Math 295 - Spring 2020
Solutions to Homework 9

1. Let $x \in X$, and define

$$
d_{x}=\min \{d(x, y) \mid y \in X, y \neq x\}
$$

Since X is finite, the set $\{d(x, y) \mid y \in X, y \neq x\}$ is a finite set of positive numbers, and therefore its minimum d_{x} is a positive number. Then the ball $B_{d}\left(x, \frac{d_{x}}{2}\right)=\{x\}$ and is an open set, and therefore the topology induced on X is the discrete topology.
2. For each $x \in X$, the ball $B\left(x, \frac{1}{2}\right)=\{x\}$ is open, and therefore the topology induced on X is the discrete topology.
3. (a) Let \mathcal{B} be the collection of all open balls of all positive radii in \mathbb{R}^{n}, which is a basis for the metric topology on \mathbb{R}^{n} given by the metric d^{\prime}, and

$$
\mathcal{B}^{\prime}=\left\{\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \ldots \times\left(a_{n}, b_{n}\right) \mid a_{i}, b_{i} \in \mathbb{R}, a_{i}<b_{i}\right\}
$$

be the collection of Cartesian products of intervals, which is a basis for the usual topology on \mathbb{R}^{n}. To compare the topologies, we use Lemma 13.3. We must show two things:

1. For all $B \in \mathcal{B}$ and for all $\mathbf{x} \in B$, we must find $B^{\prime} \in \mathcal{B}^{\prime}$ such that $\mathbf{x} \in B^{\prime} \subset B$.
2. For all $B^{\prime} \in \mathcal{B}^{\prime}$ and for all $\mathbf{x} \in B^{\prime}$, we must find $B \in \mathcal{B}$ such that $\mathbf{x} \in B \subset B^{\prime}$.

Let's show the first assertion: Let $B=B_{d^{\prime}}(\mathbf{y}, r)$ be a ball of positive radius and $\mathbf{x} \in B$. We have shown in class that there is $\delta>0$ such that $B_{d^{\prime}}(\mathbf{x}, \delta) \subset B_{d^{\prime}}(\mathbf{y}, r)$. Let $\epsilon=\frac{\delta}{n}>0$, and

$$
B^{\prime}=\left(x_{1}-\epsilon, x_{1}+\epsilon\right) \times\left(x_{2}-\epsilon, x_{2}+\epsilon\right) \times \cdots \times\left(x_{n}-\epsilon, x_{n}+\epsilon\right) .
$$

We have that $B^{\prime} \in \mathcal{B}^{\prime}$, and we claim that $B^{\prime} \subset B_{d^{\prime}}(\mathbf{x}, \delta)$, which will complete the proof of item 1 since certainly $\mathbf{x} \in B^{\prime}$.
Indeed, let $\mathbf{z} \in B^{\prime}$, then for each $i=1, \ldots, n$, we have $\left|x_{i}-z_{i}\right|<\epsilon$. Therefore,

$$
d^{\prime}(\mathbf{x}, \mathbf{z})=\left|x_{1}-z_{1}\right|+\cdots+\left|x_{n}-z_{n}\right|<n \epsilon=\delta
$$

so $\mathbf{z} \in B_{d^{\prime}}(\mathbf{x}, \delta)$.
Now we show the second assertion. Let $B^{\prime}=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \ldots \times\left(a_{n}, b_{n}\right) \in \mathcal{B}^{\prime}$, and $\mathbf{x} \in B^{\prime}$. Let

$$
r=\min _{i=1}^{n}\left(\left|a_{i}-x_{i}\right|,\left|b_{i}-x_{i}\right|\right)>0
$$

and let $B=B_{d^{\prime}}(\mathbf{x}, r)$. We claim that $B \subset B^{\prime}$, which will complete the proof of item 2 , since $\mathbf{x} \in B$.

