Math 295 - Spring 2020
Homework 7
This homework is due on Wednesday, February 26. Problem 2 is adapted from Munkres's Topology, and problems 1 and 3, as well as the graduate credit problem, are adapted from http://www.math.uchicago.edu/~boller/M203/script2version3.pdf.

1. Let X be any nonempty set and, for $x_{1}, x_{2} \in X$, define

$$
d\left(x_{1}, x_{2}\right)= \begin{cases}0 & \text { if } x_{1}=x_{2}, \text { and } \\ 1 & \text { if } x_{1} \neq x_{2}\end{cases}
$$

Show that d is a metric on X. This metric is called the discrete metric.
2. For $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, define

$$
d^{\prime}(\mathbf{x}, \mathbf{y})=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{n}-y_{n}\right| .
$$

Show that d^{\prime} is a metric.
3. Let $c: X \times X \rightarrow \mathbb{R}$ be such that

1. For $x_{1}, x_{2} \in X, c\left(x_{1}, x_{2}\right) \geq 0$, and $c\left(x_{1}, x_{2}\right)=0$ if and only if $x_{1}=x_{2}$.

2 . For any $x_{1}, x_{2}, x_{3} \in X$, we have

$$
c\left(x_{1}, x_{2}\right) \leq c\left(x_{1}, x_{3}\right)+c\left(x_{2}, x_{3}\right) .
$$

(a) Show that for all $x, y \in X$, we have $c(x, y)=c(y, x)$. (In other words, c is symmetric.)
(b) Show that c is a metric.

Extra problem for graduate credit:

1. Let p be any real number such that $p \geq 1$, and for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, define

$$
\|\mathbf{x}\|_{p}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}
$$

and for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$,

$$
d_{p}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{p} .
$$

In this problem we will show that d_{p} is a metric. The Triangle inequality is a bit tricky, so several parts of this problem will be devoted to it.
(a) Show that d_{p} is nonnegative (and positive if and only if $\mathbf{x} \neq \mathbf{y}$) and symmetric.
(b) Show that the Triangle inequality is satisfied for d_{p} if and only if for all $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$,

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p} .
$$

(c) Accordingly, let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Let $\mathbf{w} \in \mathbb{R}^{n}$ be the following vector:

$$
\mathbf{w}=\left(\left|x_{1}+y_{1}\right|^{p-1},\left|x_{2}+y_{2}\right|^{p-1}, \ldots,\left|x_{n}+y_{n}\right|^{p-1}\right) .
$$

Let q be such that $\frac{1}{p}+\frac{1}{q}=1$. Show that

$$
\|\mathbf{w}\|_{q}=\|\mathbf{x}+\mathbf{y}\|_{p}^{p / q} .
$$

(d) Still with q such that $\frac{1}{p}+\frac{1}{q}=1$, show that

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq\|\mathbf{x}\|_{p}\|\mathbf{w}\|_{q}+\|\mathbf{y}\|_{p}\|\mathbf{w}\|_{q} .
$$

Hint: For this part you will need to use the fact that $\left(x_{i}+y_{i}\right)^{p}=x_{i}\left(x_{i}+y_{i}\right)^{p-1}+$ $y_{i}\left(x_{i}+y_{i}\right)^{p-1}$, and to look up and use Hölder's inequality for sums.
(e) Conclude that

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}
$$

