Math 395 - Spring 2020 Final Exam

The Final Exam will be graded as follows:

- 10/10 for six complete problems
- 9.5/10 for four complete problems and substantial progress on the other two problems
- 8.5/10 for nine complete lettered parts
- 6/10 for six complete lettered parts
- 3/10 for three complete lettered parts

Section B: Ring Theory

- 1. Let F_1, F_2, \ldots, F_n be fields.
 - (a) Explicitly describe all the ideals in the direct product ring $F_1 \times F_2 \times \cdots \times F_n$. (Explain briefly why your list is complete.)
 - (b) Which of the ideals in (a) are prime? (Justify.)
 - (c) Which of the ideals in (a) are maximal? (Justify.)
- 2. Let R be a Principal Ideal Domain, let p and q be distinct primes in R, and let $a = p^{\alpha}q^{\beta}$ for some $\alpha, \beta \in \mathbb{Z}^+$. Let M be any R-module annihilated by (a). Prove that

$$M \cong M_p \oplus M_q,$$

where M_p is the submodule of M annihilated by (p^{α}) and M_q is the submodule of M annihilated by (q^{β}) . Do not quote a theorem for this; please provide a direct proof.

- 3. (a) Find all possible rational canonical forms for a 4×4 matrix over \mathbb{Q} that satisfies $A^6 = I$ (where I is the identity matrix).
 - (b) Find all possible rational canonical forms for a 4×4 matrix A over \mathbb{F}_2 that satisfies $A^6 = I$.

Section C: Field Theory

- 4. (a) Compute the Galois group of the splitting field of the polynomial $x^3 2$ over \mathbb{Q} .
 - (b) Compute the Galois group of the splitting field of the polynomial $x^7 2$ over \mathbb{Q} . (Hint: This computation is similar to the one in part (a).)
- 5. Let K be the splitting field of $x^{61} 1$ over the finite field \mathbb{F}_{11} .
 - (a) Find the degree of K over \mathbb{F}_{11} .
 - (b) Draw the lattice of all subfields of K. (You need not give generators for these subfields.)
 - (c) How many elements $\alpha \in K$ generate the multiplicative group K^{\times} ?
 - (d) How many primitive elements are there for the extension K/\mathbb{F}_{11} ? (In other words, how many β are there such that $K = \mathbb{F}_{11}(\beta)$?)
- 6. Let V be the field with 3⁶ elements and let $F \subset V$ be the field with 3 elements, so that V is a 6-dimensional vector space over F. Define

$$T: V \to V$$
 by $T(a) = a^3$ for all $a \in V$.

(T is called the Frobenius automorphism of V.)

- (a) Show that T is an F-linear transformation from V to itself, and that $T^6 = I$, where I is the identity linear transformation. (You may quote without proof facts about finite fields and their Galois theory as long as you state these explicitly.)
- (b) Show that x^6-1 is both the minimal polynomial and the characteristic polynomial of the linear transformation T. (Hint: Suppose T satisfies a polynomial of lower degree and derive a contradiction.)
- (c) Find the Jordan canonical form of the linear transformation T.