Матн 295

Name:

Problem 1: Let B be a nonempty set, and suppose that there is a positive integer n and an injective map

$$f\colon B\to\{1,2,\ldots,n\}.$$

Prove that B is finite.

Solution: Let A be the image or range of f (i.e.

$$A = \{a \in \{1, 2, \dots, n\} \mid \exists b \in B \text{ with } f(b) = a\}.$$

Then A is a subset of $\{1, 2, ..., n\}$ and therefore finite (a subset of a finite set is finite by Corollary 6.6 of Chapter 1). Then $f: B \to A$ is injective since f is injective, and surjective since A is the image of f, and therefore there is a bijection from B to a finite set and B is finite.