Math 255 - Spring 2022
Advanced congruence proofs
10 points
This homework invites you to work on slightly less straightforward proofs about congruences. To do this homework, you will need the following definition: A set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of integers is a complete set of residues modulo n if every integer is congruent modulo n to one and only one of the a_{i} s.

1. Prove that a set of n integers is a complete set of residues modulo n if and only if no two of the integers are congruent modulo n.
2. If $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a complete set of residues modulo n and $\operatorname{gcd}(a, n)=1$, prove that $\left\{a a_{1}, a a_{2}, \ldots, a a_{n}\right\}$ is also a complete set of residues modulo n.
3. Let c be any integer, and let $\operatorname{gcd}(a, n)=1$. Prove that the set

$$
\{c, c+a, c+2 a, c+3 a, \ldots, c+(n-1) a\}
$$

is a complete set of residues modulo n.
4. (a) Show that if $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv b\left(\bmod n_{2}\right)$, then $a \equiv b(\bmod n)$, where $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$.
(b) Show that if $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv c\left(\bmod n_{2}\right)$, then $b \equiv c(\bmod n)$, where $n=\operatorname{gcd}\left(n_{1}, n_{2}\right)$.

