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Abstract

Group key exchange protocols are used to establish session keys, which can then be
used as encryption keys to set up secure channels of communication, between more
than two parties simultaneously. Many different group key exchange protocols exist
and require security proofs in order to determine the strength of the protocol and
answer the following questions: does the protocol provide authentication, and if so,
to what degree? Does the protocol provide key secrecy? In this thesis we examine a
particular group key exchange protocol that we call the vector space projection protocol
as first described in “A Group Key Establishment Scheme” by Guzey, Kurt, and
Ozdemir, and show using a particular type of security proof — the game based security
model — that the protocol as described does not achieve key secrecy. We show that
there are at least four adversaries with non-negligible probabilities of winning the key
secrecy security game, which indicates that this key exchange protocol is not one that
should be implemented.
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Chapter 1

Introduction

1.1 Outline of Thesis

In this thesis we discuss a particular group key exchange protocol, which we call

the vector space projection protocol, as computation of the session key requires group

members to project into vector spaces over finite fields, first described in [GKO21] as

Algorithm 2 and presented with a modification in their follow up work [COG21]. We

then play the key secrecy security game to determine whether or not the protocol still

provides key secrecy in the face of adversarial interaction. For the key secrecy game,

we follow the general outline for security games outlined in [dSGFW20] but use the

definition of the adversary’s advantage in the key secrecy game from [BCP01].

A group key exchange protocol is used to establish a shared secret, also known as

a session key, between more than two users at a time. This shared secret can then be

used to authenticate users and establish secure channels of communication between

them [Har13]. These protocols are of interest due to their potential for reducing the

computational power needed to establish shared secrets between groups of people, as
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multiple users can now simultaneously derive the same session key instead of having

to sequentially derive it, one user after another.

In [GKO21], the vector space projection protocol relies on picking a vector space

over a finite field, Fn
q , and a secret subspace W . From there, the group manager

releases a vector v⃗ /∈ W that is also nonzero and each remaining group member

projects v⃗ into W . However, since Fq is a finite field, usual orthogonal projection

will not work, so we propose a suitable definition of projection into a subspace over

a finite field for this protocol. A literature search revealed that there are alternate

definitions of projection over finite fields – see [Che18] for two such definitions – but

we didn’t find any definitions that were not computationally intensive.

For any group key exchange protocol it is important that we determine whether

or not the protocol can provide key secrecy, or in other words, that all adversaries

have a negligible advantage when trying to guess or compute the shared secret. If

just one adversary has a non-negligible advantage, then the protocol doesn’t provide

key secrecy. To be precise, we are interested in computing for each adversary exactly

how much she can increase her chance of correctly guessing or even computing the

shared secret by gathering information about the protocol itself. This information

gathering is a key component of the key secrecy game, which we play once against

each adversary: we simulate data leaks by allowing the adversary to ask for as many

user’s private keys and past session keys as she wants, and then she’ll test herself

by trying to correctly distinguish between an actual, unrevealed session key and a

random element from the key distribution space. We play the key secrecy game with

4 different adversaries and show that all of them have a non-negligible chance of

either correctly computing the session key or distinguishing between the actual key
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and a random element, which leads us to recommend against using the vector space

projection protocol. In fact, 3 of the 4 adversaries have a 100% probability of correctly

computing the session key.

This thesis is outlined as follows. In Chapter 2, we will describe the vector space

projection protocol from [GKO21] in detail and provide our definition of projection

into subspaces over a finite field. Then in Chapter 3 we will describe security goals

and security games in general before describing the key secrecy game, how it’s played,

and how to compute the adversary’s advantage for this security game. In Chapter

4 we provide strategies for the adversary: we play the key secrecy game with 4

different adversaries and show that each adversary has a non-negligible advantage,

which provides proof that the key exchange protocol does not provide key secrecy.

1.2 Related Works

This thesis discusses group key exchange protocols, which differ from group key agree-

ment protocols in that the former requires a group manager while the latter does not

have a group manager. Group key agreement protocols are also well studied; in one of

the first proposed schemes, Ingemarsson et al. extend Diffie-Hellman to a multi-user

case [ITW82].

A seminal work in the formal study of group key exchange protocols is the work

by Bresson et al. [BCPQ02], which provides a formal security model and definitions

for static group key exchanges. Later in [BCP01] Bresson et al. they provide a formal

security model and definitions for dynamic group key exchanges and this latter model

provides part of the framework we use to analyze the vector space projection proto-
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col. In [BCP02a], Bresson et al. extend their work on the dynamic case to include

additional components, for example allowing for concurrent executions of the protocol

and additional modes of corruption by an adversary. Finally in [BCP02b] the authors

present a formal treatment to determine whether or not a group Diffie-Hellman key

exchange is secure against dictionary attacks.

One assumption that Bresson et al. make in [BCP02a], [BCP02b], [BCP01], and

[BCPQ02] when constructing their security models is that none of the participants in

the group key exchange protocols behave maliciously. Everyone except for the adver-

sary is following the protocol correctly. In response, Bohli et al. [BGVS07] extend the

formal security models from these earlier papers by giving a formal definition of the

security properties addressing malicious participants and provide a proof that shows,

under this extended security model, that a variant of the group key exchange protocol

introduced by Kim et al. [KLL04] is secure. Katz and Shin [KS05] discovered that

Bresson et al.’s models insufficiently addressed impersonation attacks. Gorantla et al.

[GBNM08] investigated the security of group key exchange protocols under the key

compromise impersonation attack specifically.

