Math 295 - Spring 2020
Solutions to Homework 5

1. (a) Since A is closed in Y, there is V open in Y such that $A=Y-V$. But since Y has the subspace topology, there is U open in X such that $V=U \cap Y$. Since Y is closed in X, there is W open in X such that $Y=X-W$. Putting all this together, we have

$$
A=(X-W)-(U \cap Y)=X-(W \cup U)
$$

Since $W \cup U$ is a union of two open sets in X, it is open in X, so A is closed in X.
(b) Since A is closed in X, there is U open in X such that $A=X-U$, and since B is closed in Y, there is V open in Y such that $B=Y-V$. Then

$$
A \times B=X \times Y-(U \times Y \cup X \times V)
$$

Since $U \times Y$ and $X \times V$ are open in $X \times Y$ by definition of the product topology, and the union of two open sets is open, we have that $A \times B$ is closed in $X \times Y$.
2. Let $x \in \cup_{\alpha \in J} \bar{A}_{\alpha}$. Then there is $\alpha \in J$ such that $x \in \bar{A}_{\alpha}$, which means that every neighborhood of x intersects A_{α}. In turn, since $A_{\alpha} \subset \cup_{\alpha \in J} A_{\alpha}$, this means that every neighborhood of x intersects $\cup_{\alpha \in J} A_{\alpha}$, so $x \in \overline{\cup_{\alpha \in J} A_{\alpha}}$.
An example where the inclusion is strict is given by $J=\mathbb{Z}_{+}$and $A_{n}=\left\{\frac{1}{n}\right\} \subset \mathbb{R}$, where \mathbb{R} is given the standard topology. Then $\bar{A}_{n}=\left\{\frac{1}{n}\right\}$ since \mathbb{R} is Hausdorff and one-point sets are closed. It follows that

$$
\bigcup_{n=1}^{\infty} \bar{A}_{n}=\bigcup_{n=1}^{\infty} A_{n}
$$

However, $\overline{\bigcup_{n=1}^{\infty} A_{n}} \neq \bigcup_{n=1}^{\infty} A_{n}$, since $0 \in \overline{\bigcup_{n=1}^{\infty} A_{n}}-\bigcup_{n=1}^{\infty} A_{n}$: Indeed, any open set $U \subset \mathbb{R}$ containing 0 must contain a basis element (an interval) about 0 , so $0 \in(a, b) \subset$ U for some $a, b \in \mathbb{R}$. Then we know that there is $n \in \mathbb{Z}_{+}$such that $\frac{1}{n} \in(a, b)$, so U intersects $\bigcup_{n=1}^{\infty} A_{n}$.
3. (a) Let X and Y be Hausdorff spaces, and let $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right) \in X \times Y$. Without loss of generality, $x_{1} \neq x_{2}$. Then since X is Hausdorff, there are $U_{1} \ni x_{1}$ and $U_{2} \ni x_{2}$, where U_{1}, U_{2} are open in X, such that $U_{1} \cap U_{2}=\varnothing$. Then the sets $W_{1}=U_{1} \times Y$ and $W_{2}=U_{2} \times Y$ are open in $X \times Y$, they are disjoint (since no point can have first coordinate in U_{1} and U_{2} at once) and $\left(x_{1}, y_{1}\right) \in W_{1}$ and $\left(x_{2}, y_{2}\right) \in W_{2}$. So $X \times Y$ is Hausdorff.
(b) Let X be a Hausdorff space and Y be a subspace of X. Let $y_{1} \neq y_{2} \in Y$. Since $Y \subset X$, it follows that $y_{1} \neq y_{2} \in X$ as well, and since X is Hausdorff, there are $U_{1} \ni x_{1}$ and $U_{2} \ni x_{2}$, where U_{1}, U_{2} are open in X, such that $U_{1} \cap U_{2}=\varnothing$. But then $V_{1}=U_{1} \cap Y$ and $V_{2}=U_{2} \cap Y$ are open in Y and disjoint, and $y_{1} \in V_{1}$, $y_{2} \in V_{2}$, so Y is Hausdorff.
4. (a) Suppose that i is continuous. Then for all $V \in \mathcal{T}$, we have that $i^{-1}(V)=V$ is open in X^{\prime} since i is continuous, so $V \in \mathcal{T}^{\prime}$, and $\mathcal{T} \subset \mathcal{T}^{\prime}$.
Suppose now that $\mathcal{T} \subset \mathcal{T}^{\prime}$. Then for $V \in \mathcal{T}, i^{-1}(V)=V \in \mathcal{T}^{\prime}$, so the inverse image of an open set is open and i is continuous.
(b) We assume the result of part (a), so all that remains to show is that i^{-1} is continuous if and only if $\mathcal{T}^{\prime} \subset \mathcal{T}$. But actually $i^{-1}=i$, so this is part (a) but with $i: X \rightarrow X^{\prime}$ and the result follows.
5. Before we begin, we will need a lemma: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a linear function; in other words it is given by $g(x)=m x+b$ for $m, b \in \mathbb{R}$. Then g is a homeomorphism. (Here \mathbb{R} has the standard topology.)
First we show that g is bijective. Indeed, $g^{-1}(x)=\frac{x-b}{m}$; one shows quickly that g^{-1} is a well-defined function and $g \circ g^{-1}=g^{-1} \circ g=1$.
To show that g is continuous, it is enough to show that if $r_{1}<r_{2} \in \mathbb{R}, g^{-1}\left(\left(r_{1}, r_{2}\right)\right)$ is open, since the open intervals form a basis for the open sets of \mathbb{R}. Since $g^{-1}(x)=\frac{x-b}{m}$, $g^{-1}\left(\left(r_{1}, r_{2}\right)\right)$ is the values that the expression $\frac{x-b}{m}$ takes if $r_{1}<x<r_{2}$:

