Math 255 - Spring 2022

Quadratic congruences proofs

10 points
This homework invites you to write some proofs about quadratic congruences.

1. For $n>1$, let $f(n)$ be the number of solutions to the equation $x^{2} \equiv 1(\bmod n)$, and let $\omega(n)$ be the number of distinct primes dividing n.
(a) Give a closed formula for $f(n)$. Your formula should use $\omega(n)$.
(b) Is $f(n)$ ever odd? When?
(c) Assume that $f(n)$ is even. Show that

$$
\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}} a \equiv(-1)^{f(n) / 2} \quad(\bmod n) .
$$

Hint: This can be shown using a technique similar to the proof of Wilson's theorem.
(d) Assuming still that $f(n)$ is even, when is

$$
\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}} a \equiv-1 \quad(\bmod n) ?
$$

2. Prove that the quadratic congruence $6 x^{2}+5 x+1 \equiv 0(\bmod p)$ has a solution for each prime p, but the equation $6 x^{2}+5 x+1=0$ does not have an integer solution.
