Homework 7
This homework is due on Monday, March 2.
All of these problems must be typed up.

1. Let R be a commutative ring with 1 which is a subring of the commutative ring S. Let P be a prime ideal of S.
(a) Show that $P \cap R$ is a prime ideal of R.
(b) Show that $P[x]$ is a prime ideal of $S[x]$.
(c) Show that $P[x]$ is not a maximal ideal of $S[x]$.
2. Let R be a ring with 1 and let M be a simple left R-module (this means that M has no left R-submodules other than 0 and M).
(a) If $\varphi: M \rightarrow M$ is a non-trivial R-module homomorphism (i.e. an endomorphism), show that φ is an isomorphism.
(b) Show that if $m \in M$ with $m \neq 0$, then $M=R m$.
(c) Show that there is a left R-module isomorphism $M \cong R / \mathfrak{m}$ for some maximal left ideal \mathfrak{m} of R.

3 . Let R be a commutative ring with 1 .
(a) Prove that each nilpotent element of R lies in every prime ideal of R.
(b) Assume that every nonzero element of R is either a unit or a nilpotent element. Prove that R has a unique prime ideal.
4. Classify all finitely generated R-modules, where R is the ring $\mathbb{Q}[x] /\left(x^{2}+1\right)^{2}$.

5 . Let t be an indeterminate over \mathbb{Q}. Classify all finitely generated modules over the ring $\mathbb{Q}[t] /\left(t^{9}\right)$.
6. Let $R=\mathbb{C}[x, y]$ be the ring of polynomials in the variables x and y, so R may be considered as \mathbb{C}-valued functions on (affine) complex 2 -space, \mathbb{C}^{2}, in the usual way (R is called the coordinate ring of this affine space). Let I be the ideal of all functions in R that vanish on both coordinate axes, i.e., that are zero on the set

$$
\{(a, 0) \mid a \in \mathbb{C}\} \cup\{(0, b) \mid b \in \mathbb{C}\}
$$

(You may assume I is an ideal.)
(a) Exhibit a set of generators for I. (Be sure to explain briefly why they generate I.)
(b) Show that I is not a prime ideal.
(c) Show that R / I has no nilpotent elements.