With regards to the definitions of important concepts in game based security

models, like authentication and secrecy, as well as how these definitions relate to

each other, [dSGFW20] provide clear, predicate-based definitions and explain how

these concepts relate to each other. They build on work first done by Bellare and

Rogaway [BR94] in formalizing certain security notions. There have been many other

papers since then that have provided modifications and variations to Bellare and

Rogaway’s work, including for example extensions of adversarial powers [CK01] and

formalizations of key confirmation properties [FGSW16]. In [dSGFW20] in particular,

4



their framework for security games comes from [BFWW11] with augmentations to the

framework from [FGSW16].

Finally in [PRSS21], the authors give an overview of several papers that develop

group key exchange protocols with respect to a formal computational game based

security model in order to compare and analyze said models. We invite the interested

reader to look there for additional information on many of the different group key

exchange protocols that have been proposed over the years and the security models

constructed and used to analyze them.

5



Chapter 2

The Vector Space Projection Pro-

tocol

In this chapter we’ll describe the group key exchange protocol outlined in [GKO21],

which we will call the vector space projection protocol. A group key exchange protocol,

which we denote π, is a key exchange protocol designed to generate and share a session

key with a group of individuals. The vector space projection protocol is meant to be

dynamic, which according to [BCP01] means the protocol should allow for changes in

the compositions of the group members without compromising security. To be more

precise, let U be the entire set of users who can participate in the protocol and I ⊂ U

the subset of users who are currently participating. Then users can be added to I

from U , while any user who could be removed would then join U \I. We will describe

the algorithm in the vector space projection protocol that allows for users to be added

later in this section; the protocol does not actually provide an algorithm to remove

users. The group of users I participating in the protocol has what we call a group

manager, denoted GM , who is responsible for setting up the key exchange protocol.
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To be more precise, the group manager will run the SETUP algorithm to set

up the key exchange protocol. The group manager begins by selecting a finite field

of size q and a positive integer n. Next the group manager generates a random

basis F = {v⃗1, . . . , v⃗n} for Fn
q and lets W be the subspace generated by the span of

B = {v⃗1, . . . , v⃗r}, where r < n, and keeps W a secret. Then they pick a polynomial

f(x) ∈ Fq[x] of degree d where d > |U|. The two security parameters are q and d.

Finally, they pick r − 1 random nonzero elements of Fq that we denote n1, . . . , nr−1.

The group manager keeps the basis F , W and its basis B, f(x), and the r − 1

random elements n1, . . . , nr−1 secret. Each remaining user in the group is given their

own unique point (xi, f(xi)) on the graph of the polynomial f(x); xi is user i’s public

key. The remaining group members are also all given a unique basis Fi for Fn
q . To

generate group member i’s basis the group manager first rescales every vector in B

in the following manner to generate a basis Bi for W :

{f(xi)v⃗1, n1f(xi)v⃗2, n2f(xi)v⃗3, . . . , nr−1f(xi)v⃗r}.

In other words they multiply each vector in B by a different scalar. Because f(xi) is

different for each group member, each group member’s basis Bi will be unique, though

they are all multiples of each other. Group member i’s unique basis Fi for Fn
q will be

Bi ∪ {vr+1, . . . , v⃗n}:

{f(xi)v⃗1, n1f(xi)v⃗2, n2f(xi)v⃗3, . . . , nr−1f(xi)v⃗r, v⃗r+1, . . . , v⃗n}. (2.1)

User i’s basis Fi is their private key.

In summary: the group manager keeps the original vector space, the subspace W
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and its basis B, the function f(x), and the r−1 random integers secret while publicly

revealing the dimension r of W and the values xi that are inputs for f(x). Each of

the remaining group members’ public key will be xi while their private key will be

their unique basis Fi.

To add users from U \ I we have the JOIN protocol, the algorithm that a user

(who isn’t the group manager) can initiate in order to add someone new to the group.

Suppose that user i wants to add user j. First user i will pick a random element

s ∈ F×
q and will multiply every vector in their basis Fi by s in order to generate a

new basis Fj:

{sf(xi)v⃗1, sn1f(xi)v⃗2, sn2f(xi)v⃗3, . . . , snr−1f(xi)v⃗r, sv⃗r+1, . . . , sv⃗n}

Now user j has their own unique basis, Fj, for Fn
q . This basis is their private key;

their public key will be the ordered pair (xi, j).

Now we can describe the vector space projection protocol, known as Algorithm 2

in [GKO21]. Whenever a session key is needed, the group manager will publicly share

a nonzero vector v⃗ /∈ W and the remaining group members will project v⃗ onto W .

The projection, which we will denote u⃗, is the session key. Each time a new session

key is needed, the group manager will release a new vector.
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2.1 Projecting onto Subspaces Over a

Finite Field

In this section we present a technique for projection onto a subspace over a finite

field. We did not find a simple description in the literature of projecting a vector

onto a subspace over a finite field, though definitions that require more computational

overhead than is ideal for a key exchange protocol have been proposed (see [Che18]

for two such definitions).

The vector space projection protocol rests on being able to project some vector v⃗

onto the secret subspace W . Since there’s no inner product in the larger vector space

Fn
q , the group manager needs to define a projection P onto W as we cannot simply

use the orthogonal projection formula.

Since one of the goals of a group key exchange protocol is that derivation of the

session key is not computationally intensive, we suggest the following as a definition

for projection over a finite field. Let F = {v⃗1, . . . , v⃗n} be a basis for Fn
q . Let W be

the span of the first r basis vectors. We define projection onto W via F as follows: if

we’re projecting v⃗ we first write v⃗ as

v⃗ = a1v⃗1 + · · ·+ anv⃗n.

