
Hilbert Class Fields of Imaginary
Quadratic Fields and Reflex Fields of

Certain Sextic CM Fields

A Thesis Presented

by

Garvin Gaston

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

Specializing in Mathematics

October, 2017

Defense Date: August 2, 2017
Thesis Examination Committee:

Christelle Vincent, Ph.D., Advisor
Richard Foote, Ph.D.

Christian Skalka, Ph.D., Chairperson
Cynthia J. Forehand, Ph.D., Dean of Graduate College



Abstract

In this thesis we look at particular details of class field theory for complex multipli-
cation fields. We begin by giving some background on fields, abelian varieties, and
complex multiplication. We then turn to the first task of this thesis and give an
implementation in Sage of a classical algorithm to compute the Hilbert class field
of a quadratic complex multiplication field using the j-invariant of elliptic curves
with complex multiplication by the ring of integers of the field, and we include three
explicit examples to illustrate the algorithm.

The second part of this thesis contains new results: Let K be a sextic complex
multiplication field with Galois closure L such that the Galois group of L over Q
is isomorphic to D12, the dihedral group with twelve elements. For each complex
multiplication type � of K, we compute the reflex field and reflex type of the pair
(K, �) explicitly. We then illustrate our results with the case of K = Q[x]/(x6 ≠
2x5 + 2x4 + 2x3 + 4x2 ≠ 4x + 2).
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Chapter 1

Introduction

Given a number field K, it is of interest to consider its abelian field extensions, by

which we mean the Galois extensions of K with abelian Galois group. The study

of these extensions is called class field theory, which more generally is a branch of

algebraic number theory that looks at abelian extensions of local and global fields,

and the arithmetic properties of these extensions.

Of particular interest is the Hilbert class field, which is the maximal abelian

unramified extension of a field. If K is a number field, its Hilbert class field exists

and has finite degree over K, as shown by Furtwängler [6].

1.1 Explicit class field theory
In [4], Daberkow and Pohst give an algorithm to explicitly compute the Hilbert class

field of arbitrary number fields. However, the algorithm is not practical, as it requires

computing a large number of Kummer extensions of the base field. In any case, their

algorithm shows that the problem is decidable.
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If one is willing to restrict the class of number fields considered, much more can be

said. If K = Q, then all of the abelian Galois extensions of K are contained in some

Q(’n), where ’n is a primitive nth root of unity. In other words, for any extension

L/Q that is abelian, there exists an n such that L ™ Q(’n). It is important to note

that not every Galois extension of Q is contained in some Q(’n), just the abelian

extensions. However, all of these extensions are ramified, as Q does not have any

unramified extensions.

The next case for which we have an explicit construction of abelian extensions is

that of K, an imaginary quadratic field, i.e., a quadratic CM field. For example, we

can construct the Hilbert class field of K, which we denote HK , explicitly:

Theorem 1.1.1. Let K be an imaginary quadratic field. Then its Hilbert class field

is K(j) for j the j-invariant of an elliptic curve with endomorphism ring OK, where

OK is the ring of integers of K.

In this thesis, we provide code that, given any imaginary quadratic field K, gives

a monic polynomial fK with integer coe�cients such that HK = Q[x]/(fK(x)). The

algorithm that we give is not new, and is not an optimal implementation. It is merely

a toy problem to grapple with the higher degree CM fields that form the real heart

of this thesis. For an optimal implementation, we direct the reader to Cohen’s book

A course in computational algebraic number theory [2]. Although we won’t consider

this here, we note that more general abelian extensions of such K can be generated

using the torsion points of the elliptic curves appearing in Theorem 1.1.1.

The next case for which we have partial explicit constructions is that of K, a

general CM field. When K is of degree four or more over Q, we must consider a

few di�erences. First, instead of considering the field of moduli of the abelian variety
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(which is generated by the j-invariant when the abelian variety has dimension 1),

we must give the abelian variety a polarization, and consider the field of moduli

of the polarized abelian variety. Secondly, given a polarized abelian variety with

endomorphism ring isomorphic to OK , its field of moduli is an extension of the reflex

field, which we denote KR, and not necessarily of the field of complex multiplication.

Thirdly, this field of moduli will be an unramified abelian extension of KR, but in

general it will not be the maximal such extension. In other words, the field of moduli

of the polarized abelian variety will not necessarily give us the Hilbert class field of

KR.

In this thesis, we introduce the definitions and notions necessary to more fully

explain the concepts of the previous paragraph. We then consider the situation of

K a sextic CM field whose Galois closure L has Galois group isomorphic to D12,

the dihedral group with twelve elements. For this class of fields and any CM-type

attached to K, we compute the corresponding reflex field and reflex type. In addition,

we choose an explicit such field to carry out the computations, as an example of our

results.

Finally, for completeness we mention the last case for which we have explicit

constructions of unramified abelian extensions, which is that of real quadratic fields.

Indeed, in 1999 Cohen and Roblot [3] gave an algorithm for computing the Hilbert

class field of a real quadratic field using Stark units. This method is di�erent from

the CM method used for quadratic and higher degree CM fields which is mentioned

above.
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1.2 Overview of contents
We now delve into some more details about the contents of each Chapter of this thesis.

We note that for all topics covered in the literature, specific references are o�ered

within each Chapter. However, as many of these results are quite old, the references

we o�er are merely suggestions and do not reflect an exhaustive list. Producing such

a list would be impossible given the wealth of work that has been done on some of

these topics.

In Chapter 2 we review the basic properties of fields. We begin with a review

of field theory, including Galois theory and facts about the ring of integers OK of

a number field K. We then introduce the notion of ramification of prime ideals to

introduce class field theory and define unramified extensions. All of these results

are well-known. We end with some new results which we will need about sextic CM

subfields of a Galois CM field with Galois group D12.

In Chapter 3 we turn our attention to the theory of abelian varieties. We begin

by presenting in some detail the case of elliptic curves, which are abelian varieties

of dimension 1, and then turn our attention to the general case, with a focus in

particular on abelian varieties of dimension 3. Throughout, we particularly introduce

the theory of abelian varieties defined over C, the complex field, as these are the

varieties that arise in the construction of explicit class fields. Again, all of these

results are well-known and amply covered in the literature.

In Chapter 4 we tackle two tasks. We first explain the process for finding the

Hilbert class polynomial fK(x) of an imaginary quadratic field K. We then define

complex multiplication (CM) and define CM-types and various notions associated to
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CM-types. In particular this is where reflex fields and reflex types are introduced.

Finally, we end with the Main Theorem of Complex Multiplication, which precisely

describes the unramified abelian extension generated by the field of moduli of a po-

larized abelian variety with CM by an order in a CM field. This is the last Chapter

reviewing the literature necessary for the new results that follow.

As a toy problem in Chapter 5 we turn our attention to the classical computation

of the Hilbert class field of an imaginary quadratic field K. We again note that

algorithms that do so are well-known, and point the reader to Cohen’s A Course in

Computational Algebraic Number Theory [2] for a particularly e�cient example. In

this work we use the naïve algorithm given in Section 4.2 and its implementation

given in Appendix A to explore three examples where we compute fK , the monic

polynomial such that HK = Q[x]/(fK(x)), where we recall that HK is the Hilbert

class field of K.

Finally, Chapter 6 contains the bulk of the new results of this thesis. In it, we

systematically study the case of K, a sextic CM field whose Galois closure L has Galois

group isomorphic to D12. Armed with these results, we then proceed to compute, for

each CM-type � of K, the associated reflex field KR and reflex type �R of the pair

(K, �). This is a new contribution to the field, which should be useful in future

computational projects. In Chapter 7 we apply the theory of Chapter 6 to an explicit

example, the case where

K = Q[x]/(x6 ≠ 2x5 + 2x4 + 2x3 + 4x2 ≠ 4x + 2).

The thesis ends with an Appendix containing the implementation of the algorithm

given in Section 4.2 whose results are given for a few examples in Chapter 5. We note
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here some implementation details. First, we used the software Sage for several reasons:

it contains all of the libraries and packages necessary to perform the computations,

as do Magma and Pari. We chose Sage among these three mathematical software

libraries because it is based on the language Python, which is in wide use and therefore

easy to learn. Furthermore, Sage is open source and has excellent documentation.

Although the algorithm is correct for the three examples of Chapter 5, we note that for

examples with larger class number the precision will need to be increased to produce

numbers accurate enough to be rounded to integers.
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Chapter 2

Field preliminaries

In this chapter we present the background on fields that we will need for the work of

this thesis, notably our work in Chapter 6 on reflex fields.

Most of the definitions, theorems, etc. are standard and can be found, for example,

in Dummit and Foote [5] or Milne [9] or [11]. Section 4 contains new results that we

will need later, which are specific to the context of Chapter 6.

2.1 Field theory
Here we review some basic definitions and theorems related to field theory which

will help us to build the structures we will need in the subsequent chapters. We are

interested in particular in number fields that have complex multiplication.

2.1.1 Fields and field extensions

We begin with some basic information on fields and field extensions that we will use

as we move forward.

7



Definition 2.1.1. Let K and L be fields. Then a field homomorphism is a map

f : K æ L such that for all a, b œ K,

1. f(a + b) = f(a) + f(b),

2. f(ab) = f(a)f(b),

3. f(1K) = 1L.

Definition 2.1.2. Let F and K be fields. We say that K is a field extension of F if

there exists an injective field homomorphism from F into K. Such a field extension

is denoted K/F .

Definition 2.1.3. An extension K/F is said to be simple if K = F (–) for some

– œ K. In this case, – is called a primitive element.

Example 2.1.4. Q(fi) and Q[i] are simple extensions of Q.

Definition 2.1.5. Let K and K Õ be two field extensions of F and ‡ a field isomor-

phism from K to K Õ. One says that ‡ is an F -isomorphism if ‡(x) = x for all x œ F .

If K Õ = K, the set of automorphisms of K fixing F is denoted Aut(K/F ).

Definition 2.1.6. Let K/F be a field extension. Then K can be considered as an

F -vector space. The dimension of K/F is called the degree of K/F and is denoted

[K : F ]. If [K : F ] is finite then we say that the extension K/F is finite.

2.1.2 Finding the minimal polynomial

In Chapter 4 we will present a well-known algorithm to compute the so-called Hilbert

class field (see Definition 2.3.5) of an imaginary quadratic field K, which we will
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denote HK . We will do so by giving the minimal polynomial of a primitive element

of the extension HK/K. To this end, we now give the definition of the minimal

polynomial of an element of a field and give an example of how to compute the

minimal polynomial of an element of an imaginary quadratic extension of Q.

Definition 2.1.7. Let K/F be a field extension and – be an element of K. The

minimal polynomial of – over F , if it exists, is the monic polynomial of least degree

among all polynomials belonging to F [x] having – as a root. If the minimal polynomial

of – over F exists, we say that – is algebraic over F .

Example 2.1.8. Let K = Q(i). Then any · œ K is of the form · = a + bi with

a, b œ Q.

