Math 395 - Spring 2020

Final Exam

The Final Exam will be graded as follows:
10/10 for six complete problems
$9.5 / 10$ for four complete problems and substantial progress on the other two problems
8.5/10 for nine complete lettered parts

6/10 for six complete lettered parts
$3 / 10$ for three complete lettered parts

Section B: Ring Theory

1. Let $F_{1}, F_{2}, \ldots, F_{n}$ be fields.
(a) Explicitly describe all the ideals in the direct product ring $F_{1} \times F_{2} \times \cdots \times F_{n}$. (Explain briefly why your list is complete.)
(b) Which of the ideals in (a) are prime? (Justify.)
(c) Which of the ideals in (a) are maximal? (Justify.)
2. Let R be a Principal Ideal Domain, let p and q be distinct primes in R, and let $a=p^{\alpha} q^{\beta}$ for some $\alpha, \beta \in \mathbb{Z}^{+}$. Let M be any R-module annihilated by (a). Prove that

$$
M \cong M_{p} \oplus M_{q},
$$

where M_{p} is the submodule of M annihilated by $\left(p^{\alpha}\right)$ and M_{q} is the submodule of M annihilated by $\left(q^{\beta}\right)$. Do not quote a theorem for this; please provide a direct proof.
3. (a) Find all possible rational canonical forms for a 4×4 matrix over \mathbb{Q} that satisfies $A^{6}=I$ (where I is the identity matrix).
(b) Find all possible rational canonical forms for a 4×4 matrix A over \mathbb{F}_{2} that satisfies $A^{6}=I$.

Section C: Field Theory

4. (a) Compute the Galois group of the splitting field of the polynomial $x^{3}-2$ over \mathbb{Q}.
(b) Compute the Galois group of the splitting field of the polynomial $x^{7}-2$ over \mathbb{Q}. (Hint: This computation is similar to the one in part (a).)
5. Let K be the splitting field of $x^{61}-1$ over the finite field \mathbb{F}_{11}.
(a) Find the degree of K over \mathbb{F}_{11}.
(b) Draw the lattice of all subfields of K. (You need not give generators for these subfields.)
(c) How many elements $\alpha \in K$ generate the multiplicative group K^{\times}?
(d) How many primitive elements are there for the extension K / \mathbb{F}_{11} ? (In other words, how many β are there such that $K=\mathbb{F}_{11}(\beta)$?)
6. Let V be the field with 3^{6} elements and let $F \subset V$ be the field with 3 elements, so that V is a 6 -dimensional vector space over F. Define

$$
T: V \rightarrow V \quad \text { by } \quad T(a)=a^{3} \quad \text { for all } a \in V .
$$

(T is called the Frobenius automorphism of V.)
(a) Show that T is an F-linear transformation from V to itself, and that $T^{6}=I$, where I is the identity linear transformation. (You may quote without proof facts about finite fields and their Galois theory as long as you state these explicitly.)
(b) Show that $x^{6}-1$ is both the minimal polynomial and the characteristic polynomial of the linear transformation T. (Hint: Suppose T satisfies a polynomial of lower degree and derive a contradiction.)
(c) Find the Jordan canonical form of the linear transformation T.