$$
r_{1}<x<r_{2} \Longleftrightarrow r_{1}-b<x-b<r_{2}-b \Longleftrightarrow \frac{r_{1}-b}{m}<\frac{x-b}{m}<\frac{r_{2}-b}{m}
$$

So

$$
g^{-1}\left(\left(r_{1}, r_{2}\right)\right)=\left(\frac{r_{1}-b}{m}, \frac{r_{2}-b}{m}\right)
$$

which is open.
Now we can easily show the result we seek: First we prove that since $(0,1),(a, b),[0,1]$ and $[a, b]$ are all subspaces of \mathbb{R}, it is enough to show that $f(x)=\frac{x-a}{b-a}$ is a bijection from (a, b) to $(0,1)$ and from $[a, b]$ to $[0,1]$. Indeed, granting this, it only remains to show that f and f^{-1} are continuous. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by $g(x)=\frac{x-a}{b-a}$. By our lemma above, g is bijective and both g and g^{-1} are continuous. Applying Theorem $18.2(\mathrm{~d})$ to restrict the domain of g to (a, b) and to $[a, b]$, we obtain that f is continuous on (a, b) and on $[a, b]$, and restricting the domain of g^{-1} to $(0,1)$ and to $[0,1]$ we obtain that f^{-1} is continuous on $(0,1)$ and on $[0,1]$. So the continuity conditions will follow once we have bijectivity.
Note that here it is not enough to show that f^{-1} exists; the question here is whether the image of the set $[a, b]$ by f is $[0,1]$, and the image of (a, b) is $(0,1)$. In other words, upon restricting the domain, a function only remains bijective if its image is suitably restricted, so it is exactly the image of the new domain.
But we have that

$$
a \leq x \leq b \Longleftrightarrow 0 \leq x-a \leq b-a \Longleftrightarrow 0 \leq \frac{x-a}{b-a} \leq 1,
$$

and the same holds with the inequalities replaced by strict inequalities, so the result follows.

Extra problems for graduate credit:

1. Let X be a topological space and suppose that $\{x\}$ is closed for all $x \in X$. (This is equivalent to the T_{1}-axiom, since finite unions of closed sets are closed.) Let $x_{1} \neq$ $x_{2} \in X$. Since $\left\{x_{1}\right\}$ is closed, $x_{2} \notin \overline{\left\{x_{1}\right\}}$, so there is a neighborhood U of x_{2} such that $U \cap\left\{x_{1}\right\}=\varnothing$. Therefore $x_{1} \notin U$, and x_{2} has a neighborhood that doesn't contain x_{1}. The same argument can be applied with the roles of x_{1} and x_{2} reversed, so x_{1} also has a neighborhood that doesn't contain x_{2}.
Now suppose that for each pair of points of X, each has a neighborhood not containing the other. Let $x \in X$, and suppose that $y \in \overline{\{x\}}$. If $y \neq x$, then y has a neighborhood U that does not contain x, and for that neighborhood it is the case that $U \cap\{x\}=\varnothing$, yielding a contradiction (y cannot be in the closure of $\{x\}$). Therefore $y \in \overline{\{x\}}$ implies that $y=x$ and $\{x\}$ is closed, and therefore also every finite point set.
2. We can talk about this in person :)
