
Math 295 - Spring 2020
Solutions to Homework 9

1. Let x ∈ X, and define

dx = min{d(x, y) | y ∈ X, y 6= x}.

Since X is finite, the set {d(x, y) | y ∈ X, y 6= x} is a finite set of positive numbers,
and therefore its minimum dx is a positive number. Then the ball Bd(x,

dx
2

) = {x} and
is an open set, and therefore the topology induced on X is the discrete topology.

2. For each x ∈ X, the ball B(x, 1
2
) = {x} is open, and therefore the topology induced

on X is the discrete topology.

3. (a) Let B be the collection of all open balls of all positive radii in Rn, which is a basis
for the metric topology on Rn given by the metric d′, and

B′ = {(a1, b1)× (a2, b2)× . . .× (an, bn) | ai, bi ∈ R, ai < bi}

be the collection of Cartesian products of intervals, which is a basis for the usual
topology on Rn. To compare the topologies, we use Lemma 13.3. We must show
two things:

1. For all B ∈ B and for all x ∈ B, we must find B′ ∈ B′ such that x ∈ B′ ⊂ B.

2. For all B′ ∈ B′ and for all x ∈ B′, we must find B ∈ B such that x ∈ B ⊂ B′.

Let’s show the first assertion: Let B = Bd′(y, r) be a ball of positive radius and
x ∈ B. We have shown in class that there is δ > 0 such that Bd′(x, δ) ⊂ Bd′(y, r).
Let ε = δ

n
> 0, and

B′ = (x1 − ε, x1 + ε)× (x2 − ε, x2 + ε)× · · · × (xn − ε, xn + ε).

We have that B′ ∈ B′, and we claim that B′ ⊂ Bd′(x, δ), which will complete the
proof of item 1 since certainly x ∈ B′.
Indeed, let z ∈ B′, then for each i = 1, . . . , n, we have |xi − zi| < ε. Therefore,

d′(x, z) = |x1 − z1|+ · · ·+ |xn − zn| < nε = δ,

so z ∈ Bd′(x, δ).

Now we show the second assertion. Let B′ = (a1, b1)×(a2, b2)× . . .×(an, bn) ∈ B′,
and x ∈ B′. Let

r =
n

min
i=1

(|ai − xi|, |bi − xi|) > 0,

and let B = Bd′(x, r). We claim that B ⊂ B′, which will complete the proof of
item 2, since x ∈ B.



Let z ∈ B. Then we have

d′(x, z) = |x1 − z1|+ · · ·+ |xn − zn| < r,

and so certainly for each i = 1, . . . , n, |xi − zi| < r. From this it follows that
zi ∈ (xi − r, xi + r) ⊂ (ai, bi) (the last inclusion is because r < |ai − xi| and
r < |bi − xi| for each i), and so z ∈ B′.

(b) We use all the same notation as in part (a), except this time B is the collection
of all open balls of all positive radii in Rn but taking the balls with the metric dp
instead of d′. We still must show items 1. and 2.

For item 1., let B = Bdp(y, r), x ∈ B, and δ > 0 such that Bdp(x, δ) ⊂ Bdp(y, r).
Now let ε = δ

n1/p , and

B′ = (x1 − ε, x1 + ε)× (x2 − ε, x2 + ε)× · · · × (xn − ε, xn + ε).

Once more it suffices to show that B′ ⊂ B to complete the proof of item 1.

The proof goes as before: let z ∈ B′, then for each i = 1, . . . , n, we have |xi−zi| <
ε. Therefore,

dp(x, z) = (|x1 − z1|p + · · ·+ |xn − zn|p)1/p < (nεp)1/p = (n
δp

n
)1/p = δ,

so z ∈ Bdp(x, δ).

We turn our attention to item 2., and let B′ = (a1, b1)× (a2, b2)× . . . × (an, bn),
x ∈ B′, and

r =
n

min
i=1

(|ai − xi|, |bi − xi|) > 0.

Define B = Bdp(x, r). We claim that B ⊂ B′, which completes the proof of item
2.

Indeed, let z ∈ B, then we have

(|x1 − z1|p + · · ·+ |xn − zn|p)1/p < r,

from which it follows that

|x1 − z1|p + · · ·+ |xn − zn|p < rp,

since raising to the pth power is an increasing function on positive numbers when
p ≥ 1. Therefore it certainly follows that for each i = 1, . . . , n, we have |xi−zi|p <
rp. Again, it follows then that |xi− zi| < r for each i, which as in part (a) implies
that z ∈ B′.



4. (a) We have that

x · (y + z) =
n∑
i=1

xi(yi + zi)

=
n∑
i=1

xiyi +
n∑
i=1

xizi

= x · y + x · z.

(b) First we note that ‖z‖ ≥ 0 for any vector z. This can be seen by examining the
definition for ‖z‖. We then follow the hint to get:

0 ≤
∥∥∥∥ x

‖x‖
± y

‖y‖

∥∥∥∥
=

((
x1
‖x‖
± y1
‖y‖

)2

+ · · ·+
(
xn
‖x‖
± yn
‖y‖

)2
)1/2

.