Suppose first that · œ Q, so b = 0. Then the minimal polynomial of · over Q is

x ≠ · . Suppose now that · ”œ Q, so b ”= 0. To find the minimal polynomial of · over

Q, we first square · :

· 2 = (a + bi)2 = a2 + 2abi ≠ b2

If a2 + 2abi ≠ b2 œ Q, i.e., 2ab = 0, then necessarily a = 0. In that case x2 + b2 is the

minimal polynomial of · = ib over Q. On the other hand, if ab ”= 0, then

2a· = 2a2 + 2abi

and

· 2 ≠ 2a· = a2 ≠ b2 ≠ 2a2 = ≠a2 ≠ b2.

So,

· 2 ≠ 2a· + a2 + b2 = 0.

9



Since a, b œ Q, we get a polynomial over Q, and the minimal polynomial of · over Q

is

m· (x) = x2 ≠ 2ax + a2 + b2.

2.1.3 Number fields

A goal of this thesis is to compute reflex fields specifically of certain number fields,

so we provide some definitions on number fields, a particular kind of field extension.

Definition 2.1.9. A number field is a finite degree field extension of the field Q of

rational numbers.

Definition 2.1.10. Let K be a number field. A complex embedding of K is an

injective field homomorphism Ï : K Òæ C such that Im‡ ”™ R, and a real embedding

of K is an injection ‡ : K Òæ R.

Definition 2.1.11. A number field K is a CM-field if it is a totally imaginary ex-

tension K/K0 of degree 2 of a totally real field K0.

In our work, we will often need a di�erent characterization of CM fields, due to

Lang:

Proposition 2.1.12 (Characterization of CM-fields from Lang [7]). Either one of

the following two conditions characterize a CM-field:

1. K is a totally imaginary quadratic extension of a totally real field.

2. Complex conjugation · commutes with every embedding of K in Q, and K is

not real. In particular, if K/Q is Galois, then · is in the center of Gal(K/Q).
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Theorem 2.1.13. Let K be a number field. Then its complex embeddings come in

conjugate pairs, where we define the complex conjugate of Ï, denoted Ï, to be the

composition of first Ï and then complex conjugation. Furthermore, if [K : Q] = n,

r1 is the number of distinct real embeddings of K and r2 is the number of conjugate

pairs of complex embeddings of K, we have

n = r1 + 2r2.

2.1.4 Galois extensions

We are particularly interested in a certain special kind of field extension called a

Galois extension. Before we define a Galois extension, we define two specific types of

field extensions.

Definition 2.1.14. A field extension K/F is said to be normal over F if every

irreducible polynomial in F [x] either has no root in K or splits into linear factors in

K.

Definition 2.1.15. A separable extension is an algebraic field extension K/F such

that for every – œ K, the minimal polynomial of – over F is a separable polynomial,

i.e., its roots are distinct.

Theorem 2.1.16 (Primitive Element Theorem from [5]). If K/F is finite and sepa-

rable, then K/F is simple, i.e. K = F (–) for a single element – œ K. In this case

K ≥= F [x]/(m–(x)). In particular, any finite extension of fields of characteristic 0 is

simple.
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Definition 2.1.17. A Galois extension is a finite algebraic field extension K/F that

is normal and separable.

Definition 2.1.18. Let K/F be a Galois extension. The group of automorphisms

Aut(K/F ) is called the Galois group of K/F , denoted Gal(K/F ).

Definition 2.1.19. The Galois closure of an extension K/F in a fixed algebraic

closure F is a field which is minimal among all Galois extensions of F containing K.

In particular, if K is a number field we adopt the convention that the Galois closure

of K is the Galois closure of K/Q.

The following proposition and theorem are used in Chapter 6 to prove Proposition

6.3.1, which gives information about the automorphism group of a certain field K of

interest in this work.

Definition 2.1.20. Let K/Q be a finite Galois extension. The fixed field KH of a

subgroup H Æ Gal(K/Q) is the set of elements of K that are fixed by H. This set is

a subfield of K and [K : KH ] = |H| with H ≥= Gal(K/KH).

Theorem 2.1.21 (Theorem 9 from page 570 of [5]). Let K be a field and let G =

{‡1 = 1, ‡2, . . . , ‡n} be a subgroup. Let F be the fixed field of Aut(K). Then

[K : F ] = n = |G|.

Proposition 2.1.22 (Corollary 10 from page 572 of [5]). Let K/F be any finite field

extension. Then

|Aut(K/F )| Æ [K : F ]

12



with equality if and only if F is the fixed field of Aut(K/F ). Put another way, K/F

is Galois if and only if F is the fixed field of Aut(K/F ).

2.2 Rings of integers
We now turn our attention to the so-called ring of integers of a number field, which

plays for the number field the role played by the integers Z for the rational field Q.

2.2.1 Ideals in a ring

We begin with some background on ideals in general rings.

Definition 2.2.1. Let R be a ring, let I be a subset of R, and let r œ R.

1. We define the sets rI = {ra | a œ I} and Ir = {ar | a œ I}.

2. A subset I of R is a left ideal of R if

(a) I is a subring of R, and

(b) I is closed under left multiplication by elements from R, i.e., rI ™ I for

all r œ R.

Similarly I is a right ideal if (a) holds and in place of (b) one has

(c) I is closed under right multiplication by elements from R, i.e., Ir ™ I for

all r œ R.

3. A subset I that is both a left ideal and a right ideal is called an ideal (or, for

added emphasis, a two-sided ideal) of R.

13



Definition 2.2.2. Let R be a ring. We say an ideal I is generated by a1, . . . , an œ R

and write I = (a1, . . . , an) if

I = {r1a1 + r2a2 + · · · + rnan | ri œ R}.

Example 2.2.3. If R = Z[
Ô≠5], then I = (2, 1 +

Ô≠5) = {2a + (1 +
Ô≠5)b | a, b œ

Z[
Ô≠5]}.

Definition 2.2.4. An ideal generated by a single element is called a principal ideal.

Definition 2.2.5. Let I and J both be ideals. Then IJ is the ideal generated by all

elements of the form ij where i œ I and j œ J .

Example 2.2.6. If I = (a, b) and J = (c, d), then IJ = (ac, ad, bc, bd).

Definition 2.2.7. Let I be an ideal of a commutative ring R. Then I is a prime

ideal of R if the following two properties hold:

1. Let a, b œ R such that ab œ I. Then a œ I or b œ I.

2. I ”= R.

2.2.2 The ring of integers of a number field

We can now define the ring of integers of a number field, and along with it the ideal

class group of a number field K.

Definition 2.2.8. Let K be a number field. Then the ring of integers of K, denoted

OK, is the set of all algebraic integers in K,

OK = {· œ K : the minimal polynomial of · has coe�cients in Z}.

14



We note that OK is a ring, and it is of rank n over Z, where n = [K : Q].

Example 2.2.9. The Gaussian integers Z[i] = {a + bi : a, b œ Z} is the ring of

integers of K = Q(i), and the Eisenstein integers Z[Ê] = {a + bÊ : a, b œ Z}, is the

ring of integers of Q(Ê), where Ê = (≠1 +
Ô≠3)/2 is a primitive cube root of unity.

Theorem 2.2.10. OK has unique factorization into primes for ideals.

We now give a di�erent characterization of the relationship between a number

field K and its ring of integers OK .

Definition 2.2.11. A commutative ring with identity 1 ”= 0 is called an integral

domain if it has no zero divisors.

Definition 2.2.12. Let K be a field and let A µ K be an integral domain. If every

c œ K can be written in the form c = ab≠1, where a, b œ A and b ”= 0, then K is called

the field of fractions of A.

Example 2.2.13. The field of fractions of Z, the ring of integers, is Q, i.e., Quot(Z)

= Q. If we let R = Z[i] = {a + bi : a, b œ Z}, then Quot(R) = Q(i) = {c + di : c, d œ
Q}.

Theorem 2.2.14. Let K be a number field and OK be its ring of integers. Then OK

is an integral domain, and K is its field of fractions.

We are finally in a position to define the ideal class group of a number field K.

Definition 2.2.15. Let R be an integral domain and let K be its field of fractions.

A fractional ideal of R is an R-submodule I of K such that there exists 0 ”= r œ R

with rI ™ R. The element r can be thought of as clearing out the denominators in I.
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Example 2.2.16. Consider Z µ Q. Then I = { a
2n | a œ Z, n œ Z+} is not a

fractional ideal because there is no largest denominator to clear. However, I = 1
3Z is

a fractional ideal because we can clear the denominator of 3, i.e., 3I ™ Z.

Definition 2.2.17. The ideal class group of a number field K is a certain group of

equivalence classes of ideals, given by {I}/ ≥ where I ≥ J if there exists – œ K such

that (–)I = J .

2.2.3 Dirichlet’s Unit Theorem

Dirichlet’s Unit Theorem is a fundamental result in algebraic number theory that we

give here because of its significance.

Theorem 2.2.18. (Dirichlet’s Unit Theorem) Let K be a number field with r1 real

embeddings and r2 conjugate pairs of complex embeddings. Then the group of units of

the ring of integers, denoted O◊
K, is finitely generated with rank d = r1 + r2 ≠ 1.

Definition 2.2.19. Let O◊
K

≥= O◊
K,tors ◊ Zd. A set ‘1, . . . , ‘d of units that generates

O◊
K/O◊

K,tors is called a set of fundamental units.

Example 2.2.20. Let K be a sextic CM field. Since [K : Q] = 6 and K is totally

imaginary, the field K has 3 conjugate pairs of complex embeddings. Its totally real

subfield K0 has degree 3 over Q and therefore has 3 real embeddings and no complex

embeddings. K0 has r1 = 3, r2 = 0, so has 3 + 0 ≠ 1 = 2 fundamental units. K also

has 2 fundamental units. By Dirichlet’s Unit Theorem we have

O◊
K

≥= O◊
K,tors ◊ ‘Z1 ◊ ‘Z2
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and

O◊
K0 = {±1} ◊ ‘Z1 ◊ ‘Z2 .

Therefore it follows that the fundamental units of K belong to K0. We note that

O◊
K,tors possibly contains more complex roots of unity.

2.2.4 The different of a number field

We now end this Section by introducing a distinguished fractional ideal of a number

field K, called the di�erent, which we will need to verify if a certain construction of

an abelian variety is principally polarizable.

Definition 2.2.21. Let K/Q be a finite field extension. The trace of – œ K is

TrK/Q(–) = [K : Q(–)]
nÿ

j=1
–j

where –j ranges over all Galois conjugates of –.

Definition 2.2.22. Let I ™ K be the set

I = {x œ K : TrK/Q(xy) œ Z for all y œ OK}.

I is a fractional ideal of K. ”K/Q = I≠1 is an ideal of OK called the di�erent of K.

2.3 Class field theory
As mentioned in the introduction, class field theory is the study of the arithmetic

properties of the abelian field extensions of a number field K. We are particularly
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interested in HK , the Hilbert class field of K, which we define in this section.

The first notion we need is that of the ramification of primes in a Galois extension

of number fields.

Proposition 2.3.1. Let L be an extension of a number field K, and let p be a prime

ideal in OK, the ring of integers of K. Then pOL is an ideal of OL.