When v⃗ is written in this form, to project onto W we simply set ai = 0 if v⃗i is not

one of the r basis vectors for W and leave it untouched otherwise. In other words,
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the projection u⃗ is

u⃗ = a1v⃗1 + · · ·+ arv⃗r.

Then whenever a session key is needed, the group manager will share a vector v⃗ and

group member i will project v⃗ onto W via Fi. Even though each group member has

a different basis, they will all still end up with the same vector u⃗.

Proposition. Let Fi and Fj be as in (2.1) and let v⃗ /∈ W be nonzero. Then the

projection of v⃗ onto W via Fi and the projection of v⃗ onto W via Fj yield the same

vector.

Proof. To begin, we’ll write v⃗ as a linear combination of the vectors in Fi and Fj:

v⃗ = a1f(xi)v⃗1 + a2n1f(xi)v⃗2 + · · ·+ arnr−1f(xi)v⃗r + ar+1v⃗r+1 + · · ·+ anv⃗n

v⃗ = b1f(xj)v⃗1 + b2n1f(xj)v⃗2 + · · ·+ brnr−1f(xj)v⃗r + br+1v⃗r+1 + · · ·+ bnv⃗n

Since

a1f(xi)v⃗1 + a2n1f(xi)v⃗2 + · · ·+ arnr−1f(xi)v⃗r + ar+1v⃗r+1 + · · ·+ anv⃗n =

b1f(xj)v⃗1 + b2n1f(xj)v⃗2 + · · ·+ brnr−1f(xj)v⃗r + br+1v⃗r+1 + · · ·+ bnv⃗n

and {v⃗1, . . . , v⃗n} forms a basis for Fn
q we know that

a1f(xi) = b1f(xj), a2n2f(xi) = b2n2f(xj), . . . , arnrf(xj) = brnrf(xj),

ar+1 = br+1, . . . , an = bn
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which tells us that

a1f(xi)v⃗1 + a2n1f(xi)v⃗2 + · · ·+ arnr−1f(xi)v⃗r =

b1f(xj)v⃗1 + b2n1f(xj)v⃗2 + · · ·+ brnr−1f(xj)v⃗r

Whenever a session key is needed, the group manager should publicly release a

vector v⃗ written in terms of the standard basis for Fn
q . Each remaining group member

will then rewrite it in terms of their unique basis for W , project v⃗ into W in the

manner described above, and then rewrite u⃗ in terms of the standard basis so that

everyone will have the same session key.
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Chapter 3

Security Games

For any key exchange protocol, one security goal that is commonly expected is key

secrecy; that is, any active adversary isn’t able to learn the session key [dSGFW20].

We note that this goal is separate from authentication, where only the “right” parties

are allowed to participate in the protocol and derive the session key. A protocol

can provide key secrecy without providing authentication; the original formulation

of Diffie-Hellman, for example, does not provide any level of authentication because

neither party provides any type of authentication for their public key, but key secrecy

is guaranteed by the hardness of the computational Diffie-Hellman problem [DH76].

For the sake of completeness, we note that there are many different security goals

that all center around authentication in some capacity: implicit and explicit key

authentication, implicit and explicit key authentication, and key confirmation. We

exclusively focus on key secrecy in this paper, so we will not dive in to the details of

these other security goals.

The rest of this chapter is outlined as follows: we will first describe security

games, the framework used to determine whether or not a given key exchange protocol
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reaches a particular security goal. Then we will give a precise definition of the key

secrecy security game, the game we play to determine whether or not the vector space

projection protocol provides key secrecy.

The framework we present here is from [dSGFW20]. The framework consists

of playing a security game to determine whether or not a given group key exchange

protocol reaches a particular security goal. The players of the game are the individuals

in I who can engage in the protocol and are running it to generate session keys, while

an outside adversary is trying to trigger some “bad event”, which we’ll define in

Section 3.5. We note that in the formulation of a security game, outside adversaries

are not considered players; only the users engaging in the protocol are. We want

to compute the probability of an adversary triggering that so-called “bad event”.

An adversary is a probabilistic polynomial-time algorithm that sends out messages in

order to disrupt the game and trigger the “bad event”. If the adversary is successful in

doing so, we say that the adversary has won. As there could potentially be multiple

such algorithms that can trigger the “bad event”, we would refer to each separate

algorithm as a separate adversary.

A protocol is said to meet its security goal if the advantage of any adversary is

negligible as a function of the security parameter. An adversary’s advantage is a

function of her probability of winning the game; we will provide in Section 3.5 the

exact function that is used to compute the adversary’s advantage in the key secrecy

game. We want her advantage to be negligible as a function of the security parameter

q; a function f(k) is negligible if for every c > 0 there exists kc > 0 such that for all

k > kc, f(k) < 1
kc . In other words, f(k) eventually decreases faster than any rational

function (or its inverse increases faster than any polynomial function).

13



We can now describe how a security game is played. In a security game, the users

will engage in the protocol as normal while an adversary will observe the interactions

between users and send queries to obtain information about the protocol and the

users. She sends her queries, the term we use to refer to any message the adversary

sends or any request for information she makes, to a behavior algorithm χ that

first determines if her queries are within the scope of the game and sends back the

appropriate response if so. Later in Sections 3.4 and 3.5 we will more precisely define

what it means to stay within the scope of security games in general and the key

secrecy game in particular: it requires use of what we call a Valid predicate. These

queries take on specific forms. Different formulations of the same security game will

allow for different queries and there are many queries common across formulations.