Squaring both sides preserves the inequality since squaring is an increasing func-
tion, so we do that and expand some more:

0 ≤
(
x1
‖x‖
± y1
‖y‖

)2

+ · · ·+
(
xn
‖x‖
± yn
‖y‖

)2

=

(
x21
‖x‖2

± 2x1y1
‖x‖‖y‖

+
y21
‖y‖2

)
+ · · ·+

(
x2n
‖x‖2

± 2xnyn
‖x‖‖y‖

+
y2n
‖y‖2

)
=

n∑
i=1

(
x2i
‖x‖2

+
y2i
‖y‖2

)
± 2

‖x‖‖y‖

n∑
i=1

xiyi.

We now notice that
∑n

i=1
x2i
‖x‖2 = 1 and

∑n
i=1

y2i
‖y‖2 = 1 also, and of course∑n

i=1 xiyi = x · y. Substituting all this in, we get

0 ≤ 2± 2

‖x‖‖y‖
x · y,

or

−2 ≤ 2

‖x‖‖y‖
x · y ≤ 2.

This is equivalent to
2

‖x‖‖y‖
|x · y| ≤ 2,

since both 2 and ‖x‖‖y‖ are positive.

To get the result, it now suffices to multiply both sides by ‖x‖‖y‖
2

.



(c) Let’s do it then. We have

‖x + y‖2 = (x + y) · (x + y)

= x · x + 2 x · y + y · y
≤ ‖x‖2 + 2|x · y|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2.

Since taking square roots is an increasing function, it follows that

‖x + y‖ ≤ ‖x‖+ ‖y‖.

(d) We check the three axioms:

1. Nonnegativity: Looking at the expression for d, since squares are nonnegative,
a sum of nonnegatives is nonnegative and a square root of a nonnegative
number is nonnegative, d(x,y) ≥ 0 for all x,y. We also see by the same
reasoning that d(x,y) = 0 if and only if xi − yi = 0 for each i, since sums of
nonnegative numbers can’t cancel.

2. Symmetry follows from the fact that for any xi, yi ∈ R, (xi−yi)2 = (yi−xi)2.
3. Triangle inequality: Notice that d(x,y) = ‖x− y‖, and let

a = x− y

b = y − z.

Notice then that a + b = x− z.
We then have

d(x, z) = ‖x− z‖
= ‖a + b‖
≤ ‖a‖+ ‖b‖
= ‖x− y‖+ ‖y − z‖
= d(x,y) + d(y, z).

Extra problem for graduate credit:

1. (a) It is enough to show that if (a, b) ⊂ R, then d−1((a, b)) is open in X × X, since
the open intervals (a, b) form a basis for the usual topology on R. In turn, to
show that d−1((a, b)) is open, it suffices to show that for every x× y ∈ d−1((a, b)),
there are r1, r2 > 0 such that x× y ∈ Bd(x, r1)×Bd(y, r2) ⊂ d−1((a, b)), since the
collection of sets

B = {Bd(x1, r1)×Bd(x2, r2) | x1, x2 ∈ X, r1, r2 > 0}



is a basis of open sets for the product topology on X ×X by Theorem 15.1.

We have that

d−1((a, b)) = {x× y ∈ X ×X | a < d(x, y) < b}.

Now let x× y ∈ d−1((a, b)), and define

r =
1

2
min(d(x, y)− a, b− d(x, y)) > 0.

We claim that x × y ∈ Bd(x, r) × Bd(y, r) ⊂ d−1((a, b)). The first containment
follows by definition so we focus on the second inclusion. Let x′× y′ ∈ Bd(x, r)×
Bd(y, r). Then we have that

d(x, x′) < r and d(y, y′) < r.

From this it follows that

d(x′, y′) ≤ d(x′, x) + d(x, y′)

≤ d(x′, x) + d(x, y) + d(y, y′)

< 2r + d(x, y)

≤ b,

since 2r ≤ b− d(x, y).

We also have that

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y)

< 2r + d(x′, y′),

so that
a ≤ d(x, y)− 2r < d(x′, y′).

Therefore we have that a < d(x′, y′) < b if x′ × y′ ∈ Bd(x, r) × Bd(y, r), and
d−1((a, b)) is open.

(b) Sorry there was a typo in the statement of this question! This is the
correct proof proving the correct statement.

Suppose that d : X ′×X ′ → R is continuous. This is equivalent to say that for all
intervals (a, b) ⊂ R, d−1((a, b)) is open in X ′ ×X ′, since the open intervals are a
basis of open sets for R in the usual topology.

To show that T ⊂ T ′, it is enough to show that for any x ∈ X and r > 0,
Bd(x, r) ∈ T ′, since the open balls form a basis for opens for the metric topology.
In turn, to show that, it is enough to show that for all y ∈ Bd(x, r) there is Vy ∈ T ′
such that y ∈ Vy ⊂ Bd(x, r). (Because in that case Bd(x, r) = ∪y∈Bd(x,r)Vy will be
open since it will be a union of opens.)



Now let y ∈ Bd(x, r). We then have that x× y belongs to an open set in X ′×X ′
because we have that

Ur = d−1((−∞, r)) = {x′ × y′ | d(x′, y′) < r}

is open. By definition of the product topology, there are therefore U, V ∈ T ′ such
that x× y ∈ U ×V (since the sets of the form U ×V form a basis for the product
topology). We claim that this V is the Vy we seek. Indeed, let z ∈ V , then
x × z ∈ U × V ⊂ Ur, which implies that d(x, z) < r, so z ∈ Bd(x, r). Therefore
V ⊂ Bd(x, r) and we are done.