Proposition 2.3.2. Let L be a Galois extension of a field K, with [L : K] = n. Let

p be a prime ideal of OK, and consider the ideal pOL of OL. Then we have

pOL = (P1 · · ·Pr)e, (2.1)

where the Pis are distinct prime ideals of OL, and

erf = n,

where f is such that

f = [OL/Pi : OK/p].

(We note that this quantity is independent of the choice of ideal Pi among the factors

of p.)

Definition 2.3.3. Let L be a Galois extension of a field K and p be a prime ideal

of OK. If e > 1 in the decomposition into prime factors of pOL of equation 2.1, then

we say that the extension L/K is ramified at the finite prime p.

Definition 2.3.4. Let L be a Galois extension of a field K, and let Ï be a real
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embedding of K. Consider the following sets of embeddings of L:

{Â : L æ C : Â|K = Ï}.

If the embeddings contained in this set are real embeddings of L, we say that the

infinite prime Ï is unramified. If the embeddings are complex (in other words, if they

do not factor through the real numbers), then the infinite prime Ï is ramified. If Ï is

a complex embedding of K that does not factor through the real numbers, then Ï is

always unramified in any extension of K.

We can now define the Hilbert class field of a number field.

Definition 2.3.5. The Hilbert class field HK of a number field K is the maximal

abelian unramified extension of K, by which we mean that HK is unramified at all

finite and infinite primes of K.

Example 2.3.6. The Hilbert class field of Q is Q itself. Q(’n) is ramified at each

p|n.

Theorem 2.3.7. Let K be a number field and HK be the Hilbert class field of K.

Then [HK : K] = hK, where hK is the size of the ideal class group of K, which we

call the class number of K.

2.4 Fixed fields
We finally turn our attention to the particular situation we consider in this thesis.

We will be concerned with the case of K a sextic CM field with Galois closure L and
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such that Gal(L/Q) ≥= D12. (Here D12 is the group with presentation Èr, s | r6 =

s2 = 1, srs = r≠1Í.) We are interested in this Section in proving some results about

certain subfields of L.

By direct computation, one can see that D12 has seven subgroups of order 2,

which are Èr3Í, ÈsÍ, ÈrsÍ, Èr2sÍ, Èr3sÍ, Èr4sÍ, and Èr5sÍ. Taking the fixed field of these

subgroups yields seven subfields of L of degree 6 over Q.

One of these subgroups is generated by r3, which we will see in Proposition 6.1.2

is complex conjugation and therefore its fixed field LÈr3Í is totally real. In fact, L is

a degree 12 CM field, and LÈr3Í is its totally real subfield of index 2. The other six

subgroups all give rise to sextic CM fields.

Proposition 2.4.1. We have that LÈsÍ ≥= LÈr2sÍ ≥= LÈr4sÍ and that LÈrsÍ ≥= LÈr3sÍ ≥=
LÈr5sÍ, where ≥= denotes field isomorphism.

Proof. First we show that LÈsÍ ≥= LÈr2sÍ. We claim that r : LÈsÍ æ LÈr2sÍ is well-defined,

where r œ D12 is restriced to LÈsÍ. Let l œ LÈsÍ, then by definition s(l) = l. We want

to show that r(l) œ LÈr2sÍ, i.e., r2s(r(l)) = r(l). Indeed:

r2s(r(l)) = r2sr(l) = r2r≠1s≠1 = rs(l) = r(l).

Thus the map is well-defined. Since r is an automorphism of L, it is invertible. Thus

LÈsÍ ≥= LÈr2sÍ.

Next we show that LÈsÍ ≥= LÈr4sÍ. We claim that r2 : LÈsÍ æ LÈr4sÍ. Let l œ LÈsÍ,

then again s(l) = l. We will show that r4s(r2(l)) = r2(l), so r2(l) œ LÈr4sÍ:

r4s(r2(l)) = r4sr2(l) = r4r≠2s≠1(l) = r2s(l) = r2(l).
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Thus r2 is well-defined. Again, r2 is an automorphism of L and therefore invertible.

Thus LÈsÍ ≥= LÈr2sÍ ≥= LÈr4sÍ.

The case of LÈrsÍ ≥= LÈr3sÍ ≥= LÈr5sÍ is similar with the maps

r : LÈrsÍ æ LÈr3sÍ,

and

r2 : LÈrsÍ ≥= LÈr2sÍ

giving the isomorphisms.
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Chapter 3

Abelian varieties

In this Chapter we provide the basics of the theory of elliptic curves and abelian

varieties. We focus in particular on the case of elliptic curves and abelian varieties of

dimension 3 defined over the field C, as these are the abelian varieties connected to

the work of Chapters 5 and 6.

3.1 Elliptic curves

3.1.1 Preliminaries

All of these facts are standard and can be found in Silverman [13] and [14].

Definition 3.1.1. Let k be a field of characteristic di�erent from 2 or 3. An elliptic

curve E defined over k (we will write E/k) has a Weierstrass equation of the form

E : y2 = x3 + Ax + B
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with A, B œ k and such that � = 4A3 + 27B2 ”= 0.

Definition 3.1.2. If an elliptic curve E has a Weierstrass equation as in Definition

3.1.1, then the j-invariant of E is defined as

j = ≠1728 (4A)3

≠16(4A3 + 27B2) . (3.1)

Remark 3.1.3. Two elliptic curves are isomorphic (see Definition 3.1.6) over an

algebraically closed field if and only if they have the same j-invariant.

Theorem 3.1.4. An elliptic curve as in Definition 3.1.1 is a one-dimensional abelian

variety with identity O, the unique point at infinity of the Weierstrass equation.

Our interest in this work is in what are called CM elliptic curves.

Definition 3.1.5. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a

morphism defined over k, the algebraic closure of k,

Ï : E1 æ E2 satisfying Ï(O) = O. (3.2)

Two elliptic curves E1 and E2 are isogenous if there is an isogeny from E1 to E2 with

Ï(E1) ”= {O}.

Elliptic curves are abelian groups, so the set of maps between them forms a group.

Indeed, we denote the set of isogenies from E1 to E2 by

Hom(E1, E2) = {isogenies E1 æ E2}. (3.3)
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The sum of two isogenies Ï, Â is defined by

(Ï + Â)(P ) = Ï(P ) + Â(P ), (3.4)

and Ï + Â is a morphism, so it is an isogeny or the zero map. Hence Hom(E1, E2) is

an abelian group.

Definition 3.1.6. An endomorphism of an elliptic curve defined over a field k is an

isogeny Ï : E æ E defined over k, the algebraic closure of k.

Since endomorphisms have two operations, composition and addition, the abelian

group Hom(E, E) is in fact a ring.

Definition 3.1.7. The endomorphism ring of an elliptic curve E, denoted End(E), is

the ring of all endomorphisms of E. The set End(E)¢ZQ, the ring of endomorphisms

tensored up to Q over Z, is called the endomorphism algebra of E.

Theorem 3.1.8 (Corollary 9.4 from [14]). Let k be a field of characteristic 0 (e.g.,

k = C). The endomorphism ring of an elliptic curve E/k is either isomorphic to Z

or to an order in an imaginary quadratic field.

Definition 3.1.9. An elliptic curve defined over a field of characteristic 0 whose

endomorphism ring is isomorphic to an order O in an imaginary quadratic field K is

said to have complex multiplication (CM) by O.

Example 3.1.10. Let E have complex multiplication by an order O in a number field

K. Then the curve E is not necessarily defined over the field K. Indeed, consider for

example

E : y2 = x3 ≠ x.
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The field of definition is k = Q, but K = End(E)¢ZQ = Q(i). In fact, End(E) ≥= Z[i]

with

[i] : (x, y) æ (≠x, iy) (3.5)

We see that this is well-defined as a map from E to itself because (iy)2 = (≠x)3≠(≠x).

3.1.2 Analytic Theory

We now turn our attention to the case of elliptic curves defined specifically over

the field C. We develop in this case a correspondence between isomorphism classes

of elliptic curves defined over C, and homothety classes of lattices � µ C. This

correspondence will be crucial to the computations of Chapter 5.

Definition 3.1.11. A lattice � (of rank 2) is a discrete subgroup of C that contains

an R-basis for C, i.e., � = {n1Ê1 + n2Ê2 : n1, n2 œ Z}, where Ê1 and Ê2 are complex

numbers that are linearly independent over R.

To give the correspondence, we first need some functions.

Definition 3.1.12. Let � ™ C be a lattice and let z œ C. The Weierstrass ˝-function

(relative to �) is defined by the series

˝(z; �) = 1
z2 +

ÿ

0 ”=Êœ�

A
1

(z ≠ Ê)2 ≠ 1
Ê2

B

. (3.6)
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Definition 3.1.13. Let � ™ C be a lattice and let z œ C. Define g2 and g3 as follows:

g2 = g2(�) = 60
ÿ

0 ”=Êœ�
Ê≠4, (3.7)

g3 = g3(�) = 140
ÿ

0 ”=Êœ�
Ê≠6 (3.8)

We can now give the correspondence.

Theorem 3.1.14. Let g2 = g2(�) and g3 = g3(�) be the quantities associated to a

lattice � ™ C.

1. Then the polynomial

f�(x) = 4x3 ≠ g2x ≠ g3 (3.9)

has distinct roots, so its discriminant

�(�) = g3
2 ≠ 27g2

3 (3.10)

is nonzero.

2. Let E/C be the curve

E : y2 = 4x2 ≠ g2x ≠ g3, (3.11)

which from (1) is an elliptic curve. Then the map

Ï : C/� æ E(C) µ P2(C), z ‘æ [˝(z), ˝Õ(z), 1], (3.12)

is an isomorphism of Riemann surfaces that is also a group homomorphism.

Conversely, let E/C be an elliptic curve. There exists a lattice � œ C, unique up to
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homothety, and a complex analytic isomorphism

Ï : C/� æ E ≥= E(C), Ï(z) = [˝(z, �), ˝Õ(z, �), 1]. (3.13)

Remark 3.1.15. Theorem 3.1.14 contains Proposition VI.3.6 from Silverman [14],

and his typos have been corrected here.

As a consequence, every elliptic curve corresponds to a lattice of the form

� = Ê1Z + Ê2Z. (3.14)

We now show that isogenies can also be given in terms of the lattice:

Theorem 3.1.16. Let E1 and E2 be elliptic curves corresponding to the lattices �1

and �2, respectively. Then we have a bijection of sets

{Ï : E1 æ E2 | Ï an isogeny} ¡ {– œ C◊ : –�1 ™ �2}. (3.15)

Corollary 3.1.17. Let E1/C and E2/C be elliptic curves corresponding under The-

orem 3.1.14 to lattices �1 and �2, respectively. Then E1 and E2 are isomorphic over

C if and only if �1 and �2 are homothetic, i.e., there exists some – œ C◊ such that

�1 = –�2.

We now show the connection between the lattice and the endomorphism ring.

Theorem 3.1.18. Let E/C be an elliptic curve, and let Ê1 and Ê2 be generators for

the lattice � associated to E by Theorem 3.1.14. Then one of the following is true:

1. End(E) = Z.
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2. The field Q(Ê1/Ê2) is an imaginary quadratic extension of Q, and End(E) is

isomorphic to an order in Q(Ê1/Ê2).

