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ABSTRACT

In this thesis we look at particular details of class field theory for complex multipli-
cation fields. We begin by giving some background on fields, abelian varieties, and
complex multiplication. We then turn to the first task of this thesis and give an
implementation in Sage of a classical algorithm to compute the Hilbert class field
of a quadratic complex multiplication field using the j-invariant of elliptic curves
with complex multiplication by the ring of integers of the field, and we include three
explicit examples to illustrate the algorithm.

The second part of this thesis contains new results: Let K be a sextic complex
multiplication field with Galois closure L such that the Galois group of L over Q
is isomorphic to Djy, the dihedral group with twelve elements. For each complex
multiplication type ® of K, we compute the reflex field and reflex type of the pair
(K, ®) explicitly. We then illustrate our results with the case of K = Q[z]/(x® —
22° + 22 + 223 + 42% — dx + 2).
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CHAPTER 1

INTRODUCTION

Given a number field K, it is of interest to consider its abelian field extensions, by
which we mean the Galois extensions of K with abelian Galois group. The study
of these extensions is called class field theory, which more generally is a branch of
algebraic number theory that looks at abelian extensions of local and global fields,
and the arithmetic properties of these extensions.

Of particular interest is the Hilbert class field, which is the maximal abelian
unramified extension of a field. If K is a number field, its Hilbert class field exists

and has finite degree over K, as shown by Furtwéngler [6].

1.1 EXPLICIT CLASS FIELD THEORY

In [4], Daberkow and Pohst give an algorithm to explicitly compute the Hilbert class
field of arbitrary number fields. However, the algorithm is not practical, as it requires
computing a large number of Kummer extensions of the base field. In any case, their

algorithm shows that the problem is decidable.



If one is willing to restrict the class of number fields considered, much more can be
said. If K = Q, then all of the abelian Galois extensions of K are contained in some

Q(¢,), where (, is a primitive n'?

root of unity. In other words, for any extension
L/Q that is abelian, there exists an n such that L C Q((,). It is important to note
that not every Galois extension of QQ is contained in some Q((,), just the abelian
extensions. However, all of these extensions are ramified, as Q does not have any
unramified extensions.

The next case for which we have an explicit construction of abelian extensions is

that of K, an imaginary quadratic field, i.e., a quadratic CM field. For example, we

can construct the Hilbert class field of K, which we denote Hp, explicitly:

Theorem 1.1.1. Let K be an imaginary quadratic field. Then its Hilbert class field
is K(j) for j the j-invariant of an elliptic curve with endomorphism ring O, where

Ok is the ring of integers of K.

In this thesis, we provide code that, given any imaginary quadratic field K, gives
a monic polynomial fx with integer coefficients such that Hx = Q[z]/(fx(x)). The
algorithm that we give is not new, and is not an optimal implementation. It is merely
a toy problem to grapple with the higher degree CM fields that form the real heart
of this thesis. For an optimal implementation, we direct the reader to Cohen’s book
A course in computational algebraic number theory [2]. Although we won’t consider
this here, we note that more general abelian extensions of such K can be generated
using the torsion points of the elliptic curves appearing in Theorem 1.1.1.

The next case for which we have partial explicit constructions is that of K, a
general CM field. When K is of degree four or more over , we must consider a

few differences. First, instead of considering the field of moduli of the abelian variety



(which is generated by the j-invariant when the abelian variety has dimension 1),
we must give the abelian variety a polarization, and consider the field of moduli
of the polarized abelian variety. Secondly, given a polarized abelian variety with
endomorphism ring isomorphic to Ok, its field of moduli is an extension of the reflex
field, which we denote K, and not necessarily of the field of complex multiplication.
Thirdly, this field of moduli will be an unramified abelian extension of K%, but in
general it will not be the maximal such extension. In other words, the field of moduli
of the polarized abelian variety will not necessarily give us the Hilbert class field of
K=E,

In this thesis, we introduce the definitions and notions necessary to more fully
explain the concepts of the previous paragraph. We then consider the situation of
K a sextic CM field whose Galois closure L has Galois group isomorphic to Dis,
the dihedral group with twelve elements. For this class of fields and any CM-type
attached to K, we compute the corresponding reflex field and reflex type. In addition,
we choose an explicit such field to carry out the computations, as an example of our
results.

Finally, for completeness we mention the last case for which we have explicit
constructions of unramified abelian extensions, which is that of real quadratic fields.
Indeed, in 1999 Cohen and Roblot [3] gave an algorithm for computing the Hilbert
class field of a real quadratic field using Stark units. This method is different from
the CM method used for quadratic and higher degree CM fields which is mentioned

above.



1.2 OVERVIEW OF CONTENTS

We now delve into some more details about the contents of each Chapter of this thesis.
We note that for all topics covered in the literature, specific references are offered
within each Chapter. However, as many of these results are quite old, the references
we offer are merely suggestions and do not reflect an exhaustive list. Producing such
a list would be impossible given the wealth of work that has been done on some of
these topics.

In Chapter 2 we review the basic properties of fields. We begin with a review
of field theory, including Galois theory and facts about the ring of integers Og of
a number field K. We then introduce the notion of ramification of prime ideals to
introduce class field theory and define unramified extensions. All of these results
are well-known. We end with some new results which we will need about sextic CM
subfields of a Galois CM field with Galois group Ds.

In Chapter 3 we turn our attention to the theory of abelian varieties. We begin
by presenting in some detail the case of elliptic curves, which are abelian varieties
of dimension 1, and then turn our attention to the general case, with a focus in
particular on abelian varieties of dimension 3. Throughout, we particularly introduce
the theory of abelian varieties defined over C, the complex field, as these are the
varieties that arise in the construction of explicit class fields. Again, all of these
results are well-known and amply covered in the literature.

In Chapter 4 we tackle two tasks. We first explain the process for finding the
Hilbert class polynomial fx(z) of an imaginary quadratic field K. We then define

complex multiplication (CM) and define CM-types and various notions associated to



CM-types. In particular this is where reflex fields and reflex types are introduced.
Finally, we end with the Main Theorem of Complex Multiplication, which precisely
describes the unramified abelian extension generated by the field of moduli of a po-
larized abelian variety with CM by an order in a CM field. This is the last Chapter
reviewing the literature necessary for the new results that follow.

As a toy problem in Chapter 5 we turn our attention to the classical computation
of the Hilbert class field of an imaginary quadratic field K. We again note that
algorithms that do so are well-known, and point the reader to Cohen’s A Course in
Computational Algebraic Number Theory [2] for a particularly efficient example. In
this work we use the naive algorithm given in Section 4.2 and its implementation
given in Appendix A to explore three examples where we compute fx, the monic
polynomial such that Hx = Q[z]/(fx(z)), where we recall that Hg is the Hilbert
class field of K.

Finally, Chapter 6 contains the bulk of the new results of this thesis. In it, we
systematically study the case of K, a sextic CM field whose Galois closure L has Galois
group isomorphic to D15. Armed with these results, we then proceed to compute, for
each CM-type ® of K, the associated reflex field K and reflex type ®% of the pair
(K,®). This is a new contribution to the field, which should be useful in future
computational projects. In Chapter 7 we apply the theory of Chapter 6 to an explicit

example, the case where

K = Q[z]/(2° — 220° + 22* + 22° + 42* — 42 + 2).

The thesis ends with an Appendix containing the implementation of the algorithm

given in Section 4.2 whose results are given for a few examples in Chapter 5. We note



here some implementation details. First, we used the software Sage for several reasons:
it contains all of the libraries and packages necessary to perform the computations,
as do Magma and Pari. We chose Sage among these three mathematical software
libraries because it is based on the language Python, which is in wide use and therefore
easy to learn. Furthermore, Sage is open source and has excellent documentation.
Although the algorithm is correct for the three examples of Chapter 5, we note that for
examples with larger class number the precision will need to be increased to produce

numbers accurate enough to be rounded to integers.



CHAPTER 2

FIELD PRELIMINARIES

In this chapter we present the background on fields that we will need for the work of
this thesis, notably our work in Chapter 6 on reflex fields.

Most of the definitions, theorems, etc. are standard and can be found, for example,
in Dummit and Foote [5] or Milne [9] or [11]. Section 4 contains new results that we

will need later, which are specific to the context of Chapter 6.

2.1 FIELD THEORY

Here we review some basic definitions and theorems related to field theory which
will help us to build the structures we will need in the subsequent chapters. We are

interested in particular in number fields that have complex multiplication.

2.1.1 FIELDS AND FIELD EXTENSIONS

We begin with some basic information on fields and field extensions that we will use

as we move forward.



Definition 2.1.1. Let K and L be fields. Then a field homomorphism is a map
f: K — L such that for all a,b € K,

1. fla+b) = f(a) + f(b),
2. f(ab) = f(a)f(D),
3. f(lg) =1;.

Definition 2.1.2. Let F' and K be fields. We say that K is a field extension of F' if
there exists an injective field homomorphism from F into K. Such a field extension

is denoted K/F.

Definition 2.1.3. An extension K/F is said to be simple if K = F(a) for some

a € K. In this case, « is called a primitive element.
Example 2.1.4. Q(7) and Q[i] are simple extensions of Q.

Definition 2.1.5. Let K and K’ be two field extensions of F and o a field isomor-
phism from K to K'. One says that o is an F-isomorphism if o(x) = x for allx € F.

If K = K, the set of automorphisms of K fizing F' is denoted Aut(K/F).

Definition 2.1.6. Let K/F be a field extension. Then K can be considered as an
F-vector space. The dimension of K/F is called the degree of K/F and is denoted

(K : F]. If [K : F] is finite then we say that the extension K/F is finite.

2.1.2 FINDING THE MINIMAL POLYNOMIAL

In Chapter 4 we will present a well-known algorithm to compute the so-called Hilbert

class field (see Definition 2.3.5) of an imaginary quadratic field K, which we will

8



denote Hyx. We will do so by giving the minimal polynomial of a primitive element
of the extension Hg /K. To this end, we now give the definition of the minimal
polynomial of an element of a field and give an example of how to compute the

minimal polynomial of an element of an imaginary quadratic extension of Q.