In both [BCP01] and [dSGFW20] there are the Send, Reveal, Corrupt, and Test

queries. The Send query is the most general: the adversary can “send” whatever

message she wants to any user (the behavior algorithm will respond the way the user

would if her message stays within the scope of the game) or forward, alter, delay, or

delete messages between users (by sending her request to the behavior algorithm who

will carry it out provided it stays within the game’s scope). She could, for instance,

delete the public vector the GM has shared and send out her own vector instead.

When the adversary sends the Reveal query regarding a specific session key (i.e. the

current one or a past one) she is given the session key she requested (more precisely,

the behavior algorithm will first check if the users have finished deriving that session

key and give her the session key if so, as the adversary could send this query while the

protocol is still running). We then say that this session has been corrupted. When the

adversary sends the Corrupt query about a specific player she is given that player’s
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private key. We analogously call this player corrupted. We will explain the Test

query when we discuss the key secrecy security game.

We allow the adversary to ask queries to model the real life scenario of information

leaking and an adversary or adversaries using this information to determine past,

current, or future session keys. In short, allowing for these data leaks lets us test the

strength of our protocol: even if information has been leaked, can we still keep past,

current, or future session keys a secret?

We’ll spend the rest of this chapter giving a more precise definition of security

games and explain how we keep track of queries, the responses to these queries, and

how those responses affect the game. We follow the framework described in [BCP01]

and [dSGFW20].

3.1 Protocols and Sessions

To be more precise, a key exchange protocol π consists of two algorithms kg and

ζ. The first algorithm, which we usually write as kg(1λ), where 1λ is the unary

representation of the security parameter λ, is a randomized key generation algorithm

that gives everyone their public and private keys. The second algorithm ζ is the

protocol that parties engage in to generate session keys.

In order to understand security games in more detail, we need to discuss sessions.

For simplicity, we will first discuss the two party case; that is, when the group man-

ager is only expecting one other person to compute the session key. When two parties

are engaging in the protocol together, each party has their own local session. A local

session is a temporary two-way link that enables communication between two parties
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and has an owner, who we call the session owner, and an intended peer [dSGFW20].

As an example, if Alice and Bob are performing a Diffie-Hellman key exchange to-

gether, then Alice has a session where she’s the owner and Bob the intended peer,

while Bob has a session where he’s the owner and Alice the intended peer. Since Alice

and Bob are engaging in conversation together, their sessions should be identical in

content once they’ve exchanged all the information needed to derive the session key.

We say that the session has been terminated once they both stop talking to each

other. In the case of a group key exchange protocol with more than two parties,

the users engage in multiple sessions with other users simultaneously or in sequence

[BCP01]. For the vector space projection protocol, the group manager would engage

in multiple sessions simultaneously with all remaining users in I.

To both identify and keep track of all the sessions that are created and terminated

over the course of running a key exchange protocol, we maintain a list of valid local

session identifiers ℓ ∈ U ×U ×Z which is made public. Each local session identifier is

of the form ℓ = (i, j, k) to indicate that this is the kth session between session owner

i and their intended peer j. We will use ℓ.id and ℓ.pid to refer to a session’s owner

and intended peer respectively.

3.2 Protocol and Game States

Security games maintain a running list of both protocol and game states to keep track

of the players’ execution of the protocol and the adversary’s actions taken over the

course of the game. We mentioned the goal of the adversary is to trigger a “bad

event” by sending queries while the players run the protocol and generate session
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keys. Each time the adversary sends a query, information about the protocol might

be leaked: for example, a Reveal query reveals the current session key, a Corrupt

query reveals one or more players’ private keys. As the game is played, we want to

keep track of what’s happened in each session: not only who the owner and intended

peer are and whether or not a session key was derived, but also whether or not the

owner or peer was corrupted and whether or not the adversary learned the session key

for that session. In short, we need to keep track of what information about players

and session keys has been leaked and when. To keep track, we maintain five running

lists.

1. The list LSID of local session identifiers.

2. The list SST of protocol related session states.

3. The list EST of global protocol related information that’s separate from session

state information.

4. The list LST of game related local session states.

5. The list MST of global game related information that’s separate from the game

related local session states.

We’ll now describe each of these lists. In the previous section, we discussed what

local session identifiers are; the running list of those local session identifiers is LSID.

Let {0, 1}∗ be the set of all finite-length bit-strings.

The list SST of protocol related session states keeps track of what’s happening

during each session, providing answers to questions like “What is this session’s session

ID?”, “Who is the session owner?”, “Has this session terminated yet?”. For each

session ℓ = (i, j, k) its protocol related local session state consists of:
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• (pki, ski): the public and secret key of the session owner, player i.

• pkj: the public key of the intended peer, player j.

• crypt ∈ {0, 1}∗: protocol-specific private session state used to maintain secret

values from one invocation to the next.

• accept ∈ {true, false,⊥}: accept is initially set to ⊥ to indicate the protocol

is running. Once it’s done, it changes to true or false to indicate whether or

not the session owner accepted the session as a successful run of π. This value

is made public.

• sid ∈ {0, 1}∗ ∪ {⊥}: sid is the session ID and is initially set to ⊥ while the

protocol is running. It will change to a non-trivial value if and only if accept

is set to true (that is, if the session owner deemed the protocol run successful);

otherwise it never changes. This value will change at most once per session and

is also made public. The session ID is generated as a result of running the key

exchange protocol and is made public. A session ID is used to keep track of the

information that’s been exchanged between the owner i and intended peer j.

See Section 4.1 of [dSGFW20] for an example of what a session ID would look

like for two parties running Diffie-Hellman.

• key ∈ {0, 1}∗ ∪ {⊥}: key is the session key and is initially set to ⊥. It will

change if and only if accept is set to true, and will only change once per session

(at most).

