Math 395 - Spring 2020
Homework 6
This homework is due on Monday, February 24.
All of these problems must be typed up.

1. Let R be a Principal Ideal Domain, let M be an R-module, and let p be a nonzero prime in R. Define

$$
M_{p}=\left\{m \in M \mid p^{a} m=0 \text { for some } a \in \mathbb{Z}^{+}\right\}
$$

called the p-primary component of M.
(a) Prove that M_{p} is an R-submodule of M.
(b) Prove that $\left(M / M_{p}\right)_{p}=0$, i.e., the p-primary component of M / M_{p} is zero.
(c) Prove that if q is a nonzero prime in R different from p, then $M_{p} \cap M_{q}=0$.
2. Let R be a Principal Ideal Domain with field of fractions F and assume $R \neq F$. As usual we may view F as a module over its subring R.
(a) Prove that every finitely generated R-submodule of F is a cyclic R-module.
(b) Deduce from (a) that F cannot be a finitely generated R-module.
(You may quote results about modules over PID.)