Definition 2.1.7. Let K/F be a field extension and « be an element of K. The
minimal polynomial of o over F, if it exists, is the monic polynomial of least degree
among all polynomials belonging to F[x] having o as a root. If the minimal polynomial

of a over F' exists, we say that « is algebraic over F'.

Example 2.1.8. Let K = Q(i). Then any 7 € K is of the form 7 = a + bi with
a,be Q.

Suppose first that 7 € Q, so b = 0. Then the minimal polynomial of T over Q is
x — 7. Suppose now that T € Q, so b # 0. To find the minimal polynomial of T over
Q, we first square T:

% = (a + bi)* = a* + 2abi — b
If a® 4 2abi — b* € Q, i.e., 2ab = 0, then necessarily a = 0. In that case x* +b? is the
minimal polynomial of T = ib over Q. On the other hand, if ab # 0, then
2a1 = 2a* + 2abi
and
™ —2ar = a* — V¥ — 2a% = —a® — b°.

So,

2 —2ar +a>+ > =0.



Since a,b € Q, we get a polynomial over Q, and the minimal polynomial of T over Q
18

m,(z) = 2* — 2ax + a* + b*.

2.1.3 NUMBER FIELDS

A goal of this thesis is to compute reflex fields specifically of certain number fields,

so we provide some definitions on number fields, a particular kind of field extension.

Definition 2.1.9. A number field is a finite degree field extension of the field Q of

rational numbers.

Definition 2.1.10. Let K be a number field. A complex embedding of K is an
injective field homomorphism ¢: K — C such that Imo € R, and a real embedding

of K is an injection o: K — R.

Definition 2.1.11. A number field K is a CM-field if it is a totally imaginary ex-

tension KKy of degree 2 of a totally real field K.

In our work, we will often need a different characterization of CM fields, due to

Lang:

Proposition 2.1.12 (Characterization of CM-fields from Lang [7]). Either one of

the following two conditions characterize a CM-field:
1. K is a totally imaginary quadratic extension of a totally real field.

2. Complex conjugation = commutes with every embedding of K in Q, and K is

not real. In particular, if K/Q is Galois, then = is in the center of Gal(K/Q).

10



Theorem 2.1.13. Let K be a number field. Then its complex embeddings come in
conjugate pairs, where we define the complex conjugate of p, denoted P, to be the
composition of first ¢ and then complex conjugation. Furthermore, if [K : Q] = n,
r1 is the number of distinct real embeddings of K and ry is the number of conjugate

pairs of complex embeddings of K, we have

n=ry+ 2rs.

2.1.4 GALOIS EXTENSIONS

We are particularly interested in a certain special kind of field extension called a
Galois extension. Before we define a Galois extension, we define two specific types of

field extensions.

Definition 2.1.14. A field extension K/F is said to be normal over F if every
irreducible polynomial in F|x] either has no root in K or splits into linear factors in

K.

Definition 2.1.15. A separable extension is an algebraic field extension K/F such
that for every a € K, the minimal polynomial of o over F' is a separable polynomial,

i.e., its roots are distinct.

Theorem 2.1.16 (Primitive Element Theorem from [5]). If K/F is finite and sepa-
rable, then K/F is simple, i.e. K = F(a) for a single element o € K. In this case
K = Flx]/(mo(x)). In particular, any finite extension of fields of characteristic 0 is

simple.

11



Definition 2.1.17. A Galois extension is a finite algebraic field extension K/F' that

is normal and separable.

Definition 2.1.18. Let K/F be a Galois extension. The group of automorphisms
Aut(K/F) is called the Galois group of K/F, denoted Gal(K/F).

Definition 2.1.19. The Galois closure of an extension K/F in a fized algebraic
closure F is a field which is minimal among all Galois extensions of F containing K.

In particular, if K is a number field we adopt the convention that the Galois closure

of K is the Galois closure of K/Q.

The following proposition and theorem are used in Chapter 6 to prove Proposition
6.3.1, which gives information about the automorphism group of a certain field K of

interest in this work.

Definition 2.1.20. Let K/Q be a finite Galois extension. The fived field K of a
subgroup H < Gal(K/Q) is the set of elements of K that are fized by H. This set is
a subfield of K and [K : K] = |H| with H = Gal(K/K*).

Theorem 2.1.21 (Theorem 9 from page 570 of [5]). Let K be a field and let G =
{o1 =1,09,...,0,} be a subgroup. Let F' be the fized field of Aut(K). Then

[K: F]=n=]|G|.

Proposition 2.1.22 (Corollary 10 from page 572 of [5]). Let K/F be any finite field
extension. Then

Aut(K/F)| < [K: F]

12



with equality if and only if F' is the fized field of Aut(K/F). Put another way, K/F
is Galois if and only if F is the fized field of Aut(K/F).

2.2 RINGS OF INTEGERS

We now turn our attention to the so-called ring of integers of a number field, which

plays for the number field the role played by the integers Z for the rational field Q.

2.2.1 IDEALS IN A RING

We begin with some background on ideals in general rings.

Definition 2.2.1. Let R be a ring, let I be a subset of R, and let r € R.
1. We define the sets vl = {ra|a € I} and Ir = {ar | a € I}.
2. A subset I of R is a left ideal of R if

(a) I is a subring of R, and

(b) I is closed under left multiplication by elements from R, i.e., rI C I for

allr € R.
Similarly I is a right ideal if (a) holds and in place of (b) one has

(c) I is closed under right multiplication by elements from R, i.e., Ir C I for

allr € R.

3. A subset I that is both a left ideal and a right ideal is called an ideal (or, for

added emphasis, a two-sided ideal) of R.

13



Definition 2.2.2. Let R be a ring. We say an ideal I is generated by aq,...,a, € R

and write I = (ay,...,a,) if

I ={ra; +reas+---+rya, | r; € R}

Example 2.2.3. If R = Z[\/=5], then I = (2,1 ++/=5) = {2a+ (1 ++/=5)b|a,b e
Z[V=5]}.

Definition 2.2.4. An ideal generated by a single element is called a principal ideal.

Definition 2.2.5. Let I and J both be ideals. Then 1.J is the ideal generated by all

elements of the form ij where i € I and j € J.
Example 2.2.6. If [ = (a,b) and J = (¢,d), then I.J = (ac,ad, be, bd).

Definition 2.2.7. Let I be an ideal of a commutative ring R. Then I is a prime

ideal of R if the following two properties hold:

1. Let a,b € R such thatabe I. Thena eI orbe I.

2. I+R.

2.2.2 THE RING OF INTEGERS OF A NUMBER FIELD

We can now define the ring of integers of a number field, and along with it the ideal

class group of a number field K.

Definition 2.2.8. Let K be a number field. Then the ring of integers of K, denoted

Ok, is the set of all algebraic integers in K,

Ok = {7 € K: the minimal polynomial of 7 has coefficients in Z}.

14



We note that Ok is a ring, and it is of rank n over Z, where n = [K : Q).

Example 2.2.9. The Gaussian integers Z[i]| = {a + bi: a,b € Z} is the ring of
integers of K = Q(i), and the Eisenstein integers Zlw] = {a + bw: a,b € Z}, is the

ring of integers of Q(w), where w = (—1++/—3)/2 is a primitive cube root of unity.
Theorem 2.2.10. Ok has unique factorization into primes for ideals.

We now give a different characterization of the relationship between a number

field K and its ring of integers O-.

Definition 2.2.11. A commutative ring with identity 1 # 0 is called an integral

domain if it has no zero divisors.

Definition 2.2.12. Let K be a field and let A C K be an integral domain. If every
c € K can be written in the form ¢ = ab™!, where a,b € A and b # 0, then K is called

the field of fractions of A.

Example 2.2.13. The field of fractions of Z, the ring of integers, is Q, i.e., Quot(Z)
=Q. Ifwelet R=1Z[i] ={a+bi: a,b e Z}, then Quot(R) = Qi) = {c+di: ¢,d €
Q}.

Theorem 2.2.14. Let K be a number field and Ok be its ring of integers. Then Ok
is an integral domain, and K is its field of fractions.

We are finally in a position to define the ideal class group of a number field K.

Definition 2.2.15. Let R be an integral domain and let K be its field of fractions.
A fractional ideal of R is an R-submodule I of K such that there exists 0 # r € R

with 1 C R. The element r can be thought of as clearing out the denominators in I.

15



Example 2.2.16. Consider Z C Q. Then I = {5 | a € Z,n € Z"} is not a
fractional ideal because there is no largest denominator to clear. However, I = %Z 18

a fractional ideal because we can clear the denominator of 3, i.e., 31 C Z.

Definition 2.2.17. The ideal class group of a number field K is a certain group of
equivalence classes of ideals, given by {I}/ ~ where I ~ J if there exists o € K such

that (o)l = J.

2.2.3 DIRICHLET’S UNIT THEOREM

Dirichlet’s Unit Theorem is a fundamental result in algebraic number theory that we

give here because of its significance.

Theorem 2.2.18. (Dirichlet’s Unit Theorem) Let K be a number field with ry real
embeddings and ro conjugate pairs of complex embeddings. Then the group of units of

the ring of integers, denoted Oj, is finitely generated with rank d =ry +rey — 1.

Definition 2.2.19. Let O = Ok, X Z*. A set e1, ... eq of units that generates

Ok/OK tors 15 called a set of fundamental units.

Example 2.2.20. Let K be a sextic CM field. Since [K : Q] = 6 and K is totally
imaginary, the field K has 3 conjugate pairs of complex embeddings. Its totally real
subfield Ko has degree 3 over Q and therefore has 3 real embeddings and no complex
embeddings. Ko hasry =3, ro =0, so has 3+ 0 —1 =2 fundamental units. K also

has 2 fundamental units. By Dirichlet’s Unit Theorem we have

X ~ X Z Z
OK = OK,tors X €1 X €9

16



and

O, = {£1} x €] x &3.

Therefore it follows that the fundamental units of K belong to Ky. We note that

OF.tors P0ssibly contains more complex roots of unity.

2.2.4 THE DIFFERENT OF A NUMBER FIELD

We now end this Section by introducing a distinguished fractional ideal of a number
field K, called the different, which we will need to verify if a certain construction of

an abelian variety is principally polarizable.

