Name:
Problem 1: Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q}.
As a hint, you may assume that the Galois closure K of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} has $\operatorname{Gal}(K / \mathbb{Q}) \cong$ D_{3}.

Solution: Suppose for a contradiction that $\mathbb{Q}(\sqrt[3]{2})$ is indeed contained in some cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$. Since $\mathbb{Q}\left(\zeta_{n}\right)$ is Galois over \mathbb{Q}, it follows by the definition of Galois closure that K, the Galois closure of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q}, is contained in $\mathbb{Q}\left(\zeta_{n}\right)$. By the Fundamental Theorem of Galois Theory, this means that $\operatorname{Gal}(K / \mathbb{Q})$ is a quotient of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$. But $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ is abelian and all quotients of abelian groups are abelian, which is a contradiction since D_{3} is not abelian.