For the purposes of Chapter 5, we will need to identify an elliptic curve E/C to

an element · œ H, where H = {z œ C : Im(z) > 0}.

Proposition 3.1.19. (a) Let � µ C be a lattice, and let Ê1, Ê2 and ÊÕ
1, ÊÕ

2 be two

bases for � such that Im(Ê1/Ê2) > 0 and Im(ÊÕ
1/ÊÕ

2) > 0. Then

ÊÕ
1 = aÊ1 + bÊ2

ÊÕ
2 = cÊ1 + dÊ2

for some matrix Q

cca
a b

c d

R

ddb (3.16)

such that a, b, c, d œ Z and ad ≠ bc = 1. We say such a matrix belongs to the group

SL2(Z).

(b) Let ·1, ·2 œ H, the complex upper half-plane. Then �·1 = Z·1 + Z is homothetic

to �·2 = Z·2 + Z if and only if there is a matrix

Q

cca
a b

c d

R

ddb œ SL2(Z)

such that

·2 = a·1 + b

c·1 + d
.
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(c) Let � µ C be a lattice. Then there is · œ H such that � is homothetic to

�· = Z· + Z.

We now use the Propositions and Theorems above to show how to attach · œ H

to E/C. By Theorem 3.1.14, every elliptic curve over C corresponds to a lattice

� = Ê1Z + Ê2Z. Then, by Proposition 3.1.19 part (c), there is a · œ H such that �

is homothetic to �· . By Corollary 3.1.17, if the lattices are homothetic, the elliptic

curves are isomorphic. In fact, in practice we can choose · to be Ê1/Ê2 or Ê2/Ê1,

whichever is in H.

Therefore each isomorphism class of elliptic curves can be associated to some

values · œ H. In fact, by Theorem 3.1.19, E·1 is isomorphic to E·2 if and only if

�·1 = Z + ·1Z, �·2 = Z + ·2Z, (3.17)

where E·i is the elliptic curve that arises from ·i, and there exists a matrix

Q

cca
a b

c d

R

ddb œ SL2(Z) (3.18)

such that

·2 = a·1 + b

c·1 + d
. (3.19)

3.2 General case
Until now we have only considered the case of elliptic curves, which are abelian

varieties of dimension 1. We now turn our attention to higher dimensional abelian
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varieties. The information given below is widely known and can be found in Milne [9]

and Birkenhake and Lange [1].

3.2.1 Preliminaries

Definition 3.2.1. An abelian variety defined over a field k is a smooth connected

projective variety equipped with the structure of an algebraic group. The group law is

automatically commutative.

Example 3.2.2. An elliptic curve is an abelian variety of dimension 1.

In this work we will focus our attention on so-called simple abelian varieties with

CM (see the Main Theorem of CM (Theorem 4.3.9) for justification).

Definition 3.2.3. Let A1 and A2 be abelian varieties. An isogeny from A1 to A2 is

a morphism

Ï : A1 æ A2 satisfying Ï(OA1) = OA2 . (3.20)

Two abelian varieties A1 and A2 are isogenous if there is an isogeny from A1 to A2

with finite kernel.

Since abelian varieties are abelian groups, as for elliptic curves their endomorphism

set has the structure of a ring.

Definition 3.2.4. We write End(A) = Hom(A, A), and the ring End(A) is called the

endomorphism ring of A. The set End(A) ¢Z Q, the ring of endomorphisms tensored

up to Q over Z, is called the endomorphism algebra of A.

Definition 3.2.5. An abelian variety A is said to be simple if there does not exist an

abelian variety B µ A, with 0 ”= B ”= A.
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Definition 3.2.6. A simple abelian variety of dimension g is said to have complex

multiplication if its endomorphism ring is isomorphic to an order in the ring of inte-

gers of a CM field of degree 2g.

Proposition 3.2.7. If A is a simple abelian variety of dimension 3 defined over a

field of characteristic 0, then

End(A) ¢Z Q, (3.21)

the endomorphism algebra, is isomorphic to either

1. Q,

2. K0, a totally real field of degree 3 over Q,

3. F , an imaginary quadratic field, or

4. K, a sextic CM field.

In this work we focus on the case where End(A) ≥= OK for K a sextic CM field,

in which case End(A) ¢Z Q ≥= K. We will say that A has CM by OK .

3.2.2 Analytic theory

As we saw in Section 3.1.2, an elliptic curve E/C and a lattic � of rank 1 have special

properties that tie them together. We have a similar relationship between a lattice of

higher rank and an abelian variety of dimension 2 or higher.

Definition 3.2.8. A lattice � of rank 2g is a discrete subgroup of Cg that contains

an R-basis for Cg.
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Example 3.2.9. When g = 3, this means that � = {n1Ê1 + . . . + n6Ê6 : ni œ Z}
where the Êi’s are linearly independent over R and each Êi œ C3.

Definition 3.2.10. Given � a lattice of rank 2g, the quotient space Cg/� is called a

complex torus of dimension g.

Contrary to the case of g = 1, not every complex torus gives rise to an abelian

variety. For that to be the case, the torus must be polarizable.

Definition 3.2.11. A complex torus Cg/� is polarizable if there exists a skew-sym-

metric form

E : � ◊ � æ Z (3.22)

such that its extension

ER : � ¢Z R ◊ � ¢Z R æ R (3.23)

is such that

1. ER(iv, iw) = ER(v, w)

2. the associated Hermitian form H(v, w) = E(iv, w)+iE(v, w) is positive definite,

i.e., all of its eigenvalues are positive.

The form E is called a Riemann form.

We will further say

Theorem 3.2.12. Every abelian variety A/C has A(C) ≥= Cg/� for some �.

Definition 3.2.13. A complex torus is principally polarizable if there exists a basis
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of � such that the Riemann form E from Definition 3.2.11 is given by the matrix

Q

cca
0 idg

≠idg 0

R

ddb , (3.24)

where idg is the g ◊ g identity matrix.

In this work, principally polarizable abelian varieties will play the role of elliptic

curves. Accordingly, we wish to give an analyic space similar to H for elliptic curves.

We focus on the case of g = 3. Let dimA = 3 and A(C) ≥= C3/�, where � =

{n1Ê1 + . . . + n6Ê6 : ni œ Z}.

Let �1 be the 3 ◊ 3 matrix with columns Ê1, Ê2, and Ê3, and let �2 be the 3 ◊ 3

matrix with columns Ê4, Ê5, and Ê6 where each Êi is a column vector with three

entries. Then · = �≠1
1 �2 has the property that Im(·), the matrix where we take the

imaginary part of each entry, has only positive eigenvalues. Furthermore, this · will

be a symmetric matrix.

We define the space of all such matrices:

Definition 3.2.14. Hg, the Siegel upper half-space is the set

Hg = {M œ Mg◊g(C) : Im(M) is positive definite and M is symmetric}. (3.25)

By the procedure we just outlined, each principally polarizable complex torus

corresponds to · œ Hg.

Conversely, for every · œ Hg we can construct a principally polarizable abelian

variety in the following way:
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Let · œ Mg◊g(C) and let Êi œ Cg be the columns of · for i = 1, 2, . . . , g. Now let

Êg+1 =

Q

cccccccccca

1

0
...

0

R

ddddddddddb

, Êg+2 =

Q

cccccccccca

0

1
...

0

R

ddddddddddb

, · · · , Ê2g =

Q

cccccccccca

0

0
...

1

R

ddddddddddb

, (3.26)

i.e., Êg+i = ei where {ei} is the standard basis of Cg. Then {Ê1, . . . , Ê2g} generates a

lattice � of rank 2g and Cg/� is a principally polarizable abelian variety.

We now investigate when two abelian varieties corresponding to ·1 and ·2 œ Hg

are isomorphic.

Definition 3.2.15. Let Sp2g(Z) be the group containing the matrices M such that

M =

Q

cca
A B

C D

R

ddb , (3.27)

with A, B, C, D œ Mg◊g(Z), and

MT

Q

cca
0 idg

≠idg 0

R

ddb M =

Q

cca
0 idg

≠idg 0

R

ddb , (3.28)

where again idg is the g ◊ g identity matrix, and MT is the transpose of M .

Example 3.2.16. Note that Sp2(Z) = SL2(Z). Indeed let

M =

Q

cca
a b

c d

R

ddb œ Sp2(Z). (3.29)
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Then,

Q

cca
a c

b d

R

ddb

Q

cca
0 1

≠1 0

R

ddb

Q

cca
a b

c d

R

ddb =

Q

cca
≠c a

≠d b

R

ddb

Q

cca
a b

c d

R

ddb =

Q

cca
0 ad ≠ bc

≠ad + bc 0

R

ddb .

(3.30)

So ad ≠ bc = 1, by definition. Therefore, M œ SL2(Z). By the same argument, we

see that if M œ SL2(Z), then we also get that M œ Sp2(Z).

The significance of the group Sp2g(Z) is the following: two elements ·1 and ·2 œ Hg

give isomorphic principally polarizable abelian varieties if and only if there exists an

M œ Sp2g(Z) with

M =

Q

cca
A B

C D

R

ddb , (3.31)

and

·2 = (C·1 + D)≠1(A·1 + B). (3.32)

As a consequence, we have

Theorem 3.2.17. There is a one-to-one correspondence between Hg/Sp2g(Z) and

isomorphism classes of principally polarizable abelian varieties.
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Chapter 4

Complex Multiplication

In this Chapter we tackle two tasks. We first outline the process for finding the

Hilbert class polynomial fK of an imaginary quadratic field K. We then introduce

the theory of complex multipication that we need to define the so-called reflex field

and reflex type which we compute in Chapter 6. Finally, to explain the significance of

the reflex field and reflex type, we give the Main Theorem of Complex Multiplication,

and end with a short account of the algorithm that can be used to apply this theorem.

4.1 Elliptic curves
By Theorem 3.1.18, if we want an elliptic curve E with End(E) an order in an

imaginary quadratic field K, then we should take

�· = Z + ·Z, · œ K. (4.1)
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Furthermore, if we would like for End(E) = OK we need that for all – œ OK , – gives

an endomorphism of E, i.e.,

–�· ™ �· . (4.2)

By Definition 2.2.15, �· is therefore a fractional ideal of K. Conversely, every frac-

tional ideal of K gives an elliptic curve with CM by OK .

We now investigate when two such elliptic curves are isomorphic. By Corollary

3.1.17, E1 corresponding to �1 and E2 corresponding to �2 are isomorphic if and only

if there is an – œ C◊ such that �1 = –�2. This corresponds exactly to the statement

that �1 and �2 di�er by multiplication by the principal ideal (–), since – may be

taken to belong to K (see [13] Chapter II). By Definition 2.2.17, it follows that �1

and �2 are equal in Cl(K), the ideal class group of K.

Proposition 4.1.1. There is a one-to-one correspondence between the isomorphism

classes of elliptic curves with End(E) ≥= OK and elements of the ideal class group of

K.

We now give the connection between elliptic curves with CM by OK , for K an

imaginary quadratic field, and the Hilbert class field of K.

