is:

E(x) = (R(x))ph +
h∑

i=0
(aix)ph−i ∈ Fpr [x].

This polynomial will in turn allow us to define a space W which will be crucial to

our work.

Definition 3.2.2 (Adapted from [9]). Given a polynomial in one variable, in this

case E(x), with coefficients in Fpr , there is an extension field Fq of Fpr such that

E(x) ∈ Fq[x] splits into a product of linear factors, and Fq is the smallest extension

field of Fpr with this property. Then, we say that Fq is the splitting field of the

polynomial E over Fpr .

Then we define W ⊆ Fq to be the set of roots of E(x).

Lemma 3.2.3. W is an Fp-vector space of dimension 2h.

Proof. Since Fq is the splitting field of E, and E is separable of degree p2h, #W = p2h.

15



In addition, since E is an additive polynomial, its roots form an Fp-vector space. An

Fp-vector space of size p2h is of dimension 2h over Fp

We also define a polynomial Bc for each c in W :

Bc(x) =
h−1∑
i=0

bix
pi

where b0 = −ca0 −R(c) and bi = −cai + bp
i−1 for 1 ≤ i ≤ h− 1.

Proposition 3.2.4. Let c ∈ W and b be a solution of the equation xp − x = cR(c).

We can then define an automorphism σb,c : CR 7→ CR (x, y) 7→ (x+ c, y + b+Bc(x)).

This automorphism of CR fixes the point at ∞.

These automorphisms in fact give all of the p-power order automorphisms of CR.

Theorem 3.2.5 (From section 4 of [1]). The group Aut0(CR) has a unique Sylow

p-subgroup, which we denote by P . It is the subgroup consisting of all automorphisms

σb,c, given in Proposition 3.2.4, has cardinality p2h+1, and each of its elements is of

order p.

Remark 3.2.6. We further know that Aut0(CR) is a semi-direct product of P and a

cyclic subgroup H containing elements of the form σ(x, y) = (ax, dy).

We note that one can show that the center of P is Z(P ) = 〈σ1,0〉 where σ1,0(x, y) =

(x, y+1) is the Artin-Schreier automorphism. By explicit computation, one can show

that

σb1,c1σb2,c2σ
−1
b1,b1σ

−1
b2,b2 = σ

Bc1 (c2)+Bc2 (c1)
1,0 ,
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which gives rise to a symplectic pairing on W given by

ε(c1, c2) = Bc1(c2)−Bc2(c1).

As a result, when ε(c1, c2) = 0 then we know that σb1,c1 and σb2,c2 commute for any

allowable choice of b1, b2. This pairing gives W the structure of a symplectic space,

and any isotropic subspace has a pre-image in P which gives an abelian subgroup.

We now explain the significance of abelian subgroups of P to our understanding of

the curve CR. We begin by stating a result on the structure of a maximal abelian

subgroup of P , and some of its distinguished subgroups.

Proposition 3.2.7 (adapted from section 5 of [1]). Let h ≥ 1.

1. Every maximal abelian subgroup A of P is an elementary abelian group of order

ph+1, and is normal in P .

2. Let A ' (Z/pZ)h+1 be a maximal abelian subgroup of P . For any subgroup A =

Ap ' (Z/pZ)h ⊂ A with Ap ∩Z(P ) = {1} there exist subgroups A1, . . . , Ap−1 of

A such that

A = Z(P ) ∪ A1 ∪ . . . ∪ Ap,

Ai ' (Z/pZ)h , Ai ∩ Z(P ) = {1} , Ai ∩ Aj = {1} if i 6= j.

Theorem 3.2.8 (from section 7 of [1]). Assume h ≥ 1. Let A be a maximal abelian

subgroup of P . Any subgroup A ⊂ A of order ph that intersects the center Z(P ) of

P trivially gives rise to an Fq-isomorphism of the quotient curve CA onto the smooth

projective curve given by the affine equation

yp − y = aAx
2,
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where

aA = ah

2
∏

c∈A\{0}
c.