Let $\mathbf{z} \in B$. Then we have

$$
d^{\prime}(\mathbf{x}, \mathbf{z})=\left|x_{1}-z_{1}\right|+\cdots+\left|x_{n}-z_{n}\right|<r
$$

and so certainly for each $i=1, \ldots, n,\left|x_{i}-z_{i}\right|<r$. From this it follows that $z_{i} \in\left(x_{i}-r, x_{i}+r\right) \subset\left(a_{i}, b_{i}\right)$ (the last inclusion is because $r<\left|a_{i}-x_{i}\right|$ and $r<\left|b_{i}-x_{i}\right|$ for each i, and so $\mathbf{z} \in B^{\prime}$.
(b) We use all the same notation as in part (a), except this time \mathcal{B} is the collection of all open balls of all positive radii in \mathbb{R}^{n} but taking the balls with the metric d_{p} instead of d^{\prime}. We still must show items 1 . and 2 .
For item 1., let $B=B_{d_{p}}(\mathbf{y}, r), \mathbf{x} \in B$, and $\delta>0$ such that $B_{d_{p}}(\mathbf{x}, \delta) \subset B_{d_{p}}(\mathbf{y}, r)$. Now let $\epsilon=\frac{\delta}{n^{1 / p}}$, and

$$
B^{\prime}=\left(x_{1}-\epsilon, x_{1}+\epsilon\right) \times\left(x_{2}-\epsilon, x_{2}+\epsilon\right) \times \cdots \times\left(x_{n}-\epsilon, x_{n}+\epsilon\right) .
$$

Once more it suffices to show that $B^{\prime} \subset B$ to complete the proof of item 1 .
The proof goes as before: let $\mathbf{z} \in B^{\prime}$, then for each $i=1, \ldots, n$, we have $\left|x_{i}-z_{i}\right|<$ ϵ. Therefore,

$$
d_{p}(\mathbf{x}, \mathbf{z})=\left(\left|x_{1}-z_{1}\right|^{p}+\cdots+\left|x_{n}-z_{n}\right|^{p}\right)^{1 / p}<\left(n \epsilon^{p}\right)^{1 / p}=\left(n \frac{\delta^{p}}{n}\right)^{1 / p}=\delta
$$

so $\mathbf{z} \in B_{d_{p}}(\mathbf{x}, \delta)$.
We turn our attention to item 2., and let $B^{\prime}=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \ldots \times\left(a_{n}, b_{n}\right)$, $\mathrm{x} \in B^{\prime}$, and

$$
r=\min _{i=1}^{n}\left(\left|a_{i}-x_{i}\right|,\left|b_{i}-x_{i}\right|\right)>0
$$

Define $B=B_{d_{p}}(\mathbf{x}, r)$. We claim that $B \subset B^{\prime}$, which completes the proof of item 2.

Indeed, let $\mathbf{z} \in B$, then we have

$$
\left(\left|x_{1}-z_{1}\right|^{p}+\cdots+\left|x_{n}-z_{n}\right|^{p}\right)^{1 / p}<r
$$

from which it follows that

$$
\left|x_{1}-z_{1}\right|^{p}+\cdots+\left|x_{n}-z_{n}\right|^{p}<r^{p}
$$

since raising to the p th power is an increasing function on positive numbers when $p \geq 1$. Therefore it certainly follows that for each $i=1, \ldots, n$, we have $\left|x_{i}-z_{i}\right|^{p}<$ r^{p}. Again, it follows then that $\left|x_{i}-z_{i}\right|<r$ for each i, which as in part (a) implies that $\mathbf{z} \in B^{\prime}$.
4. (a) We have that

$$
\begin{aligned}
\mathbf{x} \cdot(\mathbf{y}+\mathbf{z}) & =\sum_{i=1}^{n} x_{i}\left(y_{i}+z_{i}\right) \\
& =\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} x_{i} z_{i} \\
& =\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}
\end{aligned}
$$

(b) First we note that $\|\mathbf{z}\| \geq 0$ for any vector \mathbf{z}. This can be seen by examining the definition for $\|\mathbf{z}\|$. We then follow the hint to get:

$$
\begin{aligned}
0 & \leq\left\|\frac{\mathbf{x}}{\|\mathbf{x}\|} \pm \frac{\mathbf{y}}{\|\mathbf{y}\|}\right\| \\
& =\left(\left(\frac{x_{1}}{\|\mathbf{x}\|} \pm \frac{y_{1}}{\|\mathbf{y}\|}\right)^{2}+\cdots+\left(\frac{x_{n}}{\|\mathbf{x}\|} \pm \frac{y_{n}}{\|\mathbf{y}\|}\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