Theorem 4.1.2 (Theorem II.4.3 from Silverman [13]). Let E be an elliptic curve

representing an isomorphism class in ELL(OK), where ELL(OK) is the set of iso-

morphism classes of elliptic curves over C that have CM by OK.

1. K(j(E)) is the Hilbert class field HK of K.

2. [Q(j(E)) : Q] = [K(j(E)) : K] = hK, where hK = #Cl(K) is the class number

of K.
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3. Let E1, . . . , EhK be a complete set of representatives for ELL(RK). Then j(E1),

. . ., j(EhK ) is a complete set of Gal(K/K) conjugates for j(E).

Theorem 4.1.3 (Theorem II.6.1 from Silverman [13]). Let E/C be an elliptic curve

with complex multiplication. Then j(E) is an algebraic integer.

4.2 Generating fK(x)
In this section we give a procedure to, given an imaginary quadratic field K, com-

putationally generate fK(x), a monic polynomial with integer coe�cients such that

K[x]/(fK(x)) is the Hilbert class field of K:

First, generate a representative for each ideal class of K: I1, I2, . . . , Ihk
. For each

ideal, we will first compute a basis ai,1, ai,2 for i = 1, 2, . . . , hk, then fix an embedding

Ï : K Òæ C, and form the complex numbers

Êi,1 = Ï(ai,1) (4.3)

Êi,2 = Ï(ai,2). (4.4)

Then �i = ZÊi,1 +ZÊi,2 is a lattice in C such that an elliptic curve Ei corresponding

to �i has End(Ei) ≥= OK . Next we compute ·i = Êi,1/Êi,2 or Êi,2/Êi,1, whichever

has positive imaginary part, and compute j(·i), the j-invariant of Ei, to some fixed

suitable precision. Once this is done for each ideal class, we can form the polynomial

f̃K(x) =
hkŸ

i=1
(x ≠ j(·i)). (4.5)

This polynomial is an approximation of a polynomial that is known to have integer
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coe�cients. If the j-invariants in the product are computed to high enough precision,

we can round the coe�cients of f̃K to obtain fK(x) œ Z[x].

4.3 CM-types
The main work of this thesis is to compute the reflex field and reflex type of a pair

(K, �), where K is a sextic CM field with a given Galois group, and � is a so-called

CM-type of K. In this Section we introduce all of the notions we will need for our

computation. In addition, this Section ends with the Main Theorem of Complex

Multiplication (Theorem 4.3.9), which explains the significance of the reflex field and

type of a pair (K, �).

Definition 4.3.1. Let K be a CM field with [K : Q] = 2g. A CM-type � of K

is an unordered tuple of g complex embeddings of K, no two of which are complex

conjugates.

Example 4.3.2. Let K be a sextic CM field. Then there are six embeddings of K into

C. To create a CM-type, we choose three embeddings, no two of which are complex

conjugates. Denoting the complex embeddings of K by Ï1, Ï2, Ï3, Ï1, Ï2, and Ï3, we
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have the following CM-types:

�1 = {Ï1, Ï2, Ï3}

�2 = {Ï1, Ï2, Ï3}

�3 = {Ï1, Ï2, Ï3}

�4 = {Ï1, Ï2, Ï3}

�1 = {Ï1, Ï2, Ï3}

�2 = {Ï1, Ï2, Ï3}

�3 = {Ï1, Ï2, Ï3}

�4 = {Ï1, Ï2, Ï3}.

Definition 4.3.3. The CM-types � and �Õ are equivalent if there exists an automor-

phism · of K such that �Õ = � ¶ · .

Example 4.3.4. If complex conjugation is the only automorphism, then

{Ï1, Ï2, Ï3} ≥ {Ï1, Ï2, Ï3}. (4.6)

In that case there are 2g≠1 equivalence classes of CM-types.

Let K be a CM field of degree 2g over Q and let L/Q be a field that contains a

Galois closure of K over Q.

Definition 4.3.5. [15] Let K2/K1 be an extension of CM fields and let � be a

CM-type of K1. The CM-type of K2 induced by � is

�K2 = {Ï : K2 æ C | Ï|K1 œ �}.
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We say that a CM-type is primitive if it is not induced from a CM-type of a strict

CM subfield.

Proposition 4.3.6. [15] Let K be a CM field with Galois closure L, let � be a

CM-type of K, and let �L be the CM-type of L induced by �. By fixing an embedding

of L into C, one may consider the elements of �L as automorphisms of L, since

L is a Galois field. Let (�L)≠1 be the set of their inverses, which is also a set of

automorphisms of L. Again using the fixed embedding of L into C, we may consider

elements of (�L)≠1 as complex embeddings of L, and (�L)≠1 is a CM-type of L. Then

there is a unique primitive pair (KR, �R), where KR is a subfield of L, that induces

(L, (�L)≠1).

Definition 4.3.7. The pair (KR, �R) is called the reflex of (K, �), the field KR is

called the reflex field of (K, �), and the CM-type �R is called the reflex type of (K, �).

Lemma 4.3.8. [15] The CM-type �R is a primitive CM-type of KR. If we denote

the reflex of (KR, �R) by (KRR, �RR), then KRR is a subfield of K and � is induced

by �RR. If � is primitive, then we have KRR = K and �RR = �.

Now we give the main theorem of complex multiplication.

Theorem 4.3.9. [12] Let (KR, �R) be a primitive CM-type and (K, �) the reflex of

(KR, �R). Let H0 be the group of all ideals a of KR such that there exists an element

µ œ K for which we have

g(a) = (µ), N(a) = µµ,

where g is defined by

OLg(a) = OL

Ÿ

–

aÂ–
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and µ denotes the complex conjugate of µ. Let (A, C) be such that A is an abelian

variety of type (K, �) and C is a polarization of A. Let k0 be the field of moduli

(A, C). Then H0 is an ideal group of KR defined modulo OLg(a); and the composite

kR
0 of the fields k0 and KR is the unramified class field over KR corresponding to the

ideal-group H0.

The significance of this theorem is the following: If one can construct a polarized

abelian variety of type (K, �), then its field of moduli will generate an unramified

abelian extension of the reflex field KR of the pair (K, �). In general, this unramified

abelian extension will not be maximal if the dimension of the abelian variety is greater

than 1. Furthermore, the theorem gives the Galois group of the unramified abelian

extension (it is the group H0). This gives a sense of how far this unramified abelain

extension is from being maximal, as the maximal unramified abelian extension will

have Galois group Cl(K), the ideal class group of K.

4.4 Construction of dimension 3 abelian

varieties
We now turn our attention to the construction of an abelian variety A of dimension

3 such that End(A) ≥= OK , where K is a sextic CM field. As we have seen, when

equipped with a polarization, the field of moduli of such an abelian variety will give

an unramified extension of a certain field associated to K.

To do so we begin with I, a fractional ideal of K, as defined in Definiton 2.2.15, and

compute a Z basis a1, a2, a3, a4, a5, a6 of I. We then fix a CM-type � = {Ï1, Ï2, Ï3}

42



of K and compute:

Êi =

Q

cccccca

Ï1(ai)

Ï2(ai)

Ï3(ai)

R

ddddddb
œ C3, (4.7)

for i = 1, 2, . . . 6. Armed with these elements, we may form the matrix �1 whose

columns are the vectors Ê1, Ê2 and Ê3 and the matrix �2 whose columns are the

vectors Ê4, Ê5 and Ê6. Then it is a theorem that �≠1
1 �2 belongs to the Siegel upper

half-space H3. Therefore this matrix corresponds to a polarizable abelian variety.

To see if the abelian variety we have constructed is principally polarizable, we first

check if

(II”K/Q)≠1 (4.8)

is a principal ideal, where ”K/Q is the di�erent of K. If so, we then determine if the

ideal has a generator › such that

1. Ïi(›) is imaginary for Ïi œ �, and

2. Im(Ïi(›)) > 0 for Ïi œ �.

If this is the case, then

E›(x, y) =
3ÿ

i=1
Ïi(›)(xiyi ≠ xiyi) (4.9)

is a Riemann form giving a principally polarizable abelian variety on C3/�(I) and

this abelian variety has endomorphism ring OK .
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Chapter 5

Elliptic curves and Sage

As an application of the algorithm given in Section 4.2 and implemented in the

Appendix, we find the minimal polynomial for three number fields.

5.1 Computing the j-invariant
We previously defined the j-invariant of an elliptic curve in Definition 3.1.2. Here we

introduce a new expression for the j-invariant which is based on the theta function

given in Definition 5.1.1. This new expression is the one we use in the algorithm given

in the Appendix.

Definition 5.1.1. Let a, b œ 1
2Z. Then the theta function with characteristic (a, b) is

the function given by the formula

◊(a, b, ·) =
ÿ

nœZ
exp(fii·(n + a)2 + 2fii(n + a)b)

where · œ H, the upper half-plane.
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Theorem 5.1.2. The j-invariant of an elliptic curve E defined over a field K is

given by the formula:

j(·) = 32
(◊(1

2 , 0, ·)8 + ◊(0, 0, ·)8 + ◊(0, 1
2 , ·)8)3

(◊(1
2 , 0, ·)◊(0, 0, ·)◊(0, 1

2 , ·))8 ,

where · œ H is an element identified with an elliptic curve E/C.

5.2 Examples
In Section 4.2 we gave an algorithm for computing the Hilbert class field of a number

field K. This algorithm was implemented in Sage and is given in the Appendix. Here

we present the results we obtained for three imaginary quadratic fields.

Example 5.2.1. Consider the case of K = Q[x]/(x2 + 67). Here, hK = 1, so

HK = K. We find our · value to be

· = ≠1
34 – ≠ 1

34 ,

where – is a root of the defining polynomial of K. Then the j-invariant is approxi-

mately

≠1.4719795200000000000000000000000000000000000000000000000001 ◊ 1011

≠6.1473588332120499861232338744484083212749528242416120053125 ◊ 10≠48i

(5.1)

which, since we know it is an integer, must be the integer ≠147197952000. We note

that since this j-invariant is an integer, indeed HK = K(j) = K.
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Example 5.2.2. We now consider the case where K = Q[x]/(x2 + 23). This time

hK = 3, so [HK : K] = 3. We find that our · values are:

·1 = ≠1
6 – + 1

6 ,

·2 = ≠1
6 – ≠ 1

6 ,

·3 = ≠1
12 – ≠ 1

12 ,

where – is a root of the defining polynomial of K. Then the j-invariants are approx-

imately:

j1 = ≠3.4932256999699333682055047385473297033961841797256116567546 ◊ 106

≠ 1.0440487148797639242736470574810476089121862812910346476414 ◊ 10≠53i

j2 = 737.84998496668410275236927366485169809208986280582837732196

≠ 1764.0189386127461416437864271809651160148064228845054988713i

j3 = 737.84998496668410275236927366485169809208986280582837732196

+ 1764.0189386127461416437864271809651160148064228845054988713i
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and the approximate polynomial f̃K(x), which is given by (x ≠ j1)(x ≠ j2)(x ≠ j3), is:

x3 + (3.4917500000000000000000000000000000000000000000000000000000 ◊ 106

+ 1.0450682937028886937309455409356189444677645882063579236645 ◊ 10≠53i)x2

≠ (5.1512968750000000000000000000000000000000000000000000000000 ◊ 109

≠ 2.6727647100921956461405364671514818788151968801050486979619 ◊ 10≠50i)x

+ 1.2771880859375000000000000000000000000000000000000000000000 ◊ 1013

≠ 1.0947644252537633366591637369452469775627046420910279466852 ◊ 10≠47i.