• kcid ∈ {0, 1}∗ ∪ {⊥}: kcid is the key confirmation identifier, used to indicate

which sessions will eventually derive the same session key. It’s initially set to ⊥
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and can be changed once per session to a non-trivial value if and only if key is

non-trivial. Like the session ID, the key confirmation identifier is made public.

• kconf ∈ {full, almost, no,⊥}: kconf indicates the type of key confirmation

the session owner expects. It’s initially set to ⊥ and changed when the session

is first activated. Full key confirmation means if session owner i engages in the

protocol with intended peer j and that peer is following the protocol correctly,

then there is a guarantee that someone else has derived the shared secret (this

someone else could be the intended peer, but it might not be). Almost full

key confirmation means if session owner i engages in the protocol with intended

peer j and that peer is following the protocol correctly, then there is another

session (and the owner of this other session might not be j) that has the same

key confirmation identifier and if that other session has derived a key then it’s

the same one that session owner i has. The difference is that full confirmation

guarantees the same session key; almost full guarantees the same key confir-

mation identifier. No key confirmation means the protocol does not guarantee

that, if session owner i is engaging in the protocol honestly with intended peer

j, that there will be someone else (intended peer j or otherwise) that has the

same session key.

From now on, for a given session ℓ we will write ℓ.accept to refer to the value of

accept for session ℓ, ℓ.sid refers to its session ID, and so on.

The idea behind the list SST is that as the players run the protocol and generate

session keys, we update the protocol related session state for each session to keep

track of what is currently happening in each session. It also allows us to keep track

of what has happened in previous sessions as well.
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Next we’ll describe the components of the list EST, which contains global pro-

tocol related information. This list is a set of tuples that we denote as Lkeys that

keeps track of all players and tells us which of them have been corrupted: Lkeys =

{(i, pki, ski, δi) : i ∈ U} where δi ∈ {honest, corrupt} tells us whether or not player

i has been corrupted. If the adversary ever asks a Corrupt query and obtains player

i’s secret key as a result, δi is set to corrupt.

The list LST keeps track of game related local session states. While the list SST

tells us about what’s happening in each session as the players engage in the protocol,

this list tells us about what’s been corrupted in each session as a result of adversarial

interference. In each session, the owner, the peer, or the session itself can all be

corrupted. For each local session identifier ℓ = (i, j, k) its game related local session

state consists of the following:

• δowner ∈ {honest, corrupt}: tells us whether or not the owner was corrupted

before the session terminated, i.e. while ℓ.accept is set to ⊥. Initialized to

honest.

• δpeer ∈ {honest, corrupt}: tells us whether or not the peer was corrupted

while ℓ.accept is set to ⊥. Initialized to honest.

• δsess ∈ {fresh, revealed}: tells us whether or not the session key for this

session was revealed to the adversary. Initialized to fresh.

As with the list SST of session ℓ’s local session states, we will use the notation

ℓ.δowner, etc, to refer to elements of its game related local session states.

The idea is that as the players run the protocol and generate new session keys, the

adversary submits Reveal and Corrupt queries to the behavior algorithm to learn
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players’ private key and current and past session keys. To keep track of what, in each

session, has been revealed (if anything) we update each session’s game related session

state.

We leave the definition of the list MST of global game related information to

when we describe the key secrecy security game in Section 3.5.

To set up our security game, we run two procedures that populate the items on

each list with their initial values:

1. (SST, EST) ← setupE(LSID, kg, 1λ): This procedure uses kg and the se-

curity parameter 1λ to provide the players with their public and private keys.

It also initializes each component of the protocol related local session state

for all sessions (i.e. for session ℓ it will set ℓ.accept and ℓ.sid to ⊥); in

other words, it populates the list SST for each session. Finally for each tu-

ple (i, pki, ski, δi) ∈ Lkeys it sets adds in each user’s public and private key and

sets δi to honest, populating the list EST.

2. (LST, MST) ← setupG(LSID, SST, EST, 1λ): to set up game related com-

ponents. This procedure initializes each component of the game related local

session state for all sessions (i.e. for session ℓ it sets ℓ.δowner to honest), popu-

lating the list LST for each session in LSID It also will initialize all components

of the list MST, and we will describe in Section 3.5 what the initial values of

this list will be.
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3.3 Session Partnering

As we mentioned earlier in Section 3.1, two parties engaging in the key exchange

protocol together each have their own session and their session IDs should be the

same after terminating. We formalize this notion by defining session partnering. We

use the definition from [BCP01]: two sessions ℓ and ℓ′, ℓ ̸= ℓ′, are partners if and

only if ℓ.sid = ℓ′.sid, ℓ.sid ̸=⊥ and ℓ′.sid ̸=⊥. In other words, the two sessions are

administratively different and have the same, non-trivial session ID.

3.4 Formal Game Definition

Now we can formally define what a security game is as specified in [dSGFW20], how

the game is actually played, and how the adversary can win. Throughout we said the

goal of the adversary was to trigger some “bad event”; this “bad event” is defined

by a logical statement P that we evaluate on the game states LSID, SST, EST,

LST, MST. Different security goals (and the games played to determine whether or

not a protocol reaches those goals) have different logical statements that define their

“bad event”; in Section 3.5 we will provide the logical statement that defines the key

secrecy game’s “bad event”. Let b be the outcome of the logical statement: if b = 1

then the adversary has won and if b = 0 then the adversary has lost.

