Math 295 - Spring 2020 Solutions to Homework 5

1. (a) Since A is closed in Y, there is V open in Y such that A = Y - V. But since Y has the subspace topology, there is U open in X such that $V = U \cap Y$. Since Y is closed in X, there is W open in X such that Y = X - W. Putting all this together, we have

$$A = (X - W) - (U \cap Y) = X - (W \cup U).$$

Since $W \cup U$ is a union of two open sets in X, it is open in X, so A is closed in X.

(b) Since A is closed in X, there is U open in X such that A = X - U, and since B is closed in Y, there is V open in Y such that B = Y - V. Then

$$A \times B = X \times Y - (U \times Y \cup X \times V).$$

Since $U \times Y$ and $X \times V$ are open in $X \times Y$ by definition of the product topology, and the union of two open sets is open, we have that $A \times B$ is closed in $X \times Y$.

2. Let $x \in \bigcup_{\alpha \in J} A_{\alpha}$. Then there is $\alpha \in J$ such that $x \in A_{\alpha}$, which means that every neighborhood of x intersects A_{α} . In turn, since $A_{\alpha} \subset \bigcup_{\alpha \in J} A_{\alpha}$, this means that every neighborhood of x intersects $\bigcup_{\alpha \in J} A_{\alpha}$, so $x \in \overline{\bigcup_{\alpha \in J} A_{\alpha}}$.

An example where the inclusion is strict is given by $J = \mathbb{Z}_+$ and $A_n = \{\frac{1}{n}\} \subset \mathbb{R}$, where \mathbb{R} is given the standard topology. Then $\bar{A}_n = \{\frac{1}{n}\}$ since \mathbb{R} is Hausdorff and one-point sets are closed. It follows that

$$\bigcup_{n=1}^{\infty} \bar{A}_n = \bigcup_{n=1}^{\infty} A_n.$$

However, $\overline{\bigcup_{n=1}^{\infty} A_n} \neq \bigcup_{n=1}^{\infty} A_n$, since $0 \in \overline{\bigcup_{n=1}^{\infty} A_n} - \bigcup_{n=1}^{\infty} A_n$: Indeed, any open set $U \subset \mathbb{R}$ containing 0 must contain a basis element (an interval) about 0, so $0 \in (a, b) \subset U$ for some $a, b \in \mathbb{R}$. Then we know that there is $n \in \mathbb{Z}_+$ such that $\frac{1}{n} \in (a, b)$, so U intersects $\bigcup_{n=1}^{\infty} A_n$.

- 3. (a) Let X and Y be Hausdorff spaces, and let $(x_1, y_1) \neq (x_2, y_2) \in X \times Y$. Without loss of generality, $x_1 \neq x_2$. Then since X is Hausdorff, there are $U_1 \ni x_1$ and $U_2 \ni x_2$, where U_1, U_2 are open in X, such that $U_1 \cap U_2 = \emptyset$. Then the sets $W_1 = U_1 \times Y$ and $W_2 = U_2 \times Y$ are open in $X \times Y$, they are disjoint (since no point can have first coordinate in U_1 and U_2 at once) and $(x_1, y_1) \in W_1$ and $(x_2, y_2) \in W_2$. So $X \times Y$ is Hausdorff.
 - (b) Let X be a Hausdorff space and Y be a subspace of X. Let $y_1 \neq y_2 \in Y$. Since $Y \subset X$, it follows that $y_1 \neq y_2 \in X$ as well, and since X is Hausdorff, there are $U_1 \ni x_1$ and $U_2 \ni x_2$, where U_1, U_2 are open in X, such that $U_1 \cap U_2 = \emptyset$. But then $V_1 = U_1 \cap Y$ and $V_2 = U_2 \cap Y$ are open in Y and disjoint, and $y_1 \in V_1$, $y_2 \in V_2$, so Y is Hausdorff.

