
Math 255 – Spring 2022
Continued fractions

Definition 1. A simple continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .
+

1

an +
1

. . .

,

where a0 ∈ Z and for i ≥ 1, ai ∈ Z and ai ≥ 1. For compactness of notation, we usually
write [ a0; a1, a2, a3, . . . , an, . . . ] for this expression.

Further, if α is a real number and α = [ a0; a1, a2, a3, . . . , an, . . . ], then we say that
[ a0; a1, a2, a3, . . . , an, . . . ] is the continued fraction expansion of α.

If α ∈ Q, then α has exactly two distinct continued fraction expansions, and both of them
are finite. If α ∈ R but α 6∈ Q, then α has a unique continued fraction expansion, which is
infinite. We now show how to compute the continued fraction expansion of a number:

Example 2. Let α = 47
17

, and suppose that we want to express α as a simple continued
fraction. The first number to find is a0. Since 47

17
= 2 + 13

17
, we have that a0 = 2.

Now we compute a1. If we notice the pattern of the continued fraction, we need to write
47
17

= 2 + 1
??

. So what we will do is write

47

17
= 2 +

1
17
13

.

Now since 17
13

= 1 + 4
13

, we have

47

17
= 2 +

1

1 + 4
13

,

and a1 = 1. We can keep going like this, and we do, until we’re done!

47

17
= 2 +

1

1 +
1
13
4

= 2 +
1

1 +
1

3 + 1
4

.
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So we have a2 = 3. But now we see that the last fraction already has a numerator of 1, so
we already have 47

17
in the correct form, and we are done:

47

17
= 2 +

1

1 +
1

3 +
1

4

,

so a0 = 2, a1 = 1, a2 = 3, and a4 = 4. The continued fraction expansion is finite.

There are many fun things to say about continued fractions, but for this week we’ll stick
to some concepts that have actual practical applications.

One important quantity will be the so-called convergents of a continued fraction:

Definition 3. Given a continued fraction [ a0; a1, a2, a3, . . . , an, . . . ], its kth convergent is
the number given by

pk
qk

= [ a0; a1, a2, a3, . . . , ak ].

As one might expect, when pk
qk

is written in lowest terms, the number pk is called the numer-

ator of the kth convergent of [ a0; a1, a2, a3, . . . , an, . . . ] and qk is called the denominator
of the kth convergent of [ a0; a1, a2, a3, . . . , an, . . . ].

With this notation in place, we have

Proposition 4. The numerator pk and the denominator qk of the kth convergent of
[ a0; a1, a2, a3, . . . , an, . . . ] are given recursively by the following formulae:

p−2 = 0, p−1 = 1

q−2 = 1, q−1 = 0,

and for k ≥ 0,

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.(1)

Remark 5. Note that in the definition, the fraction pk
qk

is in lowest terms. Accordingly,
the proposition gives pk

qk
also in lowest terms! This can help you spot a mistake in your

calculations if you get any factors in common between pk and qk for some k.

One application of convergents and continued fraction expansions is the following:

Theorem 6. Let α be any real number. If the rational number a
b
, where b ≥ 1 and

gcd(a, b) = 1 satisfies ∣∣∣α− a

b

∣∣∣ < 1

2b2
,

then a
b

is one of the convergents pk
qk

of the continued fraction expansion of α.
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As a kind of converse to this theorem, one might wonder if its convergents ever get this
close to α, and they do:

Proposition 7. Let α be an irrational number. Then for any two consecutive convergents,
at least one of them, which we will denote p

q
, satisfies the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.
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