Let Q be the set of possible queries the adversary can ask. The behavior algo-

rithm χ evaluates the queries the adversary sends using the Valid predicate, which

will return true if the query is valid (and so the behavior algorithm will give the

appropriate reply to the query) and false otherwise (and so the behavior algorithm
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will not reply to the query). The Valid predicate can differ in formulation between

security games and we will provide the exact formulation of this predicate for the key

secrecy security game in the next section.

Now we can formally define a security game: a security game G maintains a state

(LSID, SST, EST, LST, MST)

and is defined by the tuple (setupE, setupG, Q, Valid, χ, P ). The entire process,

from giving everyone their public and private keys and initializing all values for all

the session states to determining whether or not the adversary has won the game, is

called an experiment. More precisely, an experiment is parameterized by a protocol

π, an adversary A, and a game G, and is executed as follows:

1. We first set up the security game by running the two procedures mentioned

earlier: (SST, EST) ← setupE(LSID, kg, 1λ) to set up the protocol related

components and (LST, MST)← setupG(LSID, SST, EST, 1λ) to set up the

game related components.

2. The adversary submits queries which are processed by the behavior algorithm

χ and the Valid predicate.

3. When A terminates, b← P (LSID, SST, EST, EST, MST) is evaluated by the

experiment and then outputs it.

As mentioned before, the various protocol and game related session states are updated

accordingly in response to the queries the adversary sends. We will discuss what the

adversary terminating looks like in the context of the key secrecy security game in

the next section.
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An experiment involving a security game G, an adversary A, a protocol π and

security parameter λ is denoted as

ExpG
A,π(1λ)

We denote the outcome of the experiment as ExpG
A,π(1λ) = b, recalling that b = 1

means the adversary has won and b = 0 means the adversary has lost.

3.5 The Key Secrecy Security Game

Now we can define the key secrecy game in particular. To do so we will go over the

list MST of global game related information, the Test query and an additional query

called Guess, and the logical statement P that defines this game’s “bad event” the

adversary is trying to trigger.

In the key secrecy game, the adversary is trying to guess the session key for any

past or current session. First she picks a session ℓ where ℓ.δowner = ℓ.δpeer = honest

and where ℓ.δsess = fresh. From there, the behavior algorithm will either give her the

actual session key ℓ.key or a random element of D, the set of all possible session keys

(also known as the session key distribution) in Fn
q , and she must determine whether or

not she’s been given the real session key. There’s a 50% chance she’s been given ℓ.key

and a 50% chance she’s been given some random element. If she guesses correctly,

she wins the game and has triggered the “bad event” because the key is no longer

secret and the game ends; if she guesses incorrectly, she loses and the game ends.

Since the adversary has a 50% chance of winning just by randomly guessing, we are

interested in computing how much better than 50% the adversary can do by sending
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out queries and harvesting the responses from those queries before she tests herself.

In other words, we are interested in knowing how much worse off the players running

the vector space projection protocol are if the adversary is able to get her hands on

someone’s private key or past session keys. We’re concerned about how much better

she can do than randomly guessing, about whether or not any past, present, or future

session keys will stay secret.

We denote the key secrecy game by GBRSec,D. We use the protocol and game

related local session states SST and LST and global protocol related information

EST as described in Section 3.2. The list MST of global game related information

contains the following elements: two bits btest, initialized to 0 or 1 at random, and

bguess, initialized to ⊥, and a session identifier ℓtest ∈ LSID initialized to ⊥. If btest = 0

the behavior algorithm will give the adversary a random element of D when she’s

testing herself; if btest = 1 then she gets the actual session key. The bit bguess stores

her guess, which she sends to the behavior algorithm when she’s made a decision.

Finally, if ℓ is the session she chooses to test herself with then ℓtest ← ℓ.

As mentioned at the beginning of this chapter, there’s an additional query Test

that is part of this security game. After the adversary has submitted as many of the

other queries (Send, Reveal, Corrupt) as she likes in order to learn information

about the protocol and the players, she sends a Test query that contains the session

ℓ she wants to test herself with to the behavior algorithm. If ℓ is uncorrupted and

the peer and owner are honest, ℓtest ← ℓ and the algorithm will return to her ℓ.key or

a random element of D. She will send her guess back using the Guess query, which

will set bguess to be 0 (not the session key) or 1 (is the session key) accordingly.

There are additional requirements we add to ℓ if the adversary wants to test
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herself with ℓ. As mentioned earlier in this section, we require that ℓ.δowner =

ℓ.δpeer = honest and ℓ.δsess = fresh. We also require that if there is a session ℓ′

that’s partnered to ℓ (recall that two partner sessions have the same session ID) then

ℓ′.δsess = fresh as well. In other words, both the session and its partner session are

uncorrupted; otherwise the adversary could first send a Reveal query to ℓ′ before

sending a Test query containing ℓ and trivially win the game since both sessions

would derive the same session key. Finally, in the event that ℓ′.id ̸= ℓ.pid, we require

that ℓ′.id is still engaging in the protocol correctly; that is, they are following all the

protocol steps in the correct order. (In the literature they would say that ℓ′.id is

honest, but for the sake of clarity we will only use honest to mean that their private

key is still private). We add this condition in to account for the scenario in which a

protocol cannot guarantee authentication and the owner of ℓ cannot be certain who

their intended peer is. In this case, if their conversation partner is still following the

protocol correctly, we would still want their session key to be secret, so we add in the

previous requirement.

A session ℓ is fresh if and only if it has met all these conditions. We specify all

these conditions because the Valid predicate for this game only requires that the

adversary sends exactly one Test query to a session that’s derived a key and one

Guess query. In other words, the Valid predicate will only check that the adversary

can ask the query, not whether or not by asking they give themselves a trivial win.

