Math 255 - Spring 2022
Fermat's Little and Wilson's Theorems
15 points
This homework invites you to read about Fermat's (Little) Theorem and Wilson's Theorem in Section 6 of our textbook, and then to apply these theorems to answer the following questions.

1. Arrange the integers $\{2,3,4, \ldots, 21\}$ in pairs a and b that satisfy $a b \equiv 1(\bmod 23)$. In other words, find the inverse of each of these integers modulo 23 .
2. Show that $18!\equiv-1(\bmod 437)$.
3. If $\operatorname{gcd}(a, 35)=1$, show that $a^{12} \equiv 1(\bmod 35)$.

Hint: Use Fermat's Little Theorem and the Chinese Remainder Theorem.
4. What is the last digit of 2022^{2022} ?
5. We have that

$$
\begin{array}{cc}
6!\equiv-1 & (\bmod 7) \\
5!1!\equiv 1 & (\bmod 7) \\
4!2!\equiv-1 & (\bmod 7) \\
3!3!\equiv 1 & (\bmod 7)
\end{array}
$$

(a) Perform the same sort of calculations modulo 11.
(b) Guess a theorem from the data given to you and your data from part (a), and prove it.