Definition 2.2.21. Let K/Q be a finite field extension. The trace of a € K is

Tra(e) = [ Q)] Y,

where a; ranges over all Galois conjugates of .

Definition 2.2.22. Let I C K be the set
I ={x e K :Trgg(xy) € Z for all y € Ok }.

I is a fractional ideal of K. 0rjg = 17" is an ideal of Ok called the different of K.

2.3 (CLASS FIELD THEORY

As mentioned in the introduction, class field theory is the study of the arithmetic

properties of the abelian field extensions of a number field K. We are particularly

17



interested in Hg, the Hilbert class field of K, which we define in this section.
The first notion we need is that of the ramification of primes in a Galois extension

of number fields.

Proposition 2.3.1. Let L be an extension of a number field K, and let p be a prime

ideal in Ok, the ring of integers of K. Then pQy is an ideal of Op.

Proposition 2.3.2. Let L be a Galois extension of a field K, with [L : K| =n. Let

p be a prime ideal of Ok, and consider the ideal pOyr of Op. Then we have

pOL = (B1---Br)", (2.1)

where the P, s are distinct prime ideals of Op, and

erf =n,

where [ is such that

f =101/ : Ok/p].

(We note that this quantity is independent of the choice of ideal B3; among the factors
of p.)

Definition 2.3.3. Let L be a Galois extension of a field K and p be a prime ideal
of Ok. If e > 1 in the decomposition into prime factors of pOr of equation 2.1, then

we say that the extension L/K is ramified at the finite prime p.

Definition 2.3.4. Let L be a Galois extension of a field K, and let ¢ be a real

18



embedding of K. Consider the following sets of embeddings of L:

{: L = C:9Y|x = p}.

If the embeddings contained in this set are real embeddings of L, we say that the
infinite prime ¢ is unramified. If the embeddings are complex (in other words, if they
do not factor through the real numbers), then the infinite prime ¢ is ramified. If ¢ is
a complexr embedding of K that does not factor through the real numbers, then o is

always unramified in any extension of K.
We can now define the Hilbert class field of a number field.

Definition 2.3.5. The Hilbert class field Hx of a number field K is the maximal
abelian unramified extension of K, by which we mean that Hy is unramified at all

finite and infinite primes of K.
Example 2.3.6. The Hilbert class field of Q is Q itself. Q((,) is ramified at each
pln.

Theorem 2.3.7. Let K be a number field and Hy be the Hilbert class field of K.
Then [Hy : K| = hg, where hi is the size of the ideal class group of K, which we

call the class number of K.

2.4 FIXED FIELDS

We finally turn our attention to the particular situation we consider in this thesis.

We will be concerned with the case of K a sextic CM field with Galois closure L and
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such that Gal(L/Q) = Dy,. (Here Dy is the group with presentation (r,s | 76 =
s? =1,srs = r~1).) We are interested in this Section in proving some results about
certain subfields of L.

By direct computation, one can see that D;y has seven subgroups of order 2,
which are (r3), (s), (rs), (r?s), (r3s), (rts), and (r®s). Taking the fixed field of these
subgroups yields seven subfields of L of degree 6 over Q.

One of these subgroups is generated by %, which we will see in Proposition 6.1.2
is complex conjugation and therefore its fixed field L) s totally real. In fact, L is
a degree 12 CM field, and L™ is its totally real subfield of index 2. The other six

subgroups all give rise to sextic CM fields.

Proposition 2.4.1. We have that L' = L) = L) gnd that L) = L[i7s) =~

L<’"53>, where = denotes field isomorphism.

Proof. First we show that L) =2 L) We claim that r: L& — L&) is well-defined,
where r € Dy, is restriced to L), Let [ € L), then by definition s(I) = I. We want

to show that (1) € L) i.e., r2s(r(l)) = r(l). Indeed:

r2s(r(l)) = r2sr(l) = r’r st =rs(l) = r(l).

Thus the map is well-defined. Since r is an automorphism of L, it is invertible. Thus
L(s) o2 [ (r?s)
Next we show that L = L") We claim that 2: L — L") Let [ € L),

then again s(I) = I. We will show that r4s(r2(1)) = r2(1), so r2(l) € L")



Thus r? is well-defined. Again, 72 is an automorphism of L and therefore invertible.
Thus L o L0 = L),

The case of L{r®) = [(s) o 1) ig similar with the maps

3

A AU

and

702: L(rs} ~ L(rzs)

giving the isomorphisms. O]
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CHAPTER 3

ABELIAN VARIETIES

In this Chapter we provide the basics of the theory of elliptic curves and abelian
varieties. We focus in particular on the case of elliptic curves and abelian varieties of
dimension 3 defined over the field C, as these are the abelian varieties connected to

the work of Chapters 5 and 6.

3.1 ELLIPTIC CURVES

3.1.1 PRELIMINARIES

All of these facts are standard and can be found in Silverman [13] and [14].

Definition 3.1.1. Let k be a field of characteristic different from 2 or 3. An elliptic

curve E defined over k (we will write E/k) has a Weierstrass equation of the form

E:y=2+Acz+B
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with A, B € k and such that A = 4A3 + 27B? # 0.

Definition 3.1.2. If an elliptic curve E has a Weierstrass equation as in Definition

3.1.1, then the j-invariant of E is defined as

(44)°

= 1728 .
J —16(4A% + 27B2)

(3.1)

Remark 3.1.3. Two elliptic curves are isomorphic (see Definition 3.1.6) over an

algebraically closed field if and only if they have the same j-invariant.

Theorem 3.1.4. An elliptic curve as in Definition 3.1.1 is a one-dimensional abelian

variety with identity O, the unique point at infinity of the Weierstrass equation.
Our interest in this work is in what are called CM elliptic curves.

Definition 3.1.5. Let Ey and Ey be elliptic curves. An isogeny from Ey to Fy is a

morphism defined over k, the algebraic closure of k,

¢: By — Ey satisfying  ¢(0) = O. (3.2)

Two elliptic curves Ey and Ey are isogenous if there is an isogeny from Ey to Ey with

o(E) # {0}

Elliptic curves are abelian groups, so the set of maps between them forms a group.

Indeed, we denote the set of isogenies from F; to Ey by

Hom(F,, Ey) = {isogenies F; — Es}. (3.3)

23



The sum of two isogenies ¢, 1 is defined by

(o +¥)(P) = o(P) +4(P), (3.4)

and ¢ + 1 is a morphism, so it is an isogeny or the zero map. Hence Hom(F1, E») is

an abelian group.

Definition 3.1.6. An endomorphism of an elliptic curve defined over a field k is an

isogeny @: E — E defined over k, the algebraic closure of k.

Since endomorphisms have two operations, composition and addition, the abelian

group Hom(F, E) is in fact a ring.

Definition 3.1.7. The endomorphism ring of an elliptic curve E, denoted End(E), is
the ring of all endomorphisms of E. The set End(F)®7Q, the ring of endomorphisms

tensored up to Q over 7Z, is called the endomorphism algebra of E.

Theorem 3.1.8 (Corollary 9.4 from [14]). Let k be a field of characteristic 0 (e.g.,
k = C). The endomorphism ring of an elliptic curve E/k is either isomorphic to 7

or to an order in an imaginary quadratic field.

Definition 3.1.9. An elliptic curve defined over a field of characteristic 0 whose
endomorphism ring is isomorphic to an order O in an imaginary quadratic field K is

said to have complex multiplication (CM) by O.

Example 3.1.10. Let E have complex multiplication by an order O in a number field
K. Then the curve E is not necessarily defined over the field K. Indeed, consider for
example

E:y?=2%—uz.
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The field of definition is k = Q, but K = End(E)®zQ = Q(i). In fact, End(E) = Z]i]
with

[i]: (2,y) = (==, iy) (3:5)

We see that this is well-defined as a map from E to itself because (1y)* = (—z)>—(—x).

3.1.2 ANALYTIC THEORY

We now turn our attention to the case of elliptic curves defined specifically over
the field C. We develop in this case a correspondence between isomorphism classes
of elliptic curves defined over C, and homothety classes of lattices A € C. This

correspondence will be crucial to the computations of Chapter 5.

Definition 3.1.11. A lattice A (of rank 2) is a discrete subgroup of C that contains
an R-basis for C, i.e., A = {njwy + nows: ny,ne € Z}, where wy and wy are complex

numbers that are linearly independent over R.
To give the correspondence, we first need some functions.

Definition 3.1.12. Let A C C be a lattice and let z € C. The Weierstrass g-function

(relative to A) is defined by the series

o(z;A) = 212 + > <(Z_1w)2 - 1) : (3.6)

2
0FweA w
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Definition 3.1.13. Let A C C be a lattice and let z € C. Define go and g3 as follows:

g = gg(A) =60 Z w*4, (37)
0#weA

gs =g3(A) =140 > w° (3.8)
0#weA

We can now give the correspondence.

Theorem 3.1.14. Let g = go(A) and g3 = g3(A) be the quantities associated to a
lattice A C C.

1. Then the polynomial

fa(z) = 42° — gow — g3 (3.9)

has distinct roots, so its discriminant

A(A) = g3 — 2743 (3.10)

1S Monzero.

2. Let E/C be the curve

E:y* =42 — gox — g3, (3.11)

which from (1) is an elliptic curve. Then the map

0: C/A — E(C) Cc P*(C), =z [p(2),¢(2),1], (3.12)

is an isomorphism of Riemann surfaces that is also a group homomorphism.

Conversely, let E/C be an elliptic curve. There exists a lattice A € C, unique up to
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homothety, and a complex analytic isomorphism
p: C/A = E=E(C), ¢(2)=[p(z,A),¢(zA),1]. (3.13)
Remark 3.1.15. Theorem 3.1.14 contains Proposition VI.3.6 from Silverman [14],

and his typos have been corrected here.

