Please solve BOTH problems below:

1. Let R be a commutative ring with 1 and let A, B and C be left R-modules. Prove that $\operatorname{Hom}_{R}(A, B \oplus C) \cong \operatorname{Hom}_{R}(A, B) \oplus \operatorname{Hom}_{R}(A, C)$, where this is an isomorphism of R-modules.
2. Let X be any nonempty set and let R be the (commutative) ring of all integer-valued functions on X under the usual pointwise operations of addition and multiplication of functions:

$$
R=\{f \mid f: X \rightarrow \mathbb{Z}\}
$$

For each $a \in X$, define

$$
M_{a}=\{f \in R \mid f(a)=0\} .
$$

(a) Prove that M_{a} is a prime ideal in R.
(b) Prove that M_{a} is not a maximal ideal in R.
(c) Find all units in R.
(d) Find all zero divisors in R.