This theorem, along with a theorem of Kani-Rosen [10] then allows the authors

of [1] to connect the point count of the easy-to-understand curve yp−y = aAx
2 to the

point count of the original curve CR. Since the maximality of the curve yp−y = aAx
2

depends only on the values of the constant aA, in turn that of CR also does:

Theorem 3.2.9 (Adapted from section 9 of [1]). If a field Fps contains the splitting

field Fq of E(x), then CR is maximal over Fps if and only if one of the following holds:

• s is even, aA is a nonsquare in F∗q, and p ≡ 1(mod 4);

• s ≡ 0 (mod 4), aA is a nonsquare in F∗q, and p ≡ 3 (mod 4);

• s ≡ 2 (mod 4), aA is a square in F∗q and p ≡ 3 (mod 4).

3.3 Computing a Maximal Isotropic Space

Therefore, to determine if CR is maximal and the smallest field extension over which

it is maximal, it suffices to compute a maximal isotropic subspace of W . Then, its

nonzero element will allow us to compute the constant aA, which determines if and

where CR is maximal. The algorithm to compute such a space is given in Algorithm

4 below.

Proposition 3.3.1. Algorithm 4 does yield the nonzero elements of a maximal isotropic

subspace of W .
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Algorithm 4 Computing a maximal isotropic subspace
INPUT: polynomial R(x)
OUTPUT: the nonzero elements of a maximal isotropic subspace of W

1: compute the list of roots of E(x) in its splitting field (the set W )
2: place the first non-zero element of W in the isotropic subset
3: for c1 in W do
4: if ε(c1, c2) = 0 for all c2 in the isotropic subset then
5: add c1 to the subset
6: end if
7: end for

Proof. We show that the algorithm always yields a set of size ph− 1 by showing that

if at any point we have an isotropic set of size n < ph − 1, we will be able to add an

element. Clearly, if n = ph − 1 the set is maximal so no elements can be added and

the algorithm terminates.

Suppose first that the set {x1, . . . , xn} spans a space of dimension m < h. Then the

equations

ε(xj, x) = 0

j = 1, . . . , n yield a linear map F2h
q 7→ Fn

q of rank m. Indeed, by the theory of

symplectic spaces, there is a basis c1, c2, . . . , ch, c
′
1, . . . , c

′
h of W such that ε(ci, cj) =

ε(c′i, c′j) = 0 and ε(ci, c
′
j) = δij. Now we write xj and x in this basis:

xj =
h∑

i=1
aijci +

h∑
i=1

bijc
′
i

and

x =
h∑

i=1
dici +

h∑
i=1

eic
′
i.

Using the properties of the basis c1, . . . , c
′
h and the linearity of ε, we have that
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ε(xj, x) = 0 if and only if
h∑

i=1
aijei +

h∑
i=1

bijdi = 0.

Therefore the equations ε(xj, x) = 0 form a set of n linear equations in 2h variables.

Since {x1, . . . , xn} span a set of dimension m, the rank of this map is m. The nullity

of this map is thus 2h−m > h > m so there is xn+1 in the kernel of this map which

does not belong to the set {x1, . . . , xn} (nor, in fact, its span).

If {x1, . . . , xn} spans a space of dimension h, but n < ph − 1, then there is a nonzero

element xn+1 in the span of {x1, . . . , xn} (and thus in the kernel), but not in the set

{x1, . . . , xn} so we can add this element to our isotropic set.
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Chapter 4

Results

In this chapter we present maximal Artin-Schreier curves defined over F3,F5,F7 and

F9 to be further explored in future work. For each polynomial R, such that CR

becomes maximal, we give the splitting field Fq of E and the degree of the smallest

extension of Fq such that CR is maximal over this extension. The following families of

polynomials were explored for each field where a, b are both elements of the respective

field:

• axp + bx

• axp2 + bxp

• axp2 + bx
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F3

Splitting Field Polynomial R Deg of Ext

F3 x 4

F3 2x 2

F36 x3 + x 6

F33 2x3 + x 12

F33 x3 + 2x 6

F36 2x3 + 2x 6

F318 x9 + x3 18

F39 2x9 + x3 18

F318 x9 + 2x3 36

F5

Splitting Field Polynomial R Deg of Ext

F54 x5 4

F54 2x5 4

F54 3x5 4

F54 4x5 4

F510 x5 + x 10

F53 2x5 + x 6

F56 3x5 + x 6

F5 2x 2

F56 x5 + 2x 6

F510 2x5 + 2x 10

22



F5

Splitting Field Polynomial R Deg of Ext

F55 3x5 + 2x 10

F5 3x 2

F55 2x5 + 3x 10

F510 3x5 + 3x 10

F56 4x5 + 3x 6

F56 2x5 + 4x 6

F53 3x5 + 4x 6

F510 4x5 + 4x 10

F58 x25 8

F58 2x25 8

F58 3x25 8

F58 4x25 8

F530 x25 + x5 30

F513 2x25 + x5 26

F526 3x25 + x5 26

F526 x25 + 2x5 26

F530 2x25 + 2x5 30

F515 3x25 + 2x5 30

F515 2x25 + 3x5 30

F530 3x25 + 3x5 30

F526 4x25 + 3x5 26

F54 4x5 4
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F5

Splitting Field Polynomial R Deg of Ext

F526 2x25 + 4x5 26

F513 3x25 + 4x5 26

F530 4x25 + 4x5 30

F520 x25 + x 20

F56 2x25 + x 6

F512 3x25 + x 12

F510 4x25 + x 10

F512 x25 + 2x 12

F520 2x25 + 2x 20

F510 3x25 + 2x 10

F56 4x25 + 2x 6

F56 x25 + 3x 6

F510 2x25 + 3x 10

F520 3x25 + 3x 20

F512 4x25 + 3x 12

F510 x25 + 4x 10

F512 2x25 + 4x 12

F56 3x25 + 4x 6

F520 4x25 + 4x 20

End of Table
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F7

Splitting Field Polynomial R Deg of Ext

F7 x 2

F714 x7 + x 14

F73 2x7 + x 12

F76 5x7 + x 6

F77 6x7 + x 14

F7 2x 2

F714 2x7 + 2x 14

F76 3x7 + 2x 6

F73 4x7 + 2x 12

F77 5x7 + 2x 14

F7 3x 4

F76 x7 + 3x 6

F714 3x7 + 3x 14

F77 4x7 + 3x 28

F73 6x7 + 3x 6

F7 4x 2

F73 x7 + 4x 12

F77 3x7 + 4x 14

F714 4x7 + 4x 14

F76 6x7 + 4x 6

F7 5x 4

F77 2x7 + 5x 28
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F7

Splitting Field Polynomial R Deg of Ext

F73 3x7 + 5x 6

F76 4x7 + 5x 6

F714 5x7 + 5x 14

F7 6x 4

F77 x7 + 6x 28

F76 2x7 + 6x 6

F73 5x7 + 6x 6

F714 6x7 + 6x 14

F742 x49 + x7 42

F725 2x49 + x7 50

F750 5x49 + x7 50

F721 6x49 + x7 84

F742 2x49 + 2x7 42

F750 3x49 + 2x7 50

F725 4x49 + 2x7 50

F721 5x49 + 2x7 84

F750 x49 + 3x7 50

F742 3x49 + 3x7 42

F721 4x49 + 3x7 42

F725 6x49 + 3x7 100

F725 x49 + 4x7 50

F721 3x49 + 4x7 84
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F7

Splitting Field Polynomial R Deg of Ext

F742 4x49 + 4x7 42

F750 6x49 + 4x7 50

F721 2x49 + 5x7 42

