Math 255 - Spring 2022

$$
\text { Solving } a x+b y=c \text { completely }
$$

30 points
This project invites you to read Section 3 of our textbook, Linear Diophantine Equations, and to solve some problems to demonstrate your understanding.

Roughly speaking, this section expands our work on solving the equation $a x+b y=d$, where $d=\operatorname{gcd}(a, b)$. We showed how to do this using the Euclidean algorithm and backsubstitution. In this section we generalize this in two ways:

1. Section 3 shows how to give all integer solutions to the equation $a x+b y=d$, where $d=\operatorname{gcd}(a, b)$, from knowledge of one such solution.
2. Section 3 proves that the equation $a x+b y=c$ has integer solutions if and only if $\operatorname{gcd}(a, b)$ divides c, and shows how to obtain all integer solutions in this case.

For this assignment, please turn in your answer to the following questions:

1. Please read Section 3 of our book, and answer the Exercises along the way. (There are five exercises in this section, numbered 1 through 5.)
2. Please use the Euclidean algorithm, back-substitution, and Theorem 1 of Section 3 to give all integer solutions to the following equations:
(a) $x+y=2$
(b) $6 x+15 y=51$
(c) $15 x+16 y=17$
