Math 255 - Spring 2022
Möbius inversion
20 points
Please read Section 6.2 of Elementary Number Theory, seventh edition, by David M. Burton, which I have scanned and attached below.

Then answer this question:

1. The Mangoldt function Λ is defined by

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k}, \text { where } p \text { is a prime and } k \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Prove that

$$
\log (n)=\sum_{d \mid n} \Lambda(d)
$$

(b) Use part (a) to prove that

$$
\Lambda(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log d=-\sum_{d \mid n} \mu(d) \log d
$$

(You must prove both equalities in this statement.)
here, $\quad \sum_{d \mid 1} \mu(d)=\mu(1)=1$
'วขวч

$\mu(m n)=\mu\left(p_{1} \cdots p_{r} q_{1} \cdots q_{s}\right)=(-1)^{r+s}$
p_{i} and q_{j} being distinct. Then
 $\mu(m) \mu(n)$, and the formula holds trivially. We therefore may assume that both m and Proof. Wrime. If either $p^{2} \mid m$ or $p^{2} \mid n, p$ a prime, then $p^{2} \mid m n$; hence, $\mu(m n)=0=$
tively $=$

Theorem 6.5. The function μ is a multiplicative function. This is the content of Theorem 6.5. As the reader may have guessed already, the Möbius μ-function is multiplicative. If p is a prime number, it is clear that $\mu(p)=-1$; in addition, $\mu\left(p^{k}\right)=0$ for $k \geq 2$. $\mu(1)=1 \quad \mu(2)=-1 \quad \mu(3)=-1 \quad \mu(4)=0 \quad \mu(5)=-1 \quad \mu(6)=1, \ldots$ example: $\mu(30)=\mu(2 \cdot 3 \cdot 5)=(-1)^{3}=-1$. The first few values of μ are free integer, whereas $\mu(n)=(-1)^{r}$ if n is square-free with r prime factors. For
 $\left.\begin{array}{r}(I-) \\ 0 \\ \mathrm{I}\end{array}\right\}=(u) r$

Definition 6.3. For a positive integer n, define μ by the rules μ-function. We introduce another naturally defined function on the positive integers, the Möbius 6.2 THE MÖBIUS INVERSION FORMULA

$\frac{7}{3}$
\cdots
$\div 1$
1
$\frac{9}{3}$

pue

N

Let us use $n=10$ again to illustrate how the double sum in Eq. (2) is turned
around. In this instance, we find that

 $\left[\frac{y d}{u}\right] \frac{1=x}{\frac{1=x}{<}}$ power of p that divides $n!$ is
 This is accomplished by Theorem 6.9. will give this count, without the necessity of always writing n ! in canonical form. so that the exact power of 3 that divides $9!$ is 4 . It is desirable to have a formula that

$$
6 \cdot 8 \cdot L \cdot 9 \cdot s \cdot t \cdot \varepsilon \cdot \tau \cdot 1=i 6
$$

 We now plan to investigate the question of how many times a particular prime for a suitable choice of θ, with $0 \leq \theta<1$. $\theta+[x]=x$
can be written as and only if x is an integer. Definition 6.4 also makes plain that any real number x
 $t^{-}=[u-] \quad \varepsilon=[\mu] \quad 0=[\varepsilon / I] \quad \mathfrak{l}=[\underline{z}] \quad z-=[z / \varepsilon-]$

> By way of illustration, [] assumes the particular values
 a natural place in this chapter. visibility problems. Although not strictly a number-theoretic function, its study has The greatest integer or "bracket" function [] is especially suitable for treating diNOILONOH 甘TSHLNI LSGLVGXS THLL E 9

8. For an integer $n \geq 1$, verify the formulas below: (a) $\sum_{d \mid n} \mu(d) \lambda(d)=2^{\omega(n)}$. (b) $\sum_{d \mid n} \lambda(n / d) 2^{\omega(d)}=1$.

$$
\sum_{d \mid n} \lambda(d)= \begin{cases}1 & \text { otherwise }\end{cases}
$$

9
involved the use of a computer, was indirect and produced no specific value of n and Herman te Riele showed that the Mertens conjecture is false. Their proof, which 1963 verified the conjecture for all n up to 10 billion. But in 1984, Andrew Odlyzko
Mertens conjecture for at least one $n \leq(3.21) 10^{64}$. somewhere. Subsequently, it has been shown that there is a counterexample to the for which $|M(n)| \geq \sqrt{n}$; all it demonstrated was that such a number n must exist -
$\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0$
(b) For any integer $n \geq 3$, show that $\sum_{k=1}^{n} \mu(k!)=1$.
2. The Mangoldt function Λ is defined by

1. (a) For each positive integer n, show that PROBLEMS 6.2 . $\mu(n+2) \mu(n+3)=0$
 \square otherwise
$\mathrm{I}={ }_{g}(\mathrm{I}-)={ }_{\mathrm{I}+\tau+\varepsilon}(\mathrm{I}-)=\left(\varsigma \cdot{ }_{\tau} \varepsilon \cdot{ }_{\varepsilon} 乙\right) \chi=(09 \mathcal{\varepsilon}) \chi$
2. The Liouville λ-function is defined by $\lambda(1)=1$ and $\lambda(n)=(-1)^{k_{1}+k_{2}}$
factorization of $n>1$ is $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$. For instance,

 ${ }_{(u) m} \mathcal{Z}=\left.|(p) r|\right|^{\stackrel{u \mid p}{\zeta}=(u) S}$
 (c) $\sum_{d \mid n} \mu(d) / d=\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \cdots\left(1-1 / p_{r}\right)$.
 establish the following:
3. If the integer $n>1$ has the prime factorization $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, use Problem 3 to [Hint: By Theorem 6.4, the function F defined by $F(n)=\sum_{d \mid n} \mu(d) f(d)$ is multiplica-
tive; hence, $F(n)$ is the product of the values $F\left(p_{i}^{k_{i}}\right)$] $\left(\left({ }^{2} d\right) f-\mathrm{I}\right) \cdots((\tau d) f-\mathrm{I})((\mathrm{l} d) f-\mathrm{I})=(p) f(p) r \overbrace{}^{\stackrel{u \mid p}{\square}}$ tive function that is not identically zero, prove that [Hint: First show that $\sum_{d \mid n} \Lambda(d)=\log n$ and then apply the Möbius inversion formula.]
4. Let $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ be the prime factorization of the integer $n>1$. If f is a multiplicaProve that $\Lambda(n)=\sum_{d \mid n} \mu(n / d) \log d=-\sum_{d \mid n} \mu(d) \log d$. $\left.\begin{array}{r}0 \\ d \text { BOT }\end{array}\right\}=(u) \mathrm{V}$