F725 3x49 + 5x7 100

F750 4x49 + 5x7 50

F742 5x49 + 5x7 42

F721 x49 + 6x7 42

F750 2x49 + 6x7 50

F725 5x49 + 6x7 100

F742 6x49 + 6x7 42

F76 2x49 + x 6

F714 6x49 + x 14

F72 4x49 + 2x 6

F714 5x49 + 2x 14

F714 4x49 + 3x 14

F76 6x49 + 3x 6

F76 x49 + 4x 6

F714 3x49 + 4x 14

F714 2x49 + 5x 14

F76 3x49 + 5x 6

F714 x49 + 6x 14

F76 5x49 + 6x 6
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F7

Splitting Field Polynomial R Deg of Ext

End of Table

F9

Splitting Field Polynomial R Deg of Ext

F32 (a+ 1)x3 2

F38 (2a+ 2)x3 2

F32 ax 4

F36 (a+ 1)x 2

F36 ax3 + (a+ 1)x 12

F36 (2a+ 1)x3 + (a+ 1)x 12

F36 2x3 + (a+ 1)x 6

F36 2ax3 + (a+ 1)x 12

F36 (a+ 2)x3 + (a+ 1)x 12

F36 x3 + (a+ 1)x 6

F32 (2a+ 1)x 4

F32 2x 2

F36 ax3 + 2x 12

F36 (2a+ 1)x3 + 2x 12

F36 2x3 + 2x 6

F36 2ax3 + 2x 12

F36 (a+ 2)x3 + 2x 12

F36 x3 + 2x 6
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F9

Splitting Field Polynomial R Deg of Ext

F32 2ax 4

F32 (2a+ 2)x 2

F36 ax3 + (2a+ 2)x 12

F36 (2a+ 1)x3 + (2a+ 2)x 12

F36 2x3 + (2a+ 2)x 6

F36 2ax3 + (2a+ 2)x 12

F36 (a+ 2)x3 + (2a+ 2)x 12

F36 x3 + (2a+ 2)x 6

F32 (a+ 2)x 4

F32 x 2

F36 ax3 + x 12

F36 (2a+ 1)x3 + x 12

F36 2x3 + x 6

F36 2ax3 + x 12

F36 (a+ 2)x3 + x 12

F36 x3 + x 6

F310 ax9 + 2x3 20

F318 (a+ 1)x9 + 2x3 18

F310 (2a+ 1)x9 + 2x3 20

F318 2x9 + 2x3 18

F310 2ax9 + 2x3 20

F310 (2a+ 2)x9 + 2x3 18
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F9

Splitting Field Polynomial R Deg of Ext

F310 (a+ 2)x9 + 2x3 20

F318 x9 + 2x3 18

F310 ax9 + x3 20

F318 (a+ 1)x9 + x3 18

F310 (2a+ 1)x9 + x3 20

F318 2x9 + x3 18

F310 2ax9 + x3 20

F318 (2a+ 2)x9 + x3 18

F310 (a+ 2)x9 + x3 20

F318 x9 + x3 18

F310 (a+ 1)x9 + ax 10

F310 2x9 + ax 10

F36 2ax9 + ax 12

F310 (2a+ 1)x9 + (a+ 1)x 20

F310 2ax9 + (a+ 1)x 20

F36 (2a+ 2)x9 + (a+ 1)x 6

F310 2x9 + (2a+ 1)x 10

F310 (2a+ 2)x9 + (2a+ 1)x 10

F36 (a+ 2)x9 + (2a+ 1)x 12

F310 2ax9 + 2x 20

F310 (a+ 2)x9 + 2x 20

F36 x9 + 2x 6
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F9

Splitting Field Polynomial R Deg of Ext

F36 ax9 + 2ax 12

F310 (2a+ 2)x9 + 2ax 10

F310 x9 + 2ax 10

F310 ax9 + (2a+ 2)x 20

F36 (a+ 1)x9 + (2a+ 2)x 6

F310 (a+ 2)x9 + (2a+ 2)x 20

F310 (a+ 1)x9 + (a+ 2)x 10

F36 (2a+ 1)x9 + (a+ 2)x 12

F310 x9 + (a+ 2)x 10

F310 ax9 + x 20

F310 (2a+ 1)x9 + x 20

F36 2x9 + x 6

End of Table
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