As a consequence, every elliptic curve corresponds to a lattice of the form

A =wZ+ wiZ. (3.14)

We now show that isogenies can also be given in terms of the lattice:

Theorem 3.1.16. Let E, and Ey be elliptic curves corresponding to the lattices Aq

and Ao, respectively. Then we have a bijection of sets

{¢: By — Ey | p anisogeny} <> {a € C*: aA; C Ay}, (3.15)

Corollary 3.1.17. Let E,/C and E5/C be elliptic curves corresponding under The-
orem 3.1.14 to lattices Ay and Ay, respectively. Then Ey and Ey are isomorphic over

C if and only if Ay and Ay are homothetic, i.e., there exists some a € C* such that

A1 = OéAg.
We now show the connection between the lattice and the endomorphism ring.

Theorem 3.1.18. Let E/C be an elliptic curve, and let wy and wy be generators for

the lattice A associated to E by Theorem 3.1.14. Then one of the following is true:
1. End(F) = Z.

27



2. The field Q(wy/we) is an imaginary quadratic extension of Q, and End(FE) is

isomorphic to an order in Q(w/ws).

For the purposes of Chapter 5, we will need to identify an elliptic curve E/C to

an element 7 € H, where H = {z € C: Im(2) > 0}.

Proposition 3.1.19. (a) Let A C C be a lattice, and let wy,wy and wi,wh be two

bases for A such that Im(wy /wq) > 0 and Im(w)/wh) > 0. Then

/
wy = awq + bwsy

/
Wy = cwy + dwy

for some matrix

a b
(3.16)

c d

such that a,b,c,d € Z and ad — bc = 1. We say such a matriz belongs to the group
SLy(Z).
(b) Let 11,79 € H, the complex upper half-plane. Then A, = Zm + Z is homothetic

to N, = Z1y + Z if and only if there is a matriz

a b
€ SLy(Z)

c d

such that
at + b
cr +d
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(c¢) Let A C C be a lattice. Then there is T € H such that A is homothetic to

N, =7Z1 + 7.

We now use the Propositions and Theorems above to show how to attach 7 € H
to E/C. By Theorem 3.1.14, every elliptic curve over C corresponds to a lattice
A = wZ + woZ. Then, by Proposition 3.1.19 part (c), there is a 7 € H such that A
is homothetic to A,. By Corollary 3.1.17, if the lattices are homothetic, the elliptic
curves are isomorphic. In fact, in practice we can choose T to be w;/wy or ws/wy,
whichever is in H.

Therefore each isomorphism class of elliptic curves can be associated to some

values 7 € H. In fact, by Theorem 3.1.19, E., is isomorphic to E., if and only if

ATl =7 -+ le, ./\7—2 =7Z + TQZ, (317)

where F,. is the elliptic curve that arises from 7;, and there exists a matrix

a b
€ SLy(Z) (3.18)
c d
such that
ar, +b
— . 1
72 cr +d (3.19)

3.2 GENERAL CASE

Until now we have only considered the case of elliptic curves, which are abelian

varieties of dimension 1. We now turn our attention to higher dimensional abelian
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varieties. The information given below is widely known and can be found in Milne [9]

and Birkenhake and Lange [1].

3.2.1 PRELIMINARIES

Definition 3.2.1. An abelian variety defined over a field k is a smooth connected
projective variety equipped with the structure of an algebraic group. The group law is

automatically commutative.
Example 3.2.2. An elliptic curve is an abelian variety of dimension 1.

In this work we will focus our attention on so-called simple abelian varieties with

CM (see the Main Theorem of CM (Theorem 4.3.9) for justification).

Definition 3.2.3. Let Ay and As be abelian varieties. An isogeny from A; to As is
a morphism

p: Ap = Ag  satisfying  ©(Oa,) = Og,. (3.20)

Two abelian varieties Ay and As are isogenous if there is an isogeny from Ay to As

with finite kernel.

Since abelian varieties are abelian groups, as for elliptic curves their endomorphism

set has the structure of a ring.

Definition 3.2.4. We write End(A) = Hom(A, A), and the ring End(A) is called the
endomorphism ring of A. The set End(A) ®z Q, the ring of endomorphisms tensored

up to Q over Z, is called the endomorphism algebra of A.

Definition 3.2.5. An abelian variety A is said to be simple if there does not exist an

abelian variety B C A, with 0 # B # A.
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Definition 3.2.6. A simple abelian variety of dimension g is said to have complex
multiplication if its endomorphism ring is isomorphic to an order in the ring of inte-

gers of a CM field of degree 2g.

Proposition 3.2.7. If A is a simple abelian variety of dimension 3 defined over a
field of characteristic 0, then
End(A) ®z Q, (3.21)

the endomorphism algebra, is isomorphic to either
1. Q,
2. Ky, a totally real field of degree 3 over Q,
3. F, an imaginary quadratic field, or
4. K, a sextic CM field.

In this work we focus on the case where End(A) = O for K a sextic CM field,

in which case End(A) ®z Q = K. We will say that A has CM by Ok.

3.2.2 ANALYTIC THEORY

As we saw in Section 3.1.2, an elliptic curve F/C and a lattic A of rank 1 have special
properties that tie them together. We have a similar relationship between a lattice of

higher rank and an abelian variety of dimension 2 or higher.

Definition 3.2.8. A lattice A of rank 2g is a discrete subgroup of C9 that contains
an R-basis for C9.
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Example 3.2.9. When g = 3, this means that A = {njw; + ... + news: n; € Z}

where the w;’s are linearly independent over R and each w; € C3.

Definition 3.2.10. Given A a lattice of rank 2g, the quotient space CI/A is called a

complex torus of dimension g.

Contrary to the case of g = 1, not every complex torus gives rise to an abelian

variety. For that to be the case, the torus must be polarizable.

Definition 3.2.11. A complex torus C9/A is polarizable if there exists a skew-sym-
metric form

E:AxA—7Z (3.22)

such that its extension

ERZA(X)ZRXA@ZR—)R (323)
18 such that
1. Eg(iv,iw) = Eg(v,w)

2. the associated Hermitian form H(v,w) = E(iv,w)+iE(v,w) is positive definite,

i.e., all of its eigenvalues are positive.
The form E is called a Riemann form.
We will further say

Theorem 3.2.12. Every abelian variety A/C has A(C) = CI/A for some A.

Definition 3.2.13. A complex torus is principally polarizable if there exists a basis
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of A such that the Riemann form E from Definition 3.2.11 is given by the matriz

, (3.24)

where id, is the g X g identity matriz.

In this work, principally polarizable abelian varieties will play the role of elliptic
curves. Accordingly, we wish to give an analyic space similar to H for elliptic curves.
We focus on the case of ¢ = 3. Let dimA = 3 and A(C) = C3/A, where A =
{nw1 + ...+ newe: n; € Z}.

Let €4 be the 3 x 3 matrix with columns wq, ws, and ws, and let {2y be the 3 x 3
matrix with columns wy, ws, and wg where each w; is a column vector with three
entries. Then 7 = Q7 ', has the property that Im(7), the matrix where we take the
imaginary part of each entry, has only positive eigenvalues. Furthermore, this 7 will
be a symmetric matrix.

We define the space of all such matrices:

Definition 3.2.14. H,, the Siegel upper half-space is the set

H, = {M € M,,(C): Im(M) is positive definite and M is symmetric}.  (3.25)

By the procedure we just outlined, each principally polarizable complex torus
corresponds to 7 € Hy.
Conversely, for every 7 € H, we can construct a principally polarizable abelian

variety in the following way:
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Let 7 € M,y ,(C) and let w; € C? be the columns of 7 for i = 1,2,...,g. Now let

1 0 0
0 1 0
Wg+1 = ) y W2 = ' y Wy = ' s (326)
0 0 1
i.e., wyy; = €; where {e;} is the standard basis of CY. Then {wy, ...,ws,} generates a

lattice A of rank 2¢g and C9/A is a principally polarizable abelian variety.
We now investigate when two abelian varieties corresponding to 7, and 7 € Hy

are isomorphic.

Definition 3.2.15. Let Spy,(Z) be the group containing the matrices M such that

A B
M = , (3.27)
C D
with A, B,C,D € Myy,(Z), and
0 i 0
M7 Yl M= , (3.28)
—idy, 0 —idg 0

where again id, is the g x g identity matriz, and M?T is the transpose of M.

Example 3.2.16. Note that Spy(Z) = SLo(Z). Indeed let

M = € Sp,(Z). (3.29)
c d
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Then,

a c 0 1 a b —Cc a a b 0 ad — be

bd)\-10]\cd —d b ¢ d —ad+be 0
(3.30)

So ad — bc = 1, by definition. Therefore, M € Sly(Z). By the same argument, we
see that if M € SLy(Z), then we also get that M € Spy(Z).

The significance of the group Spa,(Z) is the following: two elements 7 and 7 € H,,
give isomorphic principally polarizable abelian varieties if and only if there exists an

M € Sp,,(Z) with

A B
M = , (3.31)
C D

and
To = (07'1 + D)71<AT1 + B) (332)

As a consequence, we have

Theorem 3.2.17. There is a one-to-one correspondence between H,/Sp,,(Z) and

isomorphism classes of principally polarizable abelian varieties.
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CHAPTER 4

COMPLEX MULTIPLICATION

In this Chapter we tackle two tasks. We first outline the process for finding the
Hilbert class polynomial fx of an imaginary quadratic field K. We then introduce
the theory of complex multipication that we need to define the so-called reflex field
and reflex type which we compute in Chapter 6. Finally, to explain the significance of
the reflex field and reflex type, we give the Main Theorem of Complex Multiplication,

and end with a short account of the algorithm that can be used to apply this theorem.

4.1 EBELLIPTIC CURVES

By Theorem 3.1.18, if we want an elliptic curve E with End(F) an order in an

imaginary quadratic field K, then we should take

A =7+7Z, T€K. (4.1)
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Furthermore, if we would like for End(FE) = Ok we need that for all & € Ok, « gives
an endomorphism of F, i.e.,

al, C A, (4.2)

By Definition 2.2.15, A, is therefore a fractional ideal of K. Conversely, every frac-
tional ideal of K gives an elliptic curve with CM by Ok.

We now investigate when two such elliptic curves are isomorphic. By Corollary
3.1.17, E; corresponding to Ay and F5 corresponding to Ay are isomorphic if and only
if there is an o € C* such that A; = aA,. This corresponds exactly to the statement
that Ay and A, differ by multiplication by the principal ideal («/), since o may be
taken to belong to K (see [13] Chapter II). By Definition 2.2.17, it follows that A,

and Ay are equal in Cl(K), the ideal class group of K.

