Math 295 - Spring 2020
Homework 9
This homework is due on Wednesday, March 18. Most problems are adapted from Munkres's Topology.

1. Let X be a finite set, and let d be any metric on X. Show that the topology induced by d is the discrete topology.
2. Now let X be a set of arbitrary size. Show that the discrete metric (given in Example 1 on page 120) induces the discrete topology on X.
Note: From Problem 1, we remark that this statement is only interesting when X is infinite.
3. (a) Let

$$
d^{\prime}(\mathbf{x}, \mathbf{y})=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{n}-y_{n}\right|
$$

be a metric on \mathbb{R}^{n}, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. (Note that we have shown that this is a metric in Homework 7, problem 2.) Show that d^{\prime} induces the usual topology on \mathbb{R}^{n}. Sketch a basis element when $n=2$.
(b) We generalize d^{\prime} in the following way: Given $p \geq 1$, let

$$
d_{p}(\mathbf{x}, \mathbf{y})=\left(\left|x_{1}-y_{1}\right|^{p}+\cdots+\left|x_{n}-y_{n}\right|^{p}\right)^{1 / p}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. For this problem, you may assume that d_{p} is a metric on \mathbb{R}^{n}. (Note that the graduate students have shown this on Homework 7.) Show that d_{p} induces the usual topology on \mathbb{R}^{n}.
4. In this problem we will show that the Euclidean metric d given by

$$
d(\mathbf{x}, \mathbf{y})=d_{2}(\mathbf{x}, \mathbf{y})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

on \mathbb{R}^{n} is indeed a metric. For this proof we will need the following operations on \mathbb{R}^{n} : For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$:

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \in \mathbb{R}^{n} \\
c \mathbf{x} & =\left(c x_{1}, c x_{2}, \ldots, c x_{n}\right) \in \mathbb{R}^{n} \\
\mathbf{x} \cdot \mathbf{y} & =x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \in \mathbb{R} \\
\|\mathbf{x}\| & =\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
\end{aligned}
$$

(a) Show that $\mathbf{x} \cdot(\mathbf{y}+\mathbf{z})=\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}$.
(b) Show that $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.

Hint: If $\mathbf{x}, \mathbf{y} \neq 0$, let $a=1 /\|\mathbf{x}\|$ and $b=1 /\|\mathbf{y}\|$, and use the fact that $\|a \mathbf{x} \pm b \mathbf{y}\| \geq$ 0 .
(c) Show that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$. Hint: Compute $(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y})$ and apply (b).
(d) Verify that d is a metric.

Extra problem for graduate credit:

1. Let X be a metric space with a metric d and topology \mathcal{T} induced by d.
(a) Show that $d: X \times X \rightarrow \mathbb{R}$ is continuous, where \mathbb{R} has the usual topology.
(b) Let X^{\prime} be a topological space having the same underlying set as X. (In other words, X^{\prime} is the same set as X, but considered with a different topology \mathcal{T}^{\prime}, which doesn't necessarily come from any metric.) Show that if $d: X^{\prime} \times X^{\prime} \rightarrow \mathbb{R}$ is continuous, then $\mathcal{T} \subset \mathcal{T}^{\prime}$.
