Math 255 - Spring 2022
Solving equations using primitive roots
10 points
This homework invites you to use primitive roots to solve congruences.

1. It is a fact that 3 is a primitive root modulo 17 , and here is a table of discrete logs in base 3 modulo 17 :

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\log _{3} a$	0	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

Use this table to solve the following congruences:
(a) $7^{5 x} \equiv 3(\bmod 17)$
(b) $5^{2 x} \equiv 8^{3 x}(\bmod 17)$
2. (a) Find a primitive root r of 11 .
(b) For this primitive root r, compute $\log _{r} a$ for each $a \in(\mathbb{Z} / 11 \mathbb{Z})^{\times}$. Organize your answer in a nice table like I gave in problem 1.
(c) Using your computations in part (b), solve the congruences
i. $7 x^{3} \equiv 3(\bmod 11)$
ii. $3 x^{4} \equiv 5(\bmod 11)$
iii. $x^{8} \equiv 10(\bmod 11)$