- 4. (a) Suppose that *i* is continuous. Then for all $V \in \mathcal{T}$, we have that $i^{-1}(V) = V$ is open in X' since *i* is continuous, so $V \in \mathcal{T}'$, and $\mathcal{T} \subset \mathcal{T}'$. Suppose now that $\mathcal{T} \subset \mathcal{T}'$. Then for $V \in \mathcal{T}$, $i^{-1}(V) = V \in \mathcal{T}'$, so the inverse image of an open set is open and *i* is continuous.
 - (b) We assume the result of part (a), so all that remains to show is that i^{-1} is continuous if and only if $\mathcal{T}' \subset \mathcal{T}$. But actually $i^{-1} = i$, so this is part (a) but with $i: X \to X'$ and the result follows.
- 5. Before we begin, we will need a lemma: Let $g: \mathbb{R} \to \mathbb{R}$ be a linear function; in other words it is given by g(x) = mx + b for $m, b \in \mathbb{R}$. Then g is a homeomorphism. (Here \mathbb{R} has the standard topology.)

First we show that g is bijective. Indeed, $g^{-1}(x) = \frac{x-b}{m}$; one shows quickly that g^{-1} is a well-defined function and $g \circ g^{-1} = g^{-1} \circ g = 1$.

To show that g is continuous, it is enough to show that if $r_1 < r_2 \in \mathbb{R}$, $g^{-1}((r_1, r_2))$ is open, since the open intervals form a basis for the open sets of \mathbb{R} . Since $g^{-1}(x) = \frac{x-b}{m}$, $g^{-1}((r_1, r_2))$ is the values that the expression $\frac{x-b}{m}$ takes if $r_1 < x < r_2$:

$$r_1 < x < r_2 \iff r_1 - b < x - b < r_2 - b \iff \frac{r_1 - b}{m} < \frac{x - b}{m} < \frac{r_2 - b}{m}$$

So

$$g^{-1}((r_1, r_2)) = \left(\frac{r_1 - b}{m}, \frac{r_2 - b}{m}\right)$$

which is open.

Now we can easily show the result we seek: First we prove that since (0, 1), (a, b), [0, 1]and [a, b] are all subspaces of \mathbb{R} , it is enough to show that $f(x) = \frac{x-a}{b-a}$ is a bijection from (a, b) to (0, 1) and from [a, b] to [0, 1]. Indeed, granting this, it only remains to show that f and f^{-1} are continuous. Let $g: \mathbb{R} \to \mathbb{R}$ be given by $g(x) = \frac{x-a}{b-a}$. By our lemma above, g is bijective and both g and g^{-1} are continuous. Applying Theorem 18.2(d) to restrict the domain of g to (a, b) and to [a, b], we obtain that f is continuous on (a, b) and on [a, b], and restricting the domain of g^{-1} to (0, 1) and to [0, 1] we obtain that f^{-1} is continuous on (0, 1) and on [0, 1]. So the continuity conditions will follow once we have bijectivity.

Note that here it is not enough to show that f^{-1} exists; the question here is whether the image of the set [a, b] by f is [0, 1], and the image of (a, b) is (0, 1). In other words, upon restricting the domain, a function only remains bijective if its image is suitably restricted, so it is exactly the image of the new domain.

But we have that

$$a \le x \le b \iff 0 \le x - a \le b - a \iff 0 \le \frac{x - a}{b - a} \le 1,$$

and the same holds with the inequalities replaced by strict inequalities, so the result follows.

Extra problems for graduate credit:

1. Let X be a topological space and suppose that $\{x\}$ is closed for all $x \in X$. (This is equivalent to the T_1 -axiom, since finite unions of closed sets are closed.) Let $x_1 \neq x_2 \in X$. Since $\{x_1\}$ is closed, $x_2 \notin \overline{\{x_1\}}$, so there is a neighborhood U of x_2 such that $U \cap \{x_1\} = \emptyset$. Therefore $x_1 \notin U$, and x_2 has a neighborhood that doesn't contain x_1 . The same argument can be applied with the roles of x_1 and x_2 reversed, so x_1 also has a neighborhood that doesn't contain x_2 .

Now suppose that for each pair of points of X, each has a neighborhood not containing the other. Let $x \in X$, and suppose that $y \in \overline{\{x\}}$. If $y \neq x$, then y has a neighborhood U that does not contain x, and for that neighborhood it is the case that $U \cap \{x\} = \emptyset$, yielding a contradiction (y cannot be in the closure of $\{x\}$). Therefore $y \in \overline{\{x\}}$ implies that y = x and $\{x\}$ is closed, and therefore also every finite point set.

2. We can talk about this in person :)