As we mentioned in Section 3.4, the last step in an experiment is to evaluate b←

P (LSID, SST, EST, LST, MST) and return b. The predicate BRSec we evaluate
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for the key secrecy security game is the following:

b← BRSec(LSID, SST, EST, LST, MST)

will evaluate to 0 if bguess ̸= btest or 1 if bguess = btest if and only if MST.ℓtest ̸=⊥ and

MST.ℓtest is fresh. In other words, our predicate is this: the experiment evaluates

to 0 (adversary loses) or 1 (adversary wins) if and only if the adversary has chosen a

session to test herself with and that session is fresh.

Finally we offer a precise definition of the adversary’s advantage in the key secrecy

game. For the key secrecy game GBRSec, we have a protocol π, a session key distri-

bution D, the set of all possible users U and participating users I, and an adversary

A. Then the adversary’s advantage is

AdvGBRSec,D
A,π,U ,I = 2P

(
ExpGBRSec,D

A,π,U ,I (1λ) = 1
)
− 1

The adversary’s advantage is twice the probability she wins minus one, where the

probability of her winning is the probability that the experiment evaluates to 1 (the

logical statement BRSec(LSID, SST, EST, LST, MST) evaluates to 1). We note

that when we are computing an adversary’s advantage, we’ll compute it in terms

of the security parameter λ (for the vector space projection protocol, the security

parameter is the size of the field q). In the next section we’ll compute the advantage

for four different adversaries, each using a different strategy to win the game, and

show that each adversary’s advantage is non-negligible as a function of the security

parameter q.
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Chapter 4

Strategies for the Adversary

As mentioned in the previous section, the adversary’s advantage in the key secrecy

game is

2P
(
ExpGBRSec,D

A,π,U ,I (1λ) = 1
)
− 1

and when computing her advantage, we want this advantage to be negligible as a

function of the security parameter, which for the vector space projection protocol is

q. As mentioned in the beginning of Chapter 3, a function f(k) is negligible if for

every c > 0 there exists kc > 0 such that for all k > kc, f(k) < 1
kc . In other words,

f(k) eventually decreases faster than any rational function (or its inverse increases

faster than any polynomial function).

When we are trying to determine whether or not the key secrecy goal has been met,

we need to determine whether or not any probabilistic polynomial time adversaries

have a non-negligible advantage. If there’s even one probabilistic polynomial-time al-

gorithm that an adversary could use to learn the session key, then the protocol doesn’t
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provide key secrecy. Thus to show that a protocol provides key secrecy we’d need to

show that all possible adversaries running all possible probabilistic polynomial-time

algorithms have a negligible advantage. We will provide four probabilistic polynomial-

time algorithms that allow for the adversary to win, which indicates that the vector

space projection protocol does not provide key secrecy.

Here is the first such algorithm and we call it Strategy 1. This strategy guar-

antees victory, so her advantage is non-negligible as a function of q. Here is how it

goes: the adversary sends Reveal queries to each session after each one terminates.

She is able to keep track of which public vectors map to which session keys. Let u⃗i

be the session key that was generated by projection v⃗i onto W . Then she knows that

u⃗i ∈ W , that v⃗i maps to u⃗i under the projection map, and that v⃗i− u⃗i is in its kernel.

She keeps sending Reveal queries until she has r linearly independent vectors in the

image and n− r linearly independent vectors in the kernel; now she can write down

the matrix representation of the projection map and calculate all past session keys,

the current session key, and all future session keys.

Strategy 1 reveals that it doesn’t matter if r is private or public; if r is private

then the adversary needs only to send a Reveal query to the sessions associated

with n linearly independent public vectors, and then she can compute the matrix

representation of the projection map. This strategy also tells us that it is imperative

that at the very least the group manager must change W before r or n− r, whichever

is larger, linearly independent vectors have been publicly released.

Next we have Strategy 2. This strategy also guarantees victory and so her

advantage is again non-negligible as a function of q. The adversary employing this

strategy will take advantage of the fact that if u⃗i is the projection of v⃗i onto W and
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v⃗i is a linear combination of v⃗1, v⃗2, . . . , v⃗i−1, then u⃗i will be a linear combination of

u⃗1, u⃗2, . . . , u⃗i−1. To be more precise, if

v⃗i = a1v⃗1 + a2v⃗2 + · · ·+ ai−1v⃗i−1,

where at least one coefficient is nonzero, then

u⃗i = a1u⃗1 + a2u⃗2 + · · ·+ ai−1u⃗i−1

Then the adversary needs only to wait for at most n+1 vectors to be publicly released;

we are guaranteed to have a linear dependence amongst these n + 1 vectors. Suppose

that the ith vector is linearly dependent on the previous i− 1 vectors for i ≤ n + 1,

then she can determine the coefficients a1, a2, . . . , ai−1 for v⃗1, v⃗2, . . . , v⃗i−1 and send

Reveal queries for the sessions that correspond to nonzero coefficients. From here,

once she sends a Test query to the session corresponding to v⃗i+1, she just has to

check if

b⃗ = a1u⃗1 + a2u⃗2 + · · ·+ aiu⃗i.

What this strategy reveals to us is that if the group manager picks each vector v⃗i to

be linearly independent of the first i − 1 vectors, once n + 1 session keys have been

generated, if enough past session keys are leaked then an adversary can compute all

past session keys, the current session key, and all future session keys without knowing

W or the projection map. If the group manager isn’t deliberately ensuring linear

independence, then it’s possible that the adversary can compute the current session
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key if v⃗i for i < n + 1 is linearly dependent on the first i − 1 vectors, again without

knowing W or the projection map.