Squaring both sides preserves the inequality since squaring is an increasing function, so we do that and expand some more:

$$
\begin{aligned}
0 & \leq\left(\frac{x_{1}}{\|\mathbf{x}\|} \pm \frac{y_{1}}{\|\mathbf{y}\|}\right)^{2}+\cdots+\left(\frac{x_{n}}{\|\mathbf{x}\|} \pm \frac{y_{n}}{\|\mathbf{y}\|}\right)^{2} \\
& =\left(\frac{x_{1}^{2}}{\|\mathbf{x}\|^{2}} \pm \frac{2 x_{1} y_{1}}{\|\mathbf{x}\|\|\mathbf{y}\|}+\frac{y_{1}^{2}}{\|\mathbf{y}\|^{2}}\right)+\cdots+\left(\frac{x_{n}^{2}}{\|\mathbf{x}\|^{2}} \pm \frac{2 x_{n} y_{n}}{\|\mathbf{x}\|\|\mathbf{y}\|}+\frac{y_{n}^{2}}{\|\mathbf{y}\|^{2}}\right) \\
& =\sum_{i=1}^{n}\left(\frac{x_{i}^{2}}{\|\mathbf{x}\|^{2}}+\frac{y_{i}^{2}}{\|\mathbf{y}\|^{2}}\right) \pm \frac{2}{\|\mathbf{x}\|\|\mathbf{y}\|} \sum_{i=1}^{n} x_{i} y_{i} .
\end{aligned}
$$

We now notice that $\sum_{i=1}^{n} \frac{x_{i}^{2}}{\|\mathbf{x}\|^{2}}=1$ and $\sum_{i=1}^{n} \frac{y_{i}^{2}}{\|\mathbf{y}\|^{2}}=1$ also, and of course $\sum_{i=1}^{n} x_{i} y_{i}=\mathbf{x} \cdot \mathbf{y}$. Substituting all this in, we get

$$
0 \leq 2 \pm \frac{2}{\|\mathbf{x}\|\|\mathbf{y}\|} \mathbf{x} \cdot \mathbf{y}
$$

or

$$
-2 \leq \frac{2}{\|\mathbf{x}\|\|\mathbf{y}\|} \mathbf{x} \cdot \mathbf{y} \leq 2
$$

This is equivalent to

$$
\frac{2}{\|\mathbf{x}\|\|\mathbf{y}\|}|\mathbf{x} \cdot \mathbf{y}| \leq 2
$$

since both 2 and $\|\mathbf{x}\|\|\mathbf{y}\|$ are positive.
To get the result, it now suffices to multiply both sides by $\frac{\|\mathbf{x}\|\|\mathbf{y}\|}{2}$.
(c) Let's do it then. We have

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y}) \\
& =\mathbf{x} \cdot \mathbf{x}+2 \mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{y} \\
& \leq\|\mathbf{x}\|^{2}+2|\mathbf{x} \cdot \mathbf{y}|+\|\mathbf{y}\|^{2} \\
& \leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2} \\
& =(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2} .
\end{aligned}
$$

Since taking square roots is an increasing function, it follows that

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|
$$

(d) We check the three axioms:

1. Nonnegativity: Looking at the expression for d, since squares are nonnegative, a sum of nonnegatives is nonnegative and a square root of a nonnegative number is nonnegative, $d(\mathbf{x}, \mathbf{y}) \geq 0$ for all \mathbf{x}, \mathbf{y}. We also see by the same reasoning that $d(\mathbf{x}, \mathbf{y})=0$ if and only if $x_{i}-y_{i}=0$ for each i, since sums of nonnegative numbers can't cancel.
2. Symmetry follows from the fact that for any $x_{i}, y_{i} \in \mathbb{R},\left(x_{i}-y_{i}\right)^{2}=\left(y_{i}-x_{i}\right)^{2}$.
3. Triangle inequality: Notice that $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$, and let

$$
\begin{aligned}
\mathbf{a} & =\mathrm{x}-\mathrm{y} \\
\mathrm{~b} & =\mathbf{y}-\mathrm{z}
\end{aligned}
$$

Notice then that $\mathbf{a}+\mathbf{b}=\mathbf{x}-\mathbf{z}$.
We then have

$$
\begin{aligned}
d(\mathbf{x}, \mathbf{z}) & =\|\mathbf{x}-\mathbf{z}\| \\
& =\|\mathbf{a}+\mathbf{b}\| \\
& \leq\|\mathbf{a}\|+\|\mathbf{b}\| \\
& =\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\| \\
& =d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z}) .
\end{aligned}
$$

Extra problem for graduate credit:

1. (a) It is enough to show that if $(a, b) \subset \mathbb{R}$, then $d^{-1}((a, b))$ is open in $X \times X$, since the open intervals (a, b) form a basis for the usual topology on \mathbb{R}. In turn, to show that $d^{-1}((a, b))$ is open, it suffices to show that for every $x \times y \in d^{-1}((a, b))$, there are $r_{1}, r_{2}>0$ such that $x \times y \in B_{d}\left(x, r_{1}\right) \times B_{d}\left(y, r_{2}\right) \subset d^{-1}((a, b))$, since the collection of sets

$$
\mathcal{B}=\left\{B_{d}\left(x_{1}, r_{1}\right) \times B_{d}\left(x_{2}, r_{2}\right) \mid x_{1}, x_{2} \in X, r_{1}, r_{2}>0\right\}
$$

is a basis of open sets for the product topology on $X \times X$ by Theorem 15.1.
We have that

$$
d^{-1}((a, b))=\{x \times y \in X \times X \mid a<d(x, y)<b\}
$$

Now let $x \times y \in d^{-1}((a, b))$, and define

$$
r=\frac{1}{2} \min (d(x, y)-a, b-d(x, y))>0 .
$$

We claim that $x \times y \in B_{d}(x, r) \times B_{d}(y, r) \subset d^{-1}((a, b))$. The first containment follows by definition so we focus on the second inclusion. Let $x^{\prime} \times y^{\prime} \in B_{d}(x, r) \times$ $B_{d}(y, r)$. Then we have that

$$
d\left(x, x^{\prime}\right)<r \quad \text { and } \quad d\left(y, y^{\prime}\right)<r
$$

From this it follows that

$$
\begin{aligned}
d\left(x^{\prime}, y^{\prime}\right) & \leq d\left(x^{\prime}, x\right)+d\left(x, y^{\prime}\right) \\
& \leq d\left(x^{\prime}, x\right)+d(x, y)+d\left(y, y^{\prime}\right) \\
& <2 r+d(x, y) \\
& \leq b
\end{aligned}
$$

since $2 r \leq b-d(x, y)$.
We also have that

$$
\begin{aligned}
d(x, y) & \leq d\left(x, x^{\prime}\right)+d\left(x^{\prime}, y^{\prime}\right)+d\left(y^{\prime}, y\right) \\
& <2 r+d\left(x^{\prime}, y^{\prime}\right),
\end{aligned}
$$

so that

$$
a \leq d(x, y)-2 r<d\left(x^{\prime}, y^{\prime}\right)
$$

Therefore we have that $a<d\left(x^{\prime}, y^{\prime}\right)<b$ if $x^{\prime} \times y^{\prime} \in B_{d}(x, r) \times B_{d}(y, r)$, and $d^{-1}((a, b))$ is open.
(b) Sorry there was a typo in the statement of this question! This is the correct proof proving the correct statement.
Suppose that $d: X^{\prime} \times X^{\prime} \rightarrow \mathbb{R}$ is continuous. This is equivalent to say that for all intervals $(a, b) \subset \mathbb{R}, d^{-1}((a, b))$ is open in $X^{\prime} \times X^{\prime}$, since the open intervals are a basis of open sets for \mathbb{R} in the usual topology.
To show that $\mathcal{T} \subset \mathcal{T}^{\prime}$, it is enough to show that for any $x \in X$ and $r>0$, $B_{d}(x, r) \in \mathcal{T}^{\prime}$, since the open balls form a basis for opens for the metric topology. In turn, to show that, it is enough to show that for all $y \in B_{d}(x, r)$ there is $V_{y} \in \mathcal{T}^{\prime}$ such that $y \in V_{y} \subset B_{d}(x, r)$. (Because in that case $B_{d}(x, r)=\cup_{y \in B_{d}(x, r)} V_{y}$ will be open since it will be a union of opens.)

Now let $y \in B_{d}(x, r)$. We then have that $x \times y$ belongs to an open set in $X^{\prime} \times X^{\prime}$ because we have that

$$
U_{r}=d^{-1}((-\infty, r))=\left\{x^{\prime} \times y^{\prime} \mid d\left(x^{\prime}, y^{\prime}\right)<r\right\}
$$

is open. By definition of the product topology, there are therefore $U, V \in \mathcal{T}^{\prime}$ such that $x \times y \in U \times V$ (since the sets of the form $U \times V$ form a basis for the product topology). We claim that this V is the V_{y} we seek. Indeed, let $z \in V$, then $x \times z \in U \times V \subset U_{r}$, which implies that $d(x, z)<r$, so $z \in B_{d}(x, r)$. Therefore $V \subset B_{d}(x, r)$ and we are done.