Since we know that the coe�cients of fK(x) are integers, we can see that a defining

polynomial for HK over Q is

fK(x) = x3 + 3491750x2 ≠ 5151296875x + 12771880859375. (5.2)

Example 5.2.3. Finally, we consider the case where K = Q[x]/(x2 + 71). In this

case, hK = 7, so [HK : K] = 7. We find our · values to be:

·1 = ≠1
36 – ≠ 1

36
·2 = ≠1

18 – ≠ 1
18

·3 = ≠1
10 – + 3

10
·4 = ≠1

12 – ≠ 1
12

47



·5 = ≠1
12 – + 1

12
·6 = ≠1

12 – + 5
12

·7 = ≠1
18 – + 1

18

where – is a root of the defining polynomial of K over Q. Then our j-invariants are

approximately:

j1 = ≠3.1364581957422227012731408786369760137710039071161192050838 ◊ 1011

≠ 4.1908950654245627731483611804935235859822287080047163584043 ◊ 10≠48i

j2 = 743.99993147123748168375860616858359344377163560789106325735

≠ 560040.55795125353603389043859176576110814450956364090679262i

j3 = 30.193974692298505402948948670453194673728189051084472057093

+ 380.06017253801240923012609709361748441000924391925771326062i

j4 = 4155.4172289001210568451412458495134072383061355952234072731

≠ 5858.5619057385022066620967440139067895002584071940179348311i
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j5 = 4155.4172289001210568451412458495134072383061355952234072732

+ 5858.5619057385022066620967440139067895002584071940179348311i

j6 = 30.193974692298505402948948670453194673728189051084472057101

≠ 380.06017253801240923012609709361748441000924391925771326062i

j7 = 743.99993147123748168375860616858359344377163560789106326331

+ 560040.55795125353603389043859176576110814450956364090679260i.
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We get the polynomial:

f̃K(x) = x7 + (3.13645809714999999999999999999999999999999999999998 ◊ 1011

+ 4.1908742306499306007109917413899055002936928264211226382973 ◊ 10≠48i)x6

≠ (3.0919901386045699999999999999999999999999999999999999999979 ◊ 1015

≠ 6.3529617503245987931665935320427460206754775462399188157321 ◊ 10≠42i)x5

+ (9.8394038810047812049301999999999999999999999999999999999994 ◊ 1022

≠ 2.4188221299238987431887012022815363018379192200691834578177 ◊ 10≠36i)x4

≠ (8.2353426343973077996809138899999999999999999999999999999995 ◊ 1026

≠ 2.3761160688877522337078127866641540792463829084857351858773 ◊ 10≠32i)x3

+ (5.1388003664539767803237263294459999999999999999999999999998 ◊ 1030

≠ 1.9149598474240061576369710922239635725317086212271533440799 ◊ 10≠28i)x2

≠ (4.2531947394613960327460515118765899999999999999999999999993 ◊ 1032

≠ 1.6155871338926321774832201016991461983707267791032791137695 ◊ 10≠26i)x

+ 7.3770708676073111335771424100608126299999999999999999999998 ◊ 1035

≠ 1.0960143116327616692046165169927007809747010469436645507812 ◊ 10≠23i

and again, since we know that the coe�cients of fK(x) are integers, we have that a
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defining polynomial for HK over Q is

fK(x) = x7+313645809715x6≠3091990138604570x5+98394038810047812049302x4

≠ 823534263439730779968091389x3 + 5138800366453976780323726329446x2

≠ 425319473946139603274605151187659x

+ 737707086760731113357714241006081263.
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Chapter 6

Reflex fields

In this Chapter, we assume throughout that K is a sextic CM field with Galois closure

L over Q such that Gal(L/Q) ≥= D12. Here D12 is the dihedral group of order 12 such

that D12 = Èr, sÍ and 1 = r6 = s2. In this situation, we compute the reflex field and

reflex type of each pair (K, �), as � ranges over the CM-types of K.

6.1 Galois group preliminaries
We begin by proving two propositions tying the structure of K as a subfield of L and

as a CM field to the abstract structure of Gal(L/Q) ≥= D12.

Proposition 6.1.1. Let K be a sextic CM field with Galois closure L such that

Gal(L/Q) ≥= D12. Then the Galois group Gal(L/K) is generated by a reflection of

D12, which without loss of generality we may choose to be denoted s.

Proof. Since K is not Galois, the subgroup Gal(L/Q) must be non-normal, and since

[L : K] = 2, its generator must be of order 2. The size 2 subgroups of D12 are

Èr3Í, ÈsÍ, ÈrsÍ, Èr2sÍ, Èr3sÍ, Èr4sÍ, and Èr5sÍ. Of these subgroups, only Èr3Í is normal.
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The other six subgroups are non-normal and are generated by the six reflections of

D12. Relabelling if necessary, we may choose for s to fix K.

Proposition 6.1.2. The complex conjugation automorphism, indicated by ·, is r3.

Proof. By Lang’s characterization of a CM field given in Proposition 2.1.12, complex

conjugation must commute with any complex embedding of L, and therefore with

any element of Gal(L/Q). Furthermore, complex conjugation is of order 2. As we

saw before, the order 2 elements of D12 are r3, s, rs, r2s, r3s, r4s, and r5s. For any

element risj œ D12, we have

(risj)r3(risj)≠1 = risjr3s≠jr≠i = s≠jr≠ir3risj = s≠jr3sj = r≠3sjsj = r3.

Since (rjs)r(rjs)≠1 ”= r, r3 is the only element of order 2 that is in the center of D12

and must be the complex conjugation automorphism.

6.2 Matching an embedding to a Galois

element
We now turn our attention to the embeddings of K into C. Since [K : Q] = 6, there

are 6 embeddings of K into C. All of these embeddings are complex since K is a CM

field. Let Ï1, Ï2, Ï3, Ï1, Ï2, and Ï3 be the embeddings of K into C.

After choosing an arbitrary Â : K Òæ L and an arbitrary fl : L Òæ C, we can set

up a bijection between the complex embeddings of K and the cosets of Gal(L/K) in

Gal(L/Q). Indeed, for each Ï : K Òæ C there are exactly two elements ‡ of Gal(L/Q)

such that the diagram below commutes:

53



K C

L
Â

Ï

fl

‡

Also, since s fixes K by Proposition 6.1.1, it must be the case that if ‡ makes the

diagram above commute, then so does ‡ ¶ s.

Without loss of generality, let Ï1 : K Òæ C be such that Ï = fl ¶ Â. Since s fixes

K, it follows that Ï = fl ¶ s ¶ Â as well. Therefore, Ï1 corresponds to the coset

{1, s}. Since r3 is complex conjugation, Ï1 must then correspond to {r3, r3s}. Then

without loss of generality, let Ï2 correspond to {r, rs}, since, if Ï2 = fl ¶ r ¶ Â, then

Ï2 = fl ¶ rs ¶ Â as well since s fixes K. Then Ï2 will correspond to {r4, r4s}. Finally,

let Ï3 correspond to {r2, r2s}, so Ï3 corresponds to {r5, r5s}.

In conclusion, we have the following commutative diagrams:

K C

L
Â

Ï1

1,s

fl

K C

L
Â

Ï1

r3,r3s

fl

K C

L
Â

Ï2

r,rs

fl

K C

L
Â

Ï2

r5,r5s

fl
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K C

L
Â

Ï3

r2,r2s

fl

K C

L
Â

Ï3

r4,r4s

fl

As a result, the correspondence between embeddings of K into C and cosets of

Gal(L/K) is the following:

Ï1 ¡ {1, s} (6.1)

Ï2 ¡ {r, rs} (6.2)

Ï3 ¡ {r2, r2s} (6.3)

Ï1 ¡ {r3, r3s} (6.4)

Ï2 ¡ {r4, r4s} (6.5)

Ï3 ¡ {r5, r5s}. (6.6)

In what follows we will only need one Galois element corresponding to each em-

bedding. In that case we will say that Ï1 corresponds to 1, Ï2 to r, Ï3 to r2, Ï1 to

r3, Ï2 to r4, and Ï3 to r5.

6.3 Equivalence classes of CM-types
We now turn our attention to the CM-types of K.

Proposition 6.3.1. Let K be a sextic CM field with Galois closure L such that
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Gal(L/Q) ≥= D12. The identity automorphism and the complex conjugation automor-

phism are the only field automorphisms of K.

Proof. Since K is a CM field, it has the identity automorphism (which is of order 1)

and the complex conjugation automorphism (which is of order 2). Any automorphism

of K fixes Q since Q is its prime field, and since [K : Q] = 6, we know by Proposition

2.1.22 that

2 Æ |Aut(K/Q)| Æ 6.

Since Aut(K/Q) is a group, we consider the possibilities. There are exactly seven

groups of order between 2 and 6, inclusive: C2, C3, C4, C2 ◊ C2, C5, C6, and S3,

where Cn is the cyclic group of order n and Sn is the symmetric group on n letters.

Aut(K/Q) cannot be isomorphic to C3 or C5 because neither C3 nor C5 contains an

element of order 2. Aut(K/Q) cannot be isomorphic to a group of order 6 because then

K/Q would be Galois, but we know K/Q is not Galois. In the case where Aut(K/Q)

has order 4, consider the field F = KAut(K/Q), the fixed field of the automorphism

group of K/Q. By Theorem 2.1.21, [K : F ] = 4, but since [K : F ][F : Q] = [K : Q] we

get a contradiction because 4 - 6. This leaves us with the group C2, which contains

only two elements, one of order 1 and the other of order 2. Thus, Aut(K/Q) ≥= C2, so

the identity automorphism and the complex conjugation automorphism are the only

automorphisms of K/Q, and therefore of K.

As an immediate corollary, we have

Corollary 6.3.2. Let K be a sextic CM field with Galois closure L such that

Gal(L/Q) ≥= D12. Let Ï1, Ï2, Ï3, Ï1, Ï, and Ï3 denote the six complex embeddings

of K. Then repesentatives for each of the four equivalence classes of CM-types of K
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are �1 = {Ï1, Ï2, Ï3}, �2 = {Ï1, Ï2, Ï3}, �3 = {Ï1, Ï2, Ï3}, �4 = {Ï1, Ï2, Ï3}.

Proof. Since K has 3 pairs of complex conjugate embeddings, it has 8 CM-types

in total (see Example 4.3.2). Because the only non-trivial automorphism of K is

complex conjugation, each CM-type is equivalent to its complex conjugate and to no

other.

Proposition 6.3.3. Let K be a sextic CM field with Galois closure L such that

Gal(L/Q) ≥= D12. Then exactly three of the four equivalence classes of CM-types of

K are primitive.