Proposition 4.1.1. There is a one-to-one correspondence between the isomorphism
classes of elliptic curves with End(E) = Ok and elements of the ideal class group of

K.

We now give the connection between elliptic curves with CM by Ok, for K an

imaginary quadratic field, and the Hilbert class field of K.

Theorem 4.1.2 (Theorem I1.4.3 from Silverman [13]). Let E be an elliptic curve
representing an isomorphism class in ELL(Ok), where ELL(Of) is the set of iso-

morphism classes of elliptic curves over C that have CM by Ok.
1. K(j(FE)) is the Hilbert class field Hix of K.

2. [Q((E)): Q] = [K(j(F)): K] = hk, where hx = #CI(K) is the class number
of K.
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3. Let Ey, ..., Ey, be a complete set of representatives for ELL(Rk). Then j(Ey),

o, J(Eny) is a complete set of Gal(K/K) conjugates for j(E).

Theorem 4.1.3 (Theorem I1.6.1 from Silverman [13]). Let E/C be an elliptic curve

with complex multiplication. Then j(E) is an algebraic integer.

4.2 GENERATING fg(x)

In this section we give a procedure to, given an imaginary quadratic field K, com-
putationally generate fx(x), a monic polynomial with integer coefficients such that
K[x]/(fx(z)) is the Hilbert class field of K:

First, generate a representative for each ideal class of K: Iy, I, ..., I;,. For each
ideal, we will first compute a basis a; 1,a,2 for i = 1,2,..., by, then fix an embedding

p: K — C, and form the complex numbers

wi1 = p(ai1) (4.3)

wi,g = (,0(&@2). (44)

Then A; = Zw; 1 + Zw; 5 is a lattice in C such that an elliptic curve E; corresponding

to A; has End(E;) = Og. Next we compute 7; = w;1/w;2 Or w;a/w; 1, whichever

has positive imaginary part, and compute j(7;), the j-invariant of E;, to some fixed

suitable precision. Once this is done for each ideal class, we can form the polynomial
hi

fr(@) = Hl(l’ — j(73)). (4.5)

This polynomial is an approximation of a polynomial that is known to have integer
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coefficients. If the j-invariants in the product are computed to high enough precision,

we can round the coefficients of fx to obtain fx(z) € Z[z].

4.3 CM-TYPES

The main work of this thesis is to compute the reflex field and reflex type of a pair
(K, ®), where K is a sextic CM field with a given Galois group, and @ is a so-called
CM-type of K. In this Section we introduce all of the notions we will need for our
computation. In addition, this Section ends with the Main Theorem of Complex
Multiplication (Theorem 4.3.9), which explains the significance of the reflex field and

type of a pair (K, ®).

Definition 4.3.1. Let K be a CM field with [K : Q] = 2g9. A CM-type ® of K
is an unordered tuple of g complexr embeddings of K, no two of which are complex

conjugates.

Example 4.3.2. Let K be a sextic CM field. Then there are siz embeddings of K into
C. To create a CM-type, we choose three embeddings, no two of which are complex

conjugates. Denoting the complex embeddings of K by p1, s, w3, 01, P2, and @3, we
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have the following CM-types:

D1 = {1, 2, 3}
Qs = {1, 2, P3}
O3 = {01, P2, 3}
Q4 = {1, 92, 73}
@ = {P1, %2, %5}
Py = {71, P2, 93}
O3 = {@1, 2, 73}

34 - {@7 9027 803}

Definition 4.3.3. The CM-types ® and ®' are equivalent if there exists an automor-

phism 7 of K such that & = ®o .

Example 4.3.4. If complex conjugation is the only automorphism, then

{9017@27903} ~ {W7@7 @} (46)

In that case there are 2971 equivalence classes of CM-types.

Let K be a CM field of degree 2g over Q and let L/Q be a field that contains a

Galois closure of K over Q.

Definition 4.3.5. [15] Let Ky/K; be an extension of CM fields and let ® be a
CM-type of Ky. The CM-type of Ky induced by ® is

o2 = {p: Ky — C| ¢|x, € @}
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We say that a CM-type is primitive if it is not induced from a CM-type of a strict
CM subfield.

Proposition 4.3.6. [15] Let K be a CM field with Galois closure L, let ® be a
CM-type of K, and let ®L be the CM-type of L induced by ®. By fizring an embedding
of L into C, one may consider the elements of ®* as automorphisms of L, since
L is a Galois field. Let (%)=L be the set of their inverses, which is also a set of
automorphisms of L. Again using the fired embedding of L into C, we may consider
elements of (PL)~! as complex embeddings of L, and (®F)~t is a CM-type of L. Then
there is a unique primitive pair (K%, ®%) where K® is a subfield of L, that induces
(L, (@5)7).

Definition 4.3.7. The pair (KT ®%) is called the reflex of (K, ®), the field K is
called the reflex field of (K, ®), and the CM-type ®F is called the reflex type of (K, ®).

Lemma 4.3.8. [15] The CM-type T is a primitive CM-type of K®. If we denote
the reflex of (K%, ®f) by (KEE OFEE) then KRR is a subfield of K and ® is induced

by ®FF . If ® is primitive, then we have K* = K and ®FF = ®.
Now we give the main theorem of complex multiplication.

Theorem 4.3.9. [12] Let (K%, ®%) be a primitive CM-type and (K, ®) the reflex of
(KR, ®%). Let Hy be the group of all ideals a of KT such that there exists an element

w € K for which we have

where g is defined by



and Ti denotes the complex conjugate of u. Let (A,C) be such that A is an abelian
variety of type (K, ®) and C is a polarization of A. Let ko be the field of moduli
(A,C). Then Hy is an ideal group of KT defined modulo Org(a); and the composite
kE of the fields ko and K% is the unramified class field over K® corresponding to the

ideal-group Hy.

The significance of this theorem is the following: If one can construct a polarized
abelian variety of type (K, ®), then its field of moduli will generate an unramified
abelian extension of the reflex field K of the pair (K, ®). In general, this unramified
abelian extension will not be maximal if the dimension of the abelian variety is greater
than 1. Furthermore, the theorem gives the Galois group of the unramified abelian
extension (it is the group Hy). This gives a sense of how far this unramified abelain
extension is from being maximal, as the maximal unramified abelian extension will

have Galois group CI(K), the ideal class group of K.

4.4 (CONSTRUCTION OF DIMENSION 3 ABELIAN

VARIETIES

We now turn our attention to the construction of an abelian variety A of dimension
3 such that End(A) = Ok, where K is a sextic CM field. As we have seen, when
equipped with a polarization, the field of moduli of such an abelian variety will give
an unramified extension of a certain field associated to K.

To do so we begin with I, a fractional ideal of K, as defined in Definiton 2.2.15, and

compute a Z basis a1, as, as, a4, as, ag of I. We then fix a CM-type ® = {©1, p2, p3}
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of K and compute:

W; = SOQ(GZ') € CS, (47)

for i = 1,2,...6. Armed with these elements, we may form the matrix €2; whose
columns are the vectors wq,ws and ws and the matrix €2y whose columns are the
vectors wy,ws and wg. Then it is a theorem that Q7' belongs to the Siegel upper
half-space Hj3. Therefore this matrix corresponds to a polarizable abelian variety.

To see if the abelian variety we have constructed is principally polarizable, we first

check if

(IT5x/0)™ (4.8)

is a principal ideal, where dx /g is the different of K. If so, we then determine if the

ideal has a generator & such that
1. p;(§) is imaginary for ¢; € ®, and
2. Im(p;(&)) > 0 for ¢; € P.

If this is the case, then

Ee(v,y) = ; ©0i(§)(Tiys — x:7;) (4.9)

is a Riemann form giving a principally polarizable abelian variety on C?/®(I) and

this abelian variety has endomorphism ring Of.
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CHAPTER 5

ELLIPTIC CURVES AND SAGE

As an application of the algorithm given in Section 4.2 and implemented in the

Appendix, we find the minimal polynomial for three number fields.

5.1 COMPUTING THE j-INVARIANT

We previously defined the j-invariant of an elliptic curve in Definition 3.1.2. Here we
introduce a new expression for the j-invariant which is based on the theta function
given in Definition 5.1.1. This new expression is the one we use in the algorithm given

in the Appendix.

Definition 5.1.1. Let a,b € 37Z. Then the theta function with characteristic (a,b) is

the function given by the formula

0(a,b,7) =Y exp(mit(n + a)* + 27i(n + a)b)
ne”Z

where T € H, the upper half-plane.
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Theorem 5.1.2. The j-invariant of an elliptic curve E defined over a field K is

given by the formula:

(0(5,0,7)% +6(0,0,7)% 4 6(0, 5,7)%)?

)90

(0(5,0,7)0(0,0,7)6(0, 5,7))* ’

’ 90

j(r) = 32

where T € H is an element identified with an elliptic curve E/C.

5.2 EXAMPLES

In Section 4.2 we gave an algorithm for computing the Hilbert class field of a number
field K. This algorithm was implemented in Sage and is given in the Appendix. Here
we present the results we obtained for three imaginary quadratic fields.

