Math 295 - Spring 2020 Homework 9

This homework is due on Wednesday, March 18. Most problems are adapted from Munkres's *Topology*.

- 1. Let X be a *finite* set, and let d be any metric on X. Show that the topology induced by d is the discrete topology.
- Now let X be a set of arbitrary size. Show that the discrete metric (given in Example 1 on page 120) induces the discrete topology on X.
 Note: From Problem 1, we remark that this statement is only interesting when X is *infinite*.
- 3. (a) Let

$$d'(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \dots + |x_n - y_n|$$

be a metric on \mathbb{R}^n , where $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$. (Note that we have shown that this is a metric in Homework 7, problem 2.) Show that d' induces the usual topology on \mathbb{R}^n . Sketch a basis element when n = 2.

(b) We generalize d' in the following way: Given $p \ge 1$, let

$$d_p(\mathbf{x}, \mathbf{y}) = (|x_1 - y_1|^p + \dots + |x_n - y_n|^p)^{1/p},$$

where $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$. For this problem, you may assume that d_p is a metric on \mathbb{R}^n . (Note that the graduate students have shown this on Homework 7.) Show that d_p induces the usual topology on \mathbb{R}^n .

4. In this problem we will show that the Euclidean metric d given by

$$d(\mathbf{x}, \mathbf{y}) = d_2(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

on \mathbb{R}^n is indeed a metric. For this proof we will need the following operations on \mathbb{R}^n : For $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$ and $c \in \mathbb{R}$:

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \in \mathbb{R}^n,$$

$$c\mathbf{x} = (cx_1, cx_2, \dots, cx_n) \in \mathbb{R}^n,$$

$$\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n \in \mathbb{R},$$

$$\|\mathbf{x}\| = (x_1^2 + \dots + x_n^2)^{1/2}.$$

- (a) Show that $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$.
- (b) Show that $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$. Hint: If $\mathbf{x}, \mathbf{y} \ne 0$, let $a = 1/||\mathbf{x}||$ and $b = 1/||\mathbf{y}||$, and use the fact that $||a\mathbf{x} \pm b\mathbf{y}|| \ge 0$.

- (c) Show that $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$. Hint: Compute $(\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y})$ and apply (b).
- (d) Verify that d is a metric.

Extra problem for graduate credit:

- 1. Let X be a metric space with a metric d and topology \mathcal{T} induced by d.
 - (a) Show that $d: X \times X \to \mathbb{R}$ is continuous, where \mathbb{R} has the usual topology.
 - (b) Let X' be a topological space having the same underlying set as X. (In other words, X' is the same set as X, but considered with a different topology \mathcal{T}' , which doesn't necessarily come from any metric.) Show that if $d: X' \times X' \to \mathbb{R}$ is continuous, then $\mathcal{T} \subset \mathcal{T}'$.