Math 395 - Spring 2020 Homework 9

This homework is due on Monday, March 30.

All of these problems must be typed up.

- 1. Find the number of similarity classes of 10×10 matrices A with entries from \mathbb{Q} satisfying $A^{10} = I$ but $A^i \neq I$ for $1 \leq i \leq 9$, where I is the identity matrix. (You do not need to exhibit representatives of the classes.)
- 2. (a) Find all possible canonical forms for a matrix over \mathbb{F}_3 with characteristic polynomial $x^4 1$.
 - (b) Find all possible canonical forms for a matrix over \mathbb{F}_2 with characteristic polynomial $x^4 1$.
- 3. (a) How many similarity classes of 8×8 matrices A with rational entries are there that satisfy $A^8 = I$ but $A^n \neq I$ for every $n \in \{1, \ldots, 7\}$? (Justify.)
 - (b) Answer the same question as in part (a) but with the field of rational numbers replaced by the field \mathbb{F}_2 with 2 elements. (Justify.)
- 4. (a) How many similarity classes of 8×8 matrices A with rational entries are there that satisfy $A^8 = A$? (Explain briefly; you need not explicitly list all classes.)
 - (b) How many similarity classes of 3×3 matrices A with entries from the field \mathbb{F}_7 are there that satisfy $A^8 = A$? (Explain briefly; you need not explicitly list all classes.)
- 5. Let \mathbb{F}_q be the field with q elements. Find the number of similarity classes of 5×5 matrices A over \mathbb{F}_q that satisfy $A^q = I$, where I is the identity matrix. (Justify your answer. You do not need to exhibit representatives of the classes.)
- 6. Over the finite field \mathbb{F}_{17} , the polynomial $x^{10} 1$ factors into irreducible polynomials as follows:

$$x^{10} - 1 = (x - 1)(x + 1)(x^4 + x^3 + x^2 + x + 1)(x^4 - x^3 + x^2 - x + 1)$$

- (a) Find, with brief justification, the number of similarity classes of 8×8 matrices A with entries from \mathbb{F}_{17} that satisfy $A^{10} = I$ but $A^i \neq I$ for $1 \leq i \leq 9$.
- (b) Exhibit one explicit matrix A satisfying the conditions of (a).
- (c) What is the smallest n such that the matrix you found in (b) is similar to a diagonal matrix over the field \mathbb{F}_{17^n} ?