Example 5.2.1. Consider the case of K = Qlz]/(z* + 67). Here, hxy = 1, so
Hyx = K. We find our T value to be

-1 1

TZQO[—?)Z,

where « is a root of the defining polynomial of K. Then the j-invariant is approxi-

mately

—1.4719795200000000000000000000000000000000000000000000000001 x 10*

—6.1473588332120499861232338744484083212749528242416120053125 x 108

(5.1)

which, since we know it is an integer, must be the integer —147197952000. We note

that since this j-invariant is an integer, indeed Hx = K(j) = K.
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Example 5.2.2. We now consider the case where K = Q[xz]/(x® + 23). This time

hx =3, so [Hk : K] = 3. We find that our T values are:

11
Tty
11
2T YT g
11
BT YT 1

where « is a root of the defining polynomial of K. Then the j-invariants are approz-

imately:

j1 = —3.4932256999699333682055047385473297033961841797256116567546 x 10°

— 1.0440487148797639242736470574810476089121862812910346476414 x 10~°%

J2 = 737.84998496668410275236927366485169809208986280582837732196

— 1764.0189386127461416437864271809651160148064228845054988713¢

Ja = 737.84998496668410275236927366485169809208986280582837732196

+ 1764.01893861274614164378642718096511601480642288450549887131¢
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and the approzimate polynomial fi (x), which is given by (x — j1)(x — j2)(x — j3), @s:

2* + (3.4917500000000000000000000000000000000000000000000000000000 x 10°
+ 1.0450682937028886937309455409356189444677645882063579236645 x 10~°%)2?
— (5.1512968750000000000000000000000000000000000000000000000000 x 10°
— 2.6727647100921956461405364671514818788151968801050486979619 x 10°%)x
4 1.2771880859375000000000000000000000000000000000000000000000 x 10

— 1.0947644252537633366591637369452469775627046420910279466852 x 10474,

Since we know that the coefficients of frx(x) are integers, we can see that a defining

polynomial for Hyg over Q is

fr(z) = 2% + 349175022 — 5151296875 + 12771880859375. (5.2)

Example 5.2.3. Finally, we consider the case where K = Q|x]/(z* + 71). In this

case, hig =7, so [Hi : K| =7. We find our T values to be:

11
= —Q0 — —
=367 36
11

Ty = —Qa— —
8¢ 18

_ 3
BT70% " 10
11

Ty = —Qa— —
2% 12
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T IIRT

where a is a root of the defining polynomial of K over Q. Then our j-invariants are

approximately:

j1 = —3.1364581957422227012731408786369760137710039071161192050838 x 10

— 4.1908950654245627731483611804935235859822287080047163584043 x 10~*%

Jo = 743.99993147123748168375860616858359344377163560789106325735

— 560040.557951253536033890438591765761108144509563640906792621

Jz = 30.1939746922985054029489486704531946737281890510844 72057093

-+ 380.060172538012409230126097093617484410009243919257713260627

Ja = 4155.4172289001210568451412458495134072383061355952234072731

— 5858.5619057385022066620967440139067895002584071940179348311¢
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Js = 4155.4172289001210568451412458495134072383061355952234072732

—+ 5858.5619057385022066620967440139067895002584071940179348311:

Je = 30.193974692298505402948948670453194673728189051084472057101

— 380.06017253801240923012609709361748441000924391925771326062¢

Jr = 743.99993147123748168375860616858359344377163560789106326331

-+ 560040.55795125353603389043859176576110814450956364090679260z.
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We get the polynomial:

fr(z) = 27 + (3.13645809714999999999999999999999999999999999999998 x 10!
+ 4.1908742306499306007109917413899055002936928264211226382973 x 10~ *%7)2°
— (3.0919901386045699999999999999999999999999999999999999999979 x 105
— 6.3529617503245987931665935320427460206754775462399188157321 x 10~*%)2®
+ (9.8394038810047812049301999999999999999999999999999999999994 x 10
— 2.4188221299238987431887012022815363018379192200691834578177 x 107%6)2"
— (8.2353426343973077996809138899999999999999999999999999999995 x 1026
— 2.3761160688877522337078127866641540792463829084857351858773 x 1073%)23
+ (5.1388003664539767803237263294459999999999999999999999999998 x 10*°
— 1.9149598474240061576369710922239635725317086212271533440799 x 10~ 2%)2>
— (4.2531947394613960327460515118765899999999999999999999999993 x 102
— 1.6155871338926321774832201016991461983707267791032791137695 x 1072%)x

+ 7.3770708676073111335771424100608126299999999999999999999998 x 10%

—1.0960143116327616692046165169927007809747010469436645507812 x 10~2%

and again, since we know that the coefficients of fx(x) are integers, we have that a
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defining polynomial for Hyg over Q is

fre(x) = 2"+ 3136458097152° — 30919901386045702° 4-98394038810047812049302z*
— 8235342634397307799680913892° + 51388003664539767803237263294462
— 425319473946139603274605151187659x

+ 737707086760731113357714241006081263.
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CHAPTER 6

REFLEX FIELDS

In this Chapter, we assume throughout that K is a sextic CM field with Galois closure
L over Q such that Gal(L/Q) = Di5. Here Dyy is the dihedral group of order 12 such
that Dyy = (r,s) and 1 = r® = s%. In this situation, we compute the reflex field and

reflex type of each pair (K, ®), as ® ranges over the CM-types of K.

6.1 GALOIS GROUP PRELIMINARIES

We begin by proving two propositions tying the structure of K as a subfield of L and
as a CM field to the abstract structure of Gal(L/Q) = Dys.

Proposition 6.1.1. Let K be a sextic CM field with Galois closure L such that
Gal(L/Q) = Diy. Then the Galois group Gal(L/K) is generated by a reflection of

D15, which without loss of generality we may choose to be denoted s.

Proof. Since K is not Galois, the subgroup Gal(L/Q) must be non-normal, and since
[L : K] = 2, its generator must be of order 2. The size 2 subgroups of Djy are

(r3), (s), (rs), (r¥s), (r3s), (r*s), and (rs). Of these subgroups, only (r®) is normal.
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The other six subgroups are non-normal and are generated by the six reflections of
D15. Relabelling if necessary, we may choose for s to fix K. O

Proposition 6.1.2. The complex conjugation automorphism, indicated by =, is r>.

Proof. By Lang’s characterization of a CM field given in Proposition 2.1.12, complex
conjugation must commute with any complex embedding of L, and therefore with
any element of Gal(L/Q). Furthermore, complex conjugation is of order 2. As we

3

saw before, the order 2 elements of Dy, are 13, s, rs, r%s, r3s, rs, and r®s. For any

element r's’ € D;4, we have

3.1

(ris))r?(ris?) ™t = pisipPsip™t = s7IpTipdpigd = g7Iy3 3

s =135 =3,

Since (r7s)r(ris)~! # r, r® is the only element of order 2 that is in the center of Dio

and must be the complex conjugation automorphism. O]

6.2 MATCHING AN EMBEDDING TO A (GALOIS

ELEMENT

We now turn our attention to the embeddings of K into C. Since [K: Q] = 6, there
are 6 embeddings of K into C. All of these embeddings are complex since K is a CM
field. Let o1, @2, @3, P1, P2, and Pz be the embeddings of K into C.

After choosing an arbitrary ¢: K — L and an arbitrary p: L — C, we can set
up a bijection between the complex embeddings of K and the cosets of Gal(L/K) in
Gal(L/Q). Indeed, for each ¢: K — C there are exactly two elements o of Gal(L/Q)

such that the diagram below commutes:
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N, A

o2 L

Also, since s fixes K by Proposition 6.1.1, it must be the case that if ¢ makes the
diagram above commute, then so does o o s.

Without loss of generality, let ¢;: K — C be such that ¢ = po . Since s fixes
K, it follows that ¢ = po so as well. Therefore, ¢; corresponds to the coset
{1, s}. Since r? is complex conjugation, p; must then correspond to {r3,r3s}. Then
without loss of generality, let ¢y correspond to {r,rs}, since, if s = por o), then
9y = porsor) as well since s fixes K. Then 3 will correspond to {r?,rts}. Finally,
let o3 correspond to {r?,r%s}, so 3 corresponds to {r®,r’s}.

In conclusion, we have the following commutative diagrams:

K ol C
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rtrts C L
As a result, the correspondence between embeddings of K into C and cosets of

Gal(L/K) is the following:

©1 < {1,s} (6.1)
o <> {r,rs} (6.2)
@3 <> {r?,r’s} (6.3)
p1 < {r s} (6.4)
7 < {rt s} (6.5)
73 < {r° s} (6.6)

In what follows we will only need one Galois element corresponding to each em-
bedding. In that case we will say that ¢; corresponds to 1, @, to 7, @3 to 72, @7 to

r3, @3 to r*, and @3 to r°.

6.3 EQUIVALENCE CLASSES OF CM-TYPES

We now turn our attention to the CM-types of K.

Proposition 6.3.1. Let K be a sextic CM field with Galois closure L such that
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Gal(L/Q) = Dso. The identity automorphism and the complex conjugation automor-

phism are the only field automorphisms of K.

Proof. Since K is a CM field, it has the identity automorphism (which is of order 1)
and the complex conjugation automorphism (which is of order 2). Any automorphism
of K fixes Q since Q is its prime field, and since [K: Q] = 6, we know by Proposition
2.1.22 that

2 < JAut(K/Q)| < 6.

Since Aut(K/Q) is a group, we consider the possibilities. There are exactly seven
groups of order between 2 and 6, inclusive: Cy, C3, Cy, Cy x Cy, Cs, Cg, and Ss,
where C), is the cyclic group of order n and S,, is the symmetric group on n letters.
Aut(K/Q) cannot be isomorphic to Cs or C5 because neither Cs nor C5 contains an
element of order 2. Aut(K/Q) cannot be isomorphic to a group of order 6 because then
K/Q would be Galois, but we know K/Q is not Galois. In the case where Aut(K/Q)
has order 4, consider the field F = KA"E/Q  the fixed field of the automorphism
group of K/Q. By Theorem 2.1.21, [K: F| =4, but since [K: F|[F: Q] = [K: Q] we
get a contradiction because 4 1 6. This leaves us with the group Cs, which contains
only two elements, one of order 1 and the other of order 2. Thus, Aut(K/Q) = Cs, so
the identity automorphism and the complex conjugation automorphism are the only

automorphisms of K/Q, and therefore of K. ]
As an immediate corollary, we have

Corollary 6.3.2. Let K be a sextic CM field with Galois closure L such that
Gal(L/Q) = Dyg. Let @1, o, 3, 01, P, and p3 denote the six complex embeddings

of K. Then repesentatives for each of the four equivalence classes of CM-types of K

o6



are ©1 = {p1, 92,3}, P2 = {1,902, 03}, 3 = {1, 2, @3}, Pa = {v1,P2, %3}

Proof. Since K has 3 pairs of complex conjugate embeddings, it has 8 CM-types
in total (see Example 4.3.2). Because the only non-trivial automorphism of K is
complex conjugation, each CM-type is equivalent to its complex conjugate and to no

other. O

Proposition 6.3.3. Let K be a sextic CM field with Galois closure L such that
Gal(L/Q) = Dis. Then exactly three of the four equivalence classes of CM-types of

K are primitive.

