Math 395 - Spring 2020
Homework 8
This homework is due on Monday, March 16.
All of these problems must be typed up.

1. Let R be an integral domain and assume R contains a subring F that is a field (R and F have the same 1). Prove that if R is finite dimensional as a vector space over F then R is a field.
2. Let x and y be independent indeterminates over the field \mathbb{C} of complex numbers, and let $R=\mathbb{C}[x, y] /\left(x^{2}-y, y^{2}-x\right)$.
(a) Explain why R is a finite dimensional vector space over \mathbb{C}, and find its dimension.
(b) Prove that R is isomorphic to $\mathbb{C}[x] /\left(x^{4}-x\right)$.
(c) Show that R is (ring) isomorphic to the direct product of four copies of \mathbb{C}.
3. Let R be the following quotient ring of the polynomial ring with rational coefficients:

$$
R=\mathbb{Q}[x] /\left(x^{6}-1\right)
$$

(a) Find all ideals of R. (Be sure to justify that you found them all.)
(b) Determine which of the ideals of (a) are maximal, and for each maximal ideal M describe the quotient ring R / M.
(c) Exhibit an explicit (nonzero) zero divisor in R.
(d) Does R contain any nonzero nilpotent elements? (Briefly justify.)
4. Let $R=\mathbb{R}[x] /\left(x^{4}-1\right)$, so R is a commutative ring with 1 .
(a) Show that all ideals of R are principal.
(b) Find a generator for each maximal ideal of R.
(c) For each maximal ideal \mathfrak{m}, describe an isomorphism from R / \mathfrak{m} to either \mathbb{R} or \mathbb{C}.

5 . Let R be the ring of all continuous real valued functions on the closed interval $[0,1]$ (under the usual pointwise addition and multiplication of functions). Let

$$
M=\{f \in R \mid f(1 / 2)=0\}
$$

(a) Prove that M is a prime ideal and identify the quotient ring (as a well-known ring).
(b) Prove that M is not a principal ideal.
(c) Exhibit an infinite properly increasing chain of ideals of R :

$$
I_{1} \subset I_{2} \subset I_{3} \subset \cdots \quad \text { and let } \quad I=\bigcup_{i=1}^{\infty} I_{i}
$$

(where you need not reprove that I is an ideal). Explain why I could not be finitely generated. (Hint: One way is to consider ideals of functions that vanish on certain sets.)
6. Let R be the ring of all continuous real valued functions on the closed interval $[0,1]$. For each $a \in[0,1]$, let $M_{a}=\{f \in R \mid f(a)=0\}$.
(a) Find all units in R.
(b) Give an explicit example of a nonzero zero divisor in R.
(c) Prove that M_{a} is a maximal ideal in R.
(d) Prove that there is a countable subset $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ of $[0,1]$ such that $\cap_{i=1}^{\infty} M_{a_{i}}=$ 0.