Proof. Going back to the equivalence established in Section 2, we may write, by abuse

of notation, our four CM-types as �1 = {1, r, r2}, �2 = {1, r, r5}, �3 = {1, r2, r4},

and �4 = {1, r4, r5}. Recall from Definition 4.3.5 that a CM-type is primitive if it is

not induced from a CM-type of a strict CM subfield. Thus a CM-type is not primitive

if it is induced. In the lattice of subfields of K below, the only subfields of K = LÈsÍ

are LÈr2,sÍ, LÈr3,sÍ, and Q = LÈr,sÍ.

LÈsÍ = K

LÈr3,sÍ = K0

LÈr2,sÍ = F

LÈr,sÍ = Q

2

3

3

2

LÈr3,sÍ is totally real since r3 is complex conjugation. (In fact it is K0, the totally real

subfield of K). But F = LÈr2,sÍ satisfies the property that r3, complex conjugation,
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commutes with all of the elements of its Galois group, Gal(F/Q), and therefore all

of its complex embeddings. Therefore by Lang’s characterization of CM fields from

Proposition 2.1.12, F = LÈr2,sÍ is a CM field. By a process similar to that of Section

6.2, the complex embeddings of F correspond to 1 and r, and the embeddings of F

into K correspond to 1, r2, and r4 as below:

K C

F

1,r,r2,r3,r4,r5

1r2r4
1,r

Therefore, the CM-type {1} of F induces the CM-type �3 = {1, r2, r4} on K, and

the CM-type {r} of F induces �3 = {r, r3, r5} on K. Since F is the only CM subfield

of K, the other CM-types are primitive.

6.4 Finding reflex types
Recall that the definition of the reflex (KR, �R) of (K, �) from Definition 4.3.7.

Guided by the definition, for each primitive CM-type of K, we may compute the

reflex in the following manner: We first find the induced CM-type �L, and then

compute its inverse (�L)≠1. We then consider whether we can “factor out” a Galois

subgroup to write (�L)≠1 = {‡1, ‡2, ‡3}H, for H a subgroup of Gal(L/Q). Then

KR = LH , the fixed field of H in L, and �R is the CM-type of KR induced by

restricting ‡1, ‡2, and ‡3 to KR. We apply a similar process to the non-primitive
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CM-types.

As before, using the choices made in Section 6.2, we have that Ï1 corresponds to

1, Ï2 to r, and Ï3 to r2, thus Ï1 corresponds to r3, Ï2 to r4, and Ï3 to r5.

Throughout, we use the notation of Example 4.3.2.

6.4.1 Reflex of �1

Consider first �1 = {1, r, r2}. We induce up to L using our two automorphisms, 1

and s, as below:

L C

K

1,r,r2,s,rs,r2s

1s
1,r,r2

Therefore the induced CM-type, which we will denote �L
1 , is

�L
1 = {1, r, r2, s, rs, r2s}.

Next we find the inverse of each element of �L
1 in order to create (�L

1 )≠1. For instance,

the inverse of r2 is r4 since r2r4 = r6 = 1, and the inverse of r2s is r2s since

r2sr2s = r2ss≠1r≠2 = r2r≠2 = 1.

Thus

(�L
1 )≠1 = {1, r4, r5, s, rs, r2s}.
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We notice that this is none other than the CM-type {1, r2, r4} induced up from LÈr2sÍ.

Indeed we have
L C

LÈr2sÍ

1,r2,r4,s,r2s,r4s

1r2s 1,r2,r4

Therefore the reflex type is �R
1 = {1, r4, r5} and the reflex field KR

1 = LÈr2sÍ, the fixed

field of Èr2sÍ, a sextic CM field. We note that by Proposition 2.4.1, KR
1 is isomorphic

to K.

6.4.2 Reflex of �2

We consider now �2 = {1, r, r5}. Again, we induce up to L using our two automor-

phisms, 1 and s, as below:

L C

K

1,r,r5,s,rs,r5s

1s
1,r,r5

We get

�L
2 = {1, r, r5, s, rs, r5s}.

Then

(�L
2 )≠1 = {1, r, r5, s, rs, r5s},
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which is the CM-type {1, r, r5} induced from LÈsÍ. We get our reflex type �R
2 =

{1, r, r5} and our reflex field KR
2 = LÈsÍ. Thus (K, �2) is its own reflex.

6.4.3 Reflex of �3

Consider now �3 = {1, r2, r4}. Recall from Proposition 6.3.3 that �3 is not primitive.

It is the type {1} induced up from LÈr2,sÍ. Nevertheless, we induce �3 up to L and

obtain

�L
3 = {1, r2, r4, s, r2s, r4s}.

Therefore

(�L
3 )≠1 = {1, r2, r4, s, r2s, r4s} = {1, r2, r4}Èr2sÍ = {1}Èr2ÍÈr2sÍ = {1}Èr2, sÍ

which is the CM-type {1} induced up from LÈr2,sÍ. We see here that {1} on LÈr2,sÍ is

its own reflex, which is to be expected since LÈr2,sÍ is Galois.

6.4.4 Reflex of �4

Next, we consider �4 = {1, r4, r5}. We have

�L
4 = {1, r4, r5, s, r4s, r5s},

so that

(�L
4 )≠1 = {1, r, r2, s, r4s, r5s}

which we see to be the CM-type {1, r, r2} induced from LÈr4sÍ.
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6.4.5 Reflex of �1

We now turn our attention to �1 = {r3, r4, r5}. We induce up to L using our two

automorphisms, 1 and s, as below:

L C

K

r3,r4,r5,r3s,r4s,r5s

1s
r3,r4,r5

We get

�1
L = {r3, r4, r5, r3s, r4s, r5s},

so that

(�1
L)≠1 = {r, r2, r3, r3s, r4s, r5s}.

Thus we get reflex type �1
R = {r, r2, r3} and K1

R = LÈr2sÍ. We note that �1
R = �R

1

and �1 and �1 have the same reflex field.

6.4.6 Reflex of �2

Consider now �2 = {r2, r3, r4}. We induce up to L using our two automorphisms, 1

and s, as below:

L C

K

r2,r3,r4,r2s,r3s,r4s

1s
r2,r3,r4
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We get

�2
L = {r2, r3, r4, r2s, r3s, r4s},

so that

(�2
L)≠1 = {r2, r3, r4, r2s, r3s, r4s}.

Thus we get reflex type �2
R = {r2, r3, r4} and K2

R = LÈsÍ. We see that (K, �2) is its

own reflex, as was (K, �2).

6.4.7 Reflex of �3

Consider the penultimate CM-type �3 = {r, r3, r5}. Again, from Proposition 6.3.3 we

know that this CM-type is not primitive. It is the type {r} induced up from LÈr2,sÍ.

We induce up to L using our two automorphisms, 1 and s, as below:

L C

K

r,r3,r5,rs,r3s,r5s

1s
r,r3,r5

We get

�3
L = {r, r3, r5, rs, r3s, r5s},

so that

(�3
L)≠1 = {r, r3, r5, rs, r3s, r5s} = {r}Èr2, sÍ.

Again we see that {r} on LÈr2,sÍ is its own reflex, as we saw with (�3
L)≠1, similarly

to our conclusion for �3.
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6.4.8 Reflex of �4

Finally we consider �4 = {r, r2, r3}. We induce up to L using our two automorphisms,

1 and s, as below:

L C

K

r,r2,r3,rs,r2s,r3s

1s
r,r2,r3

We get

�4
L = {r, r2, r3, rs, r2s, r3s},

so that

(�4
L)≠1 = {r3, r4, r5, r3s, r4s, r5s}.

Thus we get the reflex type �4
R = {r3, r4, r5} and reflex field K4

R = LÈr4sÍ. We notice

that �4 and �4 have the same reflex field and that �4
R = �R

4 .

Our conclusion that �1
R = �R

1 and �4
R = �R

4 leads us to conjecture that complex

conjugation commutes with finding reflex types.
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Chapter 7

Example

In this Chapter we give a concrete example of the computations described in Chapter

6.

We used the LMFDB [8] to find a sextic CM field whose Galois closure has Galois

group D12. We chose K = Q[x]/(x6 ≠ 2x5 + 2x4 + 2x3 + 4x2 ≠ 4x + 2) and throughout

we let – be a root of this polynomial. We then found the Galois closure of the field,

L = Q[x]/(x12 + 128x8 + 1728x4 + 5476), and throughout we let — be a root of this

polynomial.

7.1 Preliminaries
We know that the elements of D12 are 1, r, r2, r3, r4, r5, s, rs, r2s, r3s, r4s, and

r5s, and we want to match these elements to our complex embeddings Ï1, Ï2, Ï3, Ï1,

Ï2, and Ï3 as in Section 6.2. To do this we first fix an arbitrary Â : K Òæ L and an

arbitrary fl : L Òæ C. Using Sage, we choose Â such that our primitive element – œ K
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maps to

109
70300—10 ≠ 2

475—8 + 6569
35150—6 ≠ 483

950—4 + 22076
17575—2 ≠ 1527

475 (7.1)

for — œ L, and (again using Sage) we choose fl such that our primitive element — œ L

maps to

≠2.30624364267427 ≠ 2.30624364267424i. (7.2)

Now we find the Galois element 1 ”= g œ D12 that fixes K. It su�ces to find g ”= 1

such that

g(Â(–)) = Â(–) (7.3)

and name this Galois element s. We see that

Â(–) = 109
70300—10 ≠ 2

475—8 + 6569
35150—6 ≠ 483

950—4 + 22076
17575—2 ≠ 1527

475 = s(Â(–)). (7.4)

under the Galois element

s = (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7). (7.5)

Next we find the Galois element 1 ”= g that corresponds to complex conjugation.