What Strategy 1 tells us is that the adversary can figure out the projection map,

and thus compute all session keys, just by matching enough past public vectors with

past session keys, but what Strategy 2 tells us is that she doesn’t need to go that

far: she could simply use past session keys and the linear dependence between them

to figure out the current session key and all past and future ones as well if she waits

long enough. These strategies indicate that this protocol is very sensitive to data

leaks, and Strategy 2 in particular shows that this would remain the case even if we

place the projection map with any other linear map.

Third is Strategy 3 which also guarantees victory and thus also gives the ad-

versary a non-negligible advantage. Here is how this strategy goes: first she sends a

Corrupt query to any user, which gives her that user’s private key. Then she picks a

fresh session ℓ and sends a Test query (for example, she could pick any session that

doesn’t involve the corrupted user). Since she now has one user’s private key, she

can compute all past, present, and future session keys and will be able to determine

ℓ.key, ℓ’s session key.

This strategy tells us that only one person’s private key leaking is enough to

compromise key secrecy for the entire group, as the group manager is now forced to

reissue private keys for all users in the entire group. While just two or three past

session keys leaking isn’t enough for an adversary to piece together the projection

map, and it’s unlikely that linear dependence between session keys will show up when

only two or three session keys have been leaked, it’s troubling to note that only one

leaked private key will compromise key secrecy for everyone.

31



Finally we have Strategy 4. Let b⃗ be the vector that the adversary receives when

she sends a Test query to a fresh session. Let v⃗1, v⃗2, . . . , v⃗m be the vectors the group

manager publicly released to generate past session keys. If b⃗ is a multiple of any of

these publicly released vectors, then she’ll know immediately that b⃗ is not the session

key and therefore can send a Test query and guess “no”. None of the publicly released

vectors are in the secret subspace W ; if a session key were to be a multiple of one of

the publicly released vectors, then that publicly released vector would also be in W .

If b⃗ is not a multiple of any of v⃗1, v⃗2, . . . , v⃗m, she guesses “yes” and “no” with equal

probability.

Now we’ll compute the probability that an adversary employing this strategy wins,

which will let us compute her advantage. For simplicity from now on, we abbreviate

the condition that “⃗b is a multiple of one of v⃗1, v⃗2, . . . , v⃗m” by “⃗b is a multiple” and

analogously for the condition that b⃗ is not a multiple of any of them.

P(win) =P(win | b⃗ is a multiple)P(⃗b is a multiple)+

P(win | b⃗ isn’t a multiple)P(⃗b isn’t a multiple)

The probability that she wins given that b⃗ is a multiple is 1, since she’ll know right

away that b⃗ is not the session key. The probability that she wins if b⃗ is not a multiple is

0.5, so we just need to compute the probability that b⃗ is a multiple and the probability

that it isn’t.

Here we compute the probability that b⃗ is a multiple of one of the publicly released

vectors. We assume that none of the publicly released vectors are multiples of each
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other; given that n and q will both be large, this is a reasonable assumption to make.

P(⃗b is a multiple) =
m∑

i=1
P(⃗b is a multiple of v⃗i)

=
m∑

i=1
P(⃗b ̸= session key and is a multiple of v⃗i)

=
m∑

i=1
P(⃗b ̸= session key)P(⃗b is a multiple of v⃗i | b⃗ ̸= session key)

=
m∑

i=1

1
2P(⃗b is a multiple of v⃗i | b⃗ ̸= session key).

The probability that b⃗ is a multiple of v⃗i given that b⃗ is not the session key is given

by:

q − 2
qn − 2−m

.

We assume here that b⃗ is chosen uniformly at random from Fn
q , avoiding the zero

vector, the actual session key, and all the vectors v⃗1, . . . , v⃗m, which leaves us with

qn − 2−m choices total for b⃗. Of those choices, q− 2 of them will be multiples of v⃗i:

there are q multiples of v⃗i total, one of which is the zero vector and one of which is

v⃗i itself.

Thus our probability that b⃗ is a multiple of one of the m publicly released vectors

is:

m∑
i=1

1
2

q − 2
qn − 2−m

.

We can compute the probability that b⃗ is not a multiple of one of the m publicly
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released vectors by subtracting from 1:

P(⃗b is not a multiple) = 1−
m∑

i=1

1
2

q − 2
qn − 2−m

.

Now we can compute the probability the adversary wins:

P(win) =P(win | b⃗ is a multiple)P(⃗b is a multiple)+

P(win | b⃗ isn’t a multiple)P(⃗b isn’t a multiple)

=
m∑

i=1

1
2

q − 2
qn − 2−m

+ 1
2

(
1−

m∑
i=1

1
2

q − 2
qn − 2−m

)

= 1
2 + 1

2

(
m∑

i=1

1
2

q − 2
qn − 2−m

)

= 1
2 + 1

2

(
m(q − 2)

2(qn − 2−m)

)
.

Then her advantage is:

2
(

1
2 + 1

2

(
m(q − 2)

2(qn − 2−m)

))
− 1 = 1 + m(q − 2)

2(qn − 2−m) − 1 = m(q − 2)
2(qn − 2−m) .

Her advantage is non-negligible as a function of q but negligible as a function of

n; thus, in order for an adversary employing this strategy to have a non-negligible

advantage we need to change the security parameter to n, the dimension of the vector

space, instead of q. However, as we’ve seen with the previous strategies an adversary

can still win regardless of what n is when there are enough data leaks.

Thus, because each of the above strategies gives an adversary a non-negligible

advantage, the vector space projection protocol does not provide key secrecy and we

do not recommend its implementation as a group key exchange protocol.
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