Proof. Going back to the equivalence established in Section 2, we may write, by abuse
of notation, our four CM-types as ®; = {1,7, 7%}, &y = {1,r,r°}, &3 = {1,r% r1},
and @4 = {1,7* r°}. Recall from Definition 4.3.5 that a CM-type is primitive if it is
not induced from a CM-type of a strict CM subfield. Thus a CM-type is not primitive
if it is induced. In the lattice of subfields of K below, the only subfields of K = L
are L) L) and Q = L9,

L =K
=
3
L) = K,
(r2s) _
3 /L =F

2

L(T,s) — Q

3

L) ig totally real since 7° is complex conjugation. (In fact it is K, the totally real

subfield of K). But F = L) satisfies the property that 73, complex conjugation,

27



commutes with all of the elements of its Galois group, Gal(F'/Q), and therefore all
of its complex embeddings. Therefore by Lang’s characterization of CM fields from
Proposition 2.1.12, F' = L*s) is a CM field. By a process similar to that of Section
6.2, the complex embeddings of F' correspond to 1 and 7, and the embeddings of F'

into K correspond to 1, 72, and r* as below:

K 1,7",7“2,7“3,7“4,7“5 C
PA 2] 1
1,r
%
F

Therefore, the CM-type {1} of F induces the CM-type ®3 = {1,72,7*} on K, and
the CM-type {r} of F induces ®3 = {r,r%,75} on K. Since F is the only CM subfield

of K, the other CM-types are primitive. O

0.4 FINDING REFLEX TYPES

Recall that the definition of the reflex (K, ®%) of (K, ®) from Definition 4.3.7.
Guided by the definition, for each primitive CM-type of K, we may compute the
reflex in the following manner: We first find the induced CM-type ®%, and then
compute its inverse (®¥)~1. We then consider whether we can “factor out” a Galois
subgroup to write (&%)~ = {01,09,03}H, for H a subgroup of Gal(L/Q). Then
K® = LT the fixed field of H in L, and ®f is the CM-type of K% induced by

restricting oy, oo, and o3 to K. We apply a similar process to the non-primitive
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CM-types.
As before, using the choices made in Section 6.2, we have that (; corresponds to
1, @9 to 7, and ¢3 to r2, thus @y corresponds to 13, 73 to r*, and 3 to r°.

Throughout, we use the notation of Example 4.3.2.

6.4.1 REFLEX OF &,

Consider first ®; = {1,r,7?}. We induce up to L using our two automorphisms, 1

and s, as below:

I 1,r,r2,8,r8,r%s C
s|1
1,r,r2
K

Therefore the induced CM-type, which we will denote ®F is

q)lL ={1,r r%, 8,78, 7’25}.

Next we find the inverse of each element of ®¥ in order to create (®1)~!. For instance,

the inverse of r2 is 7% since 7?r* = r% = 1, and the inverse of 72s is 7%s since

rlsr?s = rlsshr 2 =22 = 1.
Thus

(be)_l = {1,7“4,7“5,3,7’5,7"23}.
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We notice that this is none other than the CM-type {1,72, r*} induced up from L{r*s),

Indeed we have
2 .4 2 4

1,7, r% s,r°s,r*s
L C
2
e lw 1,r2,rt
L<r23>

Therefore the reflex type is ®I = {1,74,75} and the reflex field K = L<”2S>, the fixed
field of (r?s), a sextic CM field. We note that by Proposition 2.4.1, K is isomorphic

to K.

6.4.2 REFLEX OF O

We consider now @5 = {1,7,7°}. Again, we induce up to L using our two automor-

phisms, 1 and s, as below:

1,r,7r5,5,r8,m%s
L C
s|1
1,r,r5
K
We get
(195 ={1,r, 7‘5,5,7“5,7“55}.
Then

(@)~ = {1, 1°, 5,75,1%s},
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which is the CM-type {1,7,7°} induced from L. We get our reflex type ®F =
{1,7,7°} and our reflex field K = L. Thus (K, ®,) is its own reflex.

6.4.3 REFLEX OF P3

Consider now ®3 = {1, 7% r*}. Recall from Proposition 6.3.3 that @3 is not primitive.
It is the type {1} induced up from L{**). Nevertheless, we induce ®3 up to L and
obtain

®L = {1,7%, v 5, r%s,r's}.

Therefore

(@)t = {1,721, s, 7%, 18} = {1, 7%, r* Hr?s) = {1} (r?s) = {1}(r?, s)

which is the CM-type {1} induced up from L% . We see here that {1} on L™ is

T‘27S

its own reflex, which is to be expected since L ® is Galois.

6.4.4 REFLEX OF {4
Next, we consider ®4 = {1,7%,75}. We have
®L = {1,775 s5,r*s, 755},

so that

(@3) 7" = {177 s,0s,17s}

which we see to be the CM-type {1,7,7%} induced from L),
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6.4.5 REFLEX OF ®;

We now turn our attention to ®; = {r3 r* r°}. We induce up to L using our two

automorphisms, 1 and s, as below:

7‘3,7‘4,7"5,7"38,7'48,7’58 (C

We get

—L
O = {3 vt P rPs,rhs, rPs),

so that

(CEL)*1 = {r, 7%, r3 r*s,r's, r°s}.

Thus we get reflex type o, = {r,r7? r3} and K= L) We note that &, = PR

and ®; and ®; have the same reflex field.

6.4.6 REFLEX OF O,

Consider now @, = {r?, 73, r*}. We induce up to L using our two automorphisms, 1

and s, as below:

23t s rdsris C
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We get

— L
D, :{7"2,7“3,7’4,7’25,7“35,7“43},

so that
(@L)_l = {7“2,7"3,r4,r23,r3s,r4s}.

Thus we get reflex type o, = {r?,r3 r1} and Ky = L), We see that (K, ®y) is its

own reflex, as was (K, ®y).

6.4.7 REFLEX OF P53

Consider the penultimate CM-type ®3 = {r,r%,7%}. Again, from Proposition 6.3.3 we
know that this CM-type is not primitive. It is the type {r} induced up from L),

We induce up to L using our two automorphisms, 1 and s, as below:

5

35 rsr3s,rds
L C
s|1
rr3.rd
K
We get
L= 3,5 3. 2.5
3 =A{r,r°,r’ rs, s, r’s},
so that

(@57) " = {r, 3 0% s, r8s, 105} = {1}, s).

Again we see that {r} on L% is its own reflex, as we saw with (@L)_l, similarly

to our conclusion for ®;.
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6.4.8 REFLEX OF O,

Finally we consider ®;, = {r,r%,73}. We induce up to L using our two automorphisms,

1 and s, as below:

rr2 3 rsrls,rds C

L
s|1
7',7’2,7’3
K
We get
=L 2 .3 2. .3
Oy = {r,rr’ rs,rs,r°s},
so that

(‘EL)f1 = {r3,7”4,r5,r3s,7”43,7“53}.

Thus we get the reflex type o, = {r3,r4, 75} and reflex field K" = L") We notice
that ®, and ®, have the same reflex field and that (ER = q)if.
Our conclusion that ER = ®f and @R = ®F leads us to conjecture that complex

conjugation commutes with finding reflex types.
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CHAPTER 7

EXAMPLE

In this Chapter we give a concrete example of the computations described in Chapter
6.

We used the LMFDB [8] to find a sextic CM field whose Galois closure has Galois
group Diy. We chose K = Qlx]/(2° — 22° 4 22 4 223 + 42? — 4z + 2) and throughout
we let a be a root of this polynomial. We then found the Galois closure of the field,
L = Q[z]/(x'? + 1282% 4 1728z* 4 5476), and throughout we let 3 be a root of this

polynomial.

7.1 PRELIMINARIES

2, 7“37 T4, 7"5, S, Ts, 7“28, T387 T4S, and

We know that the elements of Dqy are 1, r, r
r®s, and we want to match these elements to our complex embeddings ¢, 2, ©3, 1,
09, and P3 as in Section 6.2. To do this we first fix an arbitrary ¢¥: K — L and an

arbitrary p: L — C. Using Sage, we choose ¢ such that our primitive element o € K
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maps to

109 g 2 e 6569 5 483, 22076

70300 475 35150 950 17575

1527
475

Ch (7.1)

for g € L, and (again using Sage) we choose p such that our primitive element 5 € L
maps to

—2.30624364267427 — 2.30624364267424z. (7.2)

Now we find the Galois element 1 # g € Dy, that fixes K. It suffices to find g # 1

such that

9(W(a)) = ¥(a) (7.3)

and name this Galois element s. We see that

109 ., 2 .o 6569 . 483 , 22076 , 1527
_ B B _ _ (74
) =70300” ~ 5% T ass0” T 9s0” T et T ams W@ (T4

under the Galois element
s =(1,12)(2,11)(3,10)(4,9)(5,8)(6, 7). (7.5)

Next we find the Galois element 1 # ¢ that corresponds to complex conjugation.
So, we want to find g such that p(g(f)) is the complex conjugate of p(3). We call

this element 73, and we find that

r3 = (1,11)(2,12)(3,6)(4,5)(7,10)(8,9). (7.6)

Finally we name the rest of the complex embeddings. As in Chapter 6, without loss
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of generality, we choose ¢; such that

p(ib(cr)) = p1(a) = 0.403031716762685 — 0.403031716762685i. (7.7)

Thus @7 is such that

p(r*(1h(@))) = p1(a) = 0.403031716762685 + 0.403031716762685i.  (7.8)