So, we want to find g such that fl(g(—)) is the complex conjugate of fl(—). We call

this element r3, and we find that

r3 = (1, 11)(2, 12)(3, 6)(4, 5)(7, 10)(8, 9). (7.6)

Finally we name the rest of the complex embeddings. As in Chapter 6, without loss
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of generality, we choose Ï1 such that

fl(Â(–)) = Ï1(–) = 0.403031716762685 ≠ 0.403031716762685i. (7.7)

Thus Ï1 is such that

fl(r3(Â(–))) = Ï1(–) = 0.403031716762685 + 0.403031716762685i. (7.8)

Now (again without loss of generality), we choose Ï2 to correspond to r. To do

this we must first fix r. Without loss of generality, we may choose r to be either one

of the two elements of order 6 in Gal(L/Q) and we choose

r = (1, 4, 7, 11, 5, 10)(2, 6, 9, 12, 3, 8). (7.9)

We get that

fl(r(Â(–))) = Ï2(–) = ≠0.854637679718466 ≠ 0.854637679718459i. (7.10)

Thus

fl(r4(Â(–))) = Ï2(–) = ≠0.854637679718466 + 0.854637679718459i. (7.11)

determining for us that

r4 = (1, 5, 7)(2, 3, 9)(4, 10, 11)(6, 8, 12). (7.12)
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Finally, since there is only one element of order 6 remaining, we know that

r5 = (1, 10, 5, 11, 7, 4)(2, 8, 3, 12, 9, 6) (7.13)

so that

fl(r5(Â(–))) = Ï3(–) = 1.45160596295577 + 1.45160596295574i, (7.14)

and since there is only one element remaining of order 3, we have

r2 = (1, 7, 5)(2, 9, 3)(4, 11, 10)(6, 12, 8), (7.15)

so that

fl(r2(Â(–))) = Ï2(–) = ≠0.854637679718466 ≠ 0.854637679718459i. (7.16)

By composing each of our Galois elements ri with s, we may find the other Galois
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elements. In summary, we find that

1 = () (7.17)

r = (1, 4, 7, 11, 5, 10)(2, 6, 9, 12, 3, 8) (7.18)

r2 = (1, 7, 5)(2, 9, 3)(4, 11, 10)(6, 12, 8) (7.19)

r3 = (1, 11)(2, 12)(3, 6)(4, 5)(7, 10)(8, 9) (7.20)

r4 = (1, 5, 7)(2, 3, 9)(4, 10, 11)(6, 8, 12) (7.21)

r5 = (1, 10, 5, 11, 7, 4)(2, 8, 3, 12, 9, 6) (7.22)

s = (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7) (7.23)

rs = (1, 3)(2, 5)(4, 12)(6, 11)(7, 9)(8, 10) (7.24)

r2s = (1, 8)(2, 10)(3, 4)(5, 6)(7, 12)(9, 11) (7.25)

r3s = (1, 2)(3, 7)(4, 8)(5, 9)(6, 10)(11, 12) (7.26)

r4s = (1, 6)(2, 4)(3, 11)(5, 12)(7, 8)(9, 10) (7.27)

r5s = (1, 9)(2, 7)(3, 5)(4, 6)(8, 11)(10, 12). (7.28)
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and

Ï1(–) = 0.403031716762685 ≠ 0.403031716762685i, (7.29)

Ï1(–) = 0.403031716762685 + 0.403031716762685i, (7.30)

Ï2(–) = ≠0.854637679718466 ≠ 0.854637679718459i, (7.31)

Ï2(–) = ≠0.854637679718466 + 0.854637679718459i, (7.32)

Ï3(–) = 1.45160596295577 ≠ 1.45160596295574i, (7.33)

Ï3(–) = 1.45160596295577 + 1.45160596295574i. (7.34)

.

7.2 Computation of Reflex Fields and

Reflex Types
With our Galois elements and complex embeddings fixed, we now apply the results

of our computations from Chapter 6. Throughout we continue to fix fl such that for

a primitive element — œ L we have

fl(—) = ≠2.30624364267424 ≠ 2.30624364267424i. (7.35)
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7.2.1 CM-types �1 and �1

Recall from Chapter 6 that

�1 = {1, r, r2}, (7.36)

�1 = {r3, r4, r5}, (7.37)

KR
1 = LÈr2sÍ, (7.38)

�R
1 = {1, r4, r5}, (7.39)

�1
R = {r, r2, r3}. (7.40)

We first compute KR
1 = LÈr2sÍ, the reflex field shared by �1 and �1. We get

KR
1 = Q[x]/(x6 ≠ 10x3 + 576x2 ≠ 240x + 50) (7.41)

with primitive element –1. Once we have the reflex field, we recover complex embed-

dings from the Galois elements in the CM-type, as we did in Chapter 6. As before,

we use our fixed embedding fl : L Òæ C and an embedding Â1 : KR
1 Òæ L, where Â1

sends the primitive element –1 of KR
1 to

343
140600—10 + 3

475—8 + 5192
17575—6 + 1449

1900—4 + 38346
17575—2 + 3

2— + 2528
475 , (7.42)

For each Galois element ‡ in the CM-type we then compute the associated embedding

Ï = fl ¶ ‡ ¶ Â1 (7.43)
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and we get that the reflex type �R
1 is

fl(Â1(–1)) = ≠3.56391303915539 ≠ 3.56391303915538i (7.44)

fl(r4(Â1(–1))) = 3.35481788886733 + 3.35481788886734i (7.45)

fl(r5(Â1(–1))) = 0.209095150288055 ≠ 0.209095150288037i (7.46)

(7.47)

and �1
R is

fl(r(Â1(”))) = 3.35481788886733 ≠ 3.35481788886727i (7.48)

fl(r2(Â1(”))) = 0.209095150288055 + 0.209095150288037i (7.49)

fl(r3(Â1(”))) = ≠3.56391303915540 + 3.56391303915538i. (7.50)

We notice that

fl(r(Â1(”))) = fl(r4(Â(”))), (7.51)

fl(r2(Â1(”))) = fl(r5(Â1(”))), (7.52)

fl(r3(Â1(”))) = fl(r3(Â(”))), (7.53)

as expected.
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7.2.2 CM-types �2 and �2

We recall from Chapter 6 that (K, �2) and (K, �2) are their own reflexes. We therefore

only give the explicit CM-types. We compute �R
2 to be

fl(Â2(–2)) = 0.403031716762694 ≠ 0.403031716762712i, (7.54)

fl(r(Â2(–2))) = ≠0.854637679718466 ≠ 0.854637679718459i, (7.55)

fl(r5(Â2(–2))) = 1.45160596295577 + 1.45160596295578i, (7.56)

(7.57)

and �2
R to be

fl(r2(Â2(–2))) = 1.45160596295577 ≠ 1.45160596295574i, (7.58)

fl(r4(Â2(–2))) = ≠0.854637679718465 + 0.854637679718456, (7.59)

fl(r3(Â2(–2))) = 0.403031716762694 + 0.403031716762712i. (7.60)
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7.2.3 CM-types �3 and �3

As before, we recall that

�3 = {1, r2, r4}, (7.61)

�3 = {r, r3, r5}, (7.62)

KR
3 = LÈr2,sÍ, (7.63)

�R
3 = {1}, (7.64)

�3
R = {r}. (7.65)

We also note that �3 and �3, as we saw in 6.3.3, are not primitive. We compute

KR
3 = LÈr2,sÍ, the reflex field shared by �3 and �3, which we find to be

KR
3 = Q[x]/(x2 + 1024) (7.66)

with primitive element –3. Then we recover the complex embeddings from the Galois

elements in the CM-type. Next we use our fixed embedding fl : L Òæ C and an

embedding Â3 : KR
3 Òæ L, where Â3 maps a primitive element –3 of KR

3 as follows:

–1 ‘æ 128
17575—10 + 16976

17575—6 + 334848
17575 —2. (7.67)

For each Galois element ‡ in the CM-type we compute the associated embedding

Ï = fl ¶ ‡ ¶ Â3 (7.68)
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and we get that the reflex type �R
3 is

fl(Â3(–3)) = 32.0000000000000i, (7.69)

and �3
R is

fl(r(Â3(–3))) = ≠32.0000000000000i. (7.70)

We clearly see that these two reflex types are complex conjugates. We note that each

type contains only one embedding since the reflex field KR
3 is quadratic.

7.2.4 CM-types �4 and �4

Again we recall from Chapter 6 that

�4 = {1, r4, r5}, (7.71)

�4 = {r, r2, r3}, (7.72)

KR
4 = LÈr4sÍ, (7.73)

�R
4 = {1, r, r2}, (7.74)

�4
R = {r3, r4, r5}. (7.75)

As before, we first compute KR
4 = LÈr4sÍ, the reflex field shared by �4 and �4. We

get

KR
4 = Q[x]/(x6 + 10x3 + 576x2 + 240x + 50) (7.76)
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with primitive element –4. We now recover the complex embeddings from the Galois

elements in the CM-type. Next we use our fixed embedding fl : L Òæ C and an

embedding Â4 : KR
4 Òæ L, where Â4 maps the primitive element –4 of KR

4 as follows:

–4 ‘æ ≠343
140600—10 ≠ 3

475—8 ≠ 5192
17575—6 ≠ 1449

1900—4 ≠ 38346
17575—2 + 3

2— ≠ 2528
475 . (7.77)

For each Galois element ‡ in the CM-type we then compute the associated embedding

Ï = fl ¶ ‡ ¶ Â4 (7.78)

and we get that the reflex type �R
4 is

fl(Â4(–4)) = ≠3.35481788886733 ≠ 3.35481788886734i, (7.79)

fl(r(Â4(–4))) = ≠0.209095150288055 + 0.209095150288037i, (7.80)

fl(r2(Â4(–4))) = 3.56391303915539 + 3.56391303915538i, (7.81)

and �4
R is

fl(r5(Â4(–4))) = 3.56391303915540 ≠ 3.56391303915538i, (7.82)

fl(r4(Â4(–4))) = ≠0.209095150288055 ≠ 0.209095150288037i, (7.83)

fl(r3(Â4(–4))) = ≠3.35481788886733 + 3.35481788886727i. (7.84)
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We again note our pairs of complex conjugates:

fl(Â4(–4)) = fl(r3(Â4(–4))), (7.85)

fl(r(Â4(–4))) = fl(r4(Â4(–4))), (7.86)

fl(r5(Â4(–4))) = fl(r2(Â4(–4))). (7.87)
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Appendix A

Sage code

1 def good_taus(K):
2 good_taus = [] #empty list of good taus
3 G = K.class_group() #G is the ideal class group
4 phi = K.complex_embeddings(53)[0] #gets a complex
5 embedding of K
6 for L in G: #go through each element of the class
7 group
8 I_0 = L.ideal() #defines the ideal of L as I_0
9 tau_) = I_0.basis()[0]/I_0.basis()[1] #computes tau

10 for that L
11 alpha = phi(tau_0) #defines alpha to be phi evaluated
12 with tau
13 if alpha.imag() > 0: #tests if tau is > 0
14 #print ``positive"
15 good_taus.append(alpha) #if tau > 0 adds tau to
16 good tau list
17 else: #only happens if tau <= 0
18 #print ``not positive"
19 #print 1/tau_0 #computes 1/tau
20 good_taus.append(1/alpha) #adds 1/tau to good tau
21 list
22 return good_taus #returns good tau list
23

24 def theta(a,b,tau,B): #defines theta function with below
25 arguments
26 #a is 0 or 1/2
27 #b is 0 or 1/2
28 #tau is the complex tau from before
29 #B is a bound for the summation
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30 from sage.symbolic.constants import pi
31 CC = ComplexField(53)
32 pi = CC(pi)
33 theta = 0 #starts theta sum at zero
34 for n in range(-B,B+1):
35 theta = theta + exp(pi * I * tau * (n + a)^2
36 + 2 * pi * I * (n + a) * b) #theta function
37 return theta #returns theta partial sums
38

39 def j_invariant(tau,D):
40 a_1 = theta(1/2,0,tau,D) #a value 10
41 b_1 = theta(0,0,tau,D) #b value 00
42 c_1 = theta(0,1/2,tau,D) #c value 01
43 j_invariant = 32 * ((a_1^8 + b_1^8 + c_1^8)^3
44 /(a_1 * b_1 * c_1)^8)
45 return j_invariant #j-invariant equation
46

47 def make_polynomial(J):
48 j_tau = good_taus(J)
49 j_inv_list = []
50 for number in j_tau:
51 inv = j_invariant(number,100) #arbitrary bound that works for our
52 #purposes
53 Ch. 5
54 j_inv_list.append(inv)
55 poly = 1
56 for inv in j_inv_list:
57 poly = poly * (y - inv)
58 return poly
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