Now (again without loss of generality), we choose ¢, to correspond to r. To do
this we must first fix . Without loss of generality, we may choose r to be either one

of the two elements of order 6 in Gal(L/Q) and we choose

r=(1,4,7,11,5,10)(2,6,9,12, 3,8). (7.9)
We get that
p(r(¥(a))) = ga(a) = —0.854637679718466 — 0.854637679718459i. (7.10)
Thus
p(r*(¥(a))) = Pa(a) = —0.854637679718466 + 0.854637679718459i. (7.11)
determining for us that
rt = (1,5,7)(2,3,9)(4,10,11)(6,8, 12). (7.12)
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Finally, since there is only one element of order 6 remaining, we know that

r° = (1,10,5,11,7,4)(2,8,3,12,9,6) (7.13)

so that

p(rP(¥(a))) = p3(a) = 1.45160596295577 + 1.45160596295574i, (7.14)

and since there is only one element remaining of order 3, we have

r? = (1,7,5)(2,9,3)(4,11,10)(6,12, 8), (7.15)

so that

p(rP(1h(@))) = pa(a) = —0.854637679718466 — 0.854637679718459. (7.16)

By composing each of our Galois elements 7* with s, we may find the other Galois
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elements. In summary, we find that

1=1()
r=(1,4,7,11,5,10)(2,6,9,12,3,8)

r? = (1,7,5)(2,9,3)(4,11,10)(6, 12, 8)
rd = (1,11)(2,12)(3,6)(4,5)(7,10)(8,9)

= (1,5,7)(2,3,9)(4,10,11)(6,8,12)

r® = (1,10,5,11,7,4)(2,8,3,12,9,6)

s = (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)
rs = (1,3)(2,5)(4,12)(6,11)(7,9)(8, 10)
r?s = (1,8)(2,10)(3,4)(5,6)(7,12)(9,11)
s = (1,2)(3,7)(4,8)(5,9)(6,10)(11,12)

ris = (1,6)(2,4)(3,11)(5,12)(7,8)(9, 10)

s = (1,9)(2,7)(3,5)(4,6)(8,11)(10,12).
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(7.18)
(7.19)
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(7.24)
(7.25)
(7.26)
(7.27)

(7.28)



and

¢1(a) = 0.403031716762685 — 0.403031716762685¢,
P1(a) = 0.403031716762685 + 0.4030317167626857,
o) = —0.854637679718466 — 0.8546376797184591,
P2(a) = —0.854637679718466 + 0.8546376797184591,
w3(a) = 1.45160596295577 — 1.451605962955741,

P3(a) = 1.45160596295577 + 1.451605962955744.

(7.29)
(7.30)
(7.31)
(7.32)
(7.33)

(7.34)

7.2 COMPUTATION OF REFLEX FIELDS AND

REFLEX TYPES

With our Galois elements and complex embeddings fixed, we now apply the results

of our computations from Chapter 6. Throughout we continue to fix p such that for

a primitive element 5 € L we have

p(B) = —2.30624364267424 — 2.306243642674244.
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7.2.1 CM-TYPES ®; AND @,

Recall from Chapter 6 that

) = {1,r,r°}, (7.36)
&) = {r® 1%}, (7.37)
KF =) (7.38)
O = {1,7% 1}, (7.39)
O, = {r,r2 %), (7.40)

We first compute KB = L) the reflex field shared by ®; and ®;. We get
K = Q[z]/(2® — 1023 + 57622 — 240z + 50) (7.41)

with primitive element a;. Once we have the reflex field, we recover complex embed-
dings from the Galois elements in the CM-type, as we did in Chapter 6. As before,
we use our fixed embedding p: L — C and an embedding 1, : K < L, where v,

sends the primitive element «; of KTt to

3 9528
2 J— J—
B +30+ s

343 3 5192 1449 38346
ﬁ10+768+ 66+ 64+

— 42
140600 475 17575 1900 17575 (742)

For each Galois element o in the CM-type we then compute the associated embedding

p=poooy (7.43)

71



and we get that the reflex type ®1 is

p(i(ar)) = —3.56391303915539 — 3.56391303915538;
p(r* (W1 (ay))) = 3.35481788886733 + 3.35481788886734i

p(rP (W1 (ay))) = 0.209095150288055 — 0.209095150288037

—R .
and ®; " is

p(r(11(8))) = 3.35481788886733 — 3.35481788886727i
p(r2(1h1(8))) = 0.209095150288055 + 0.209095150288037

p(r¥(11(8))) = —3.56391303915540 + 3.56391303915538.

We notice that

as expected.
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7.2.2 CM-TYPES ®3 AND Py

We recall from Chapter 6 that (K, ®,) and (K, ®,) are their own reflexes. We therefore

only give the explicit CM-types. We compute ®I to be

p(1a(as)) = 0.403031716762694 — 0.403031716762712i, (7.54)
p(r(ths(as))) = —0.854637679718466 — 0.854637679718459, (7.55)
p(r (1ha(2))) = 1.45160596295577 + 1.45160596295578i, (7.56)
(7.57)

and CER to be

p(r?(a(an))) = 1.45160596295577 — 1.451605962955744, (7.58)
p(rt(a(as))) = —0.854637679718465 + 0.854637679718456, (7.59)
p(r? (a(az))) = 0.403031716762694 + 0.403031716762712i. (7.60)
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7.2.3 CM-TYPES ®3 AND P53

As before, we recall that

®3 = {1,721}, (7.61)
Oy = {r,r r°}, (7.62)
K= [0, (7.63)
ol = {1}, (7.64)
o, = {r). (7.65)

We also note that ®3 and ®3, as we saw in 6.3.3, are not primitive. We compute

KE = L9 the reflex field shared by ®5 and ®3, which we find to be
K3t = Q[z]/(2* 4 1024) (7.66)

with primitive element a3. Then we recover the complex embeddings from the Galois
elements in the CM-type. Next we use our fixed embedding p: L — C and an

embedding 13: K1 < L, where 13 maps a primitive element az of K1t as follows:

., 128 04 16976 54 334848
a —_—
Y 17575 17575 17575

B2, (7.67)

For each Galois element o in the CM-type we compute the associated embedding

Y= pocois (7.68)
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and we get that the reflex type ®£ is
p(1s3(as3)) = 32.0000000000000, (7.69)
and @R is
p(r(1s(as))) = —32.0000000000000:. (7.70)

We clearly see that these two reflex types are complex conjugates. We note that each

type contains only one embedding since the reflex field K% is quadratic.

7.2.4 CM-TYPES ®; AND P4

Again we recall from Chapter 6 that

dy = {1,r% 7%}, (7.71)
&, = {r,r* 1}, (7.72)
K= L) (7.73)
O = {1,r,r%}, (7.74)
= {0t ) (7.75)

As before, we first compute K = L) the reflex field shared by ®, and ®,. We
get
K = Qlx]/(2° 4 102® + 5762% + 2402 + 50) (7.76)

5



with primitive element ay. We now recover the complex embeddings from the Galois
elements in the CM-type. Next we use our fixed embedding p: L — C and an

embedding 1, : KI' < L, where ¢4 maps the primitive element a4 of KT as follows:

3 2528
2 9, 4940
B+ 26 i (7.77)

“343 g 3 s 5192

| 1449 ) 38346
140600 4757 17575

6
& 1900 17575

Qg >

For each Galois element o in the CM-type we then compute the associated embedding

Y=pocoiy (7.78)

and we get that the reflex type ®F is

p(hy(ay)) = —3.35481788886733 — 3.354817888867341, (7.79)
p(r(va(ay))) = —0.209095150288055 + 0.2090951502880374, (7.80)
p(r2(w4(a4))) = 3.56391303915539 + 3.56391303915538%, (7.81)

and @R is
p(r5(w4(o¢4))) = 3.56391303915540 — 3.56391303915538¢, (7.82)
p(r4(1/J4(oz4))) = —0.209095150288055 — 0.2090951502880374, (7.83)
p(r3(¢4(o¢4))) = —3.35481788886733 + 3.35481788886727+. (7.84)
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We again note our pairs of complex conjugates:

p(Yalas)) = p(r?(a(ea))), (7.85)
p(r(Palas))) = p(rt(va(ea))), (7.86)
p(r®(Ya(aa))) = p(r2(Ya(a))). (7.87)
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APPENDIX A

SAGE CODE

1 def good_taus(K):

2 good_taus = [] #empty list of good taus

3 G = K.class_group() #G is the ideal class group

4 phi = K.complex_embeddings(53)[0] #gets a complex

5 embedding of K

6 for L in G: #go through each element of the class

7 group

8 I_O0 = L.ideal() #defines the ideal of L as I_0

9 tau_) = I_0.basis()[0]/I_0.basis()[1] #computes tau
10 for that L

11 alpha = phi(tau_0) #defines alpha to be phi evaluated
12 with tau

13 if alpha.imag() > 0: #tests if tau is > 0

14 #print " “positive"

15 good_taus.append(alpha) #if tau > 0 adds tau to
16 good tau list

17 else: #only happens if tau <= 0

18 #print " “not positive"

19 #print 1/tau_0O #computes 1/tau

20 good_taus.append(1l/alpha) #adds 1/tau to good tau
21 list

22 return good_taus #returns good tau list

23

24 def theta(a,b,tau,B): #defines theta function with below
25 arguments

26 #a 1is 0 or 1/2

27 #b is 0 or 1/2

28 #tau is the complex tau from before
29 #B is a bound for the summation
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30 sage.symbolic.constants pi

31 CC = ComplexField(53)

32 pi = CC(pi)

33 theta = 0 #starts theta sum at zero

34 for n in range(-B,B+1):

35 theta = theta + exp(pi * I * tau * (n + a)”2
36 +2*xpix*x1I=x (n+ a) xb) #theta function
37 return theta #returns theta partial sums

38

39 def j_invariant(tau,D):

40 a_1l = theta(1/2,0,tau,D) #a value 10

41 b_1 = theta(0,0,tau,D) #b value 00

42 c_1 = theta(0,1/2,tau,D) #c value 01

43 j_invariant = 32 * ((a_1"8 + b_1"8 + c_178)"3
44 /(a_1 * b_1 *x c_1)"8)

45 return j_invariant #j-invariant equation
46

47 def make_polynomial(J):

48 j_tau = good_taus(J)

49 j_inv_list = []

50 for number in j_tau:

51 inv = j_invariant(number,100) #arbitrary bound that works for our
52 #purposes

53 Ch. 5

54 j_inv_1list.append(inv)
55 poly =1

56 for inv in j_inv_Tlist:

57 poly = poly * (y - inv)
58 return poly
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