1. Let \mathcal{T} be the topology that A inherits as a subspace of Y, and \mathcal{T}^{\prime} be the topology it inherits as a subspace of X.
We first show that $\mathcal{T}^{\prime} \subset \mathcal{T}$: Let $U \in \mathcal{T}^{\prime}$, then there is W open in X such that $U=A \cap W$. Since $A \subset Y$, we have that $A \cap Y=A$, so $U=(A \cap Y) \cap W=A \cap(Y \cap W)$ (one can show that intersection is associative). But $Y \cap W=V$, an open set of Y in the subspace topology, so $U=A \cap V$, for V an open set of Y, so $U \in \mathcal{T}$.
Now we show that $\mathcal{T} \subset \mathcal{T}^{\prime}$: Let $U \in \mathcal{T}$, then there is V open in Y such that $U=A \cap V$. Since V is open in the subspace topology of Y, there is W open in X such that $V=Y \cap W$. Therefore we have $U=A \cap(Y \cap W)=(A \cap Y) \cap W$. But as before $A \cap Y=A$, so $U=A \cap W$, for W an open set of X, so $U \in \mathcal{T}^{\prime}$.
2. (a) This is $\left(-1,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)$. Since it is the union of two open intervals, it is open in \mathbb{R}. It is also open in Y since $A=Y \cap A$.
(b) This is $\left[-1,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right]$. It is not an open set in \mathbb{R}, since any open set of \mathbb{R} that contains 1 must also contain an open interval containing 1 , basis the basis for the topology on \mathbb{R} is given by open intervals, and by definition of a basis a set is open if and only if it contains a basis element containing each element that it contains. However, it is open in Y since it equal to $Y \cap U$, for $U=\left(-\frac{3}{2},-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{3}{2}\right)$, and U is open in \mathbb{R}.
(c) This is $\left(-1,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right)$. It is not an open set in \mathbb{R}, since any open set of \mathbb{R} that contains $\frac{1}{2}$ must also contain an open interval containing $\frac{1}{2}$. It is also not open in Y for the same reason.
(d) This is $\left[-1,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]$. It is not an open set in \mathbb{R}, since any open set of \mathbb{R} that contains $\frac{1}{2}$ must also contain an open interval containing $\frac{1}{2}$. It is also not open in Y for the same reason.
(e) This one was a typo! As written, $E=A$, so it is open in Y and in \mathbb{R}. The original question asked about

$$
E=\left\{x\left|0<|x|<1 \text { and } 1 / x \notin \mathbb{Z}_{+}\right\} .\right.
$$

That one is open in \mathbb{R} and Y, because for every element of E, there is a small interval around it that is also in E : If x is such that $\frac{1}{n+1}<|x|<\frac{1}{n}$, then either the interval $\left(\frac{1}{n+1}, \frac{1}{n}\right)$ or $\left(-\frac{1}{n},-\frac{1}{n+1}\right)$ is contained in E and contains x.
3. We show that π_{1} is an open map; the proof for π_{2} is identical but with X and Y reversed.
Let $W \subset X \times Y$ be open. Then for some indexing set J, there are open sets $U_{\alpha} \subset X$ and open sets $V_{\alpha} \subset Y$, for $\alpha \in J$, such that

$$
W=\bigcup_{\alpha \in J}\left(U_{\alpha} \times V_{\alpha}\right)
$$

We wish to show that $\pi_{1}(W)$ is open. To this end, we first show that

$$
\pi_{1}(W)=\bigcup_{\alpha \in J} U_{\alpha}
$$

Once we have shown this, we will be done, because the arbitrary union of open sets in X is open, so $\pi_{1}(W)$ is open in X.

To show the equality of sets, we first show that $\pi_{1}(W) \subset \cup_{\alpha \in J} U_{\alpha}$: Let $x \in \pi_{1}(W)$, then by definition, there is $(x, y) \in W$ such that $\pi_{1}(x, y)=x$. Since W is given as a union, this means that there is $\alpha \in J$ such that $(x, y) \in U_{\alpha} \times V_{\alpha}$. Therefore we have that $x \in U_{\alpha}$, and so $x \in \cup_{\alpha \in J} U_{\alpha}$.
We now show that $\cup_{\alpha \in J} U_{\alpha} \subset \pi_{1}(W)$: Let $x \in \cup_{\alpha \in J} U_{\alpha}$, then $x \in U_{\alpha}$ for some $\alpha \in J$. Let $y \in V_{\alpha}$. Then $(x, y) \in U_{\alpha} \times V_{\alpha}$, so $(x, y) \in W$, and also $\pi_{1}(x, y)=x$, so $x \in \pi_{1}(W)$.
4. For this problem, we will write $x \times y$ for an element of $\mathbb{R} \times \mathbb{R}$, since we will need intervals as well as elements of a Cartesian product.
Let \mathcal{T} be the dictionary order topology on $\mathbb{R} \times \mathbb{R}$ and let \mathcal{T}^{\prime} be the product topology on $\mathbb{R}_{d} \times \mathbb{R}$. We have that a basis for \mathcal{T} is given by

$$
\mathcal{B}=\left\{\left(x_{1} \times y_{1}, x_{2} \times y_{2}\right) \mid x_{1} \times y_{1}<x_{2} \times y_{2}\right\},
$$

by definition of the order topology (because there are no greatest or least elements). A basis for \mathcal{T}^{\prime} is given by

$$
\mathcal{B}^{\prime}=\{\{r\} \times(a, b) \mid a<b\}
$$

by Theorem 15.1, since the sets $\{r\}$ for $r \in \mathbb{R}$ are a basis for the discrete topology on \mathbb{R} and the sets (a, b) are a basis for the standard topology on \mathbb{R}.
Then using Lemma 13.3, we have that $\mathcal{T} \subset \mathcal{T}^{\prime}$ if and only if for every $x \times y \in \mathbb{R}$ and every $B \in \mathcal{B}$ with $x \in B$, there is $B^{\prime} \in \mathcal{B}^{\prime}$ such that $x \in B^{\prime} \subset B$. So let $x \times y \in \mathbb{R}$ belong to a basis element $B \in \mathcal{B}$, say $B=\left(x_{1} \times y_{1}, x_{2} \times y_{2}\right)$. There are four cases to consider:

- If $x_{1}<x<x_{2}$, let $a, b \in \mathbb{R}$ be such that $a<y<b$, then the basis element $B^{\prime}=\{x\} \times(a, b)$ is such that $x \times y \in B^{\prime}$, and also $B^{\prime} \subset B$, since for all $x \times w \in B^{\prime}$, we have $x_{1}<x<x_{2}$, so $x_{1} \times y_{1}<x \times w<x_{2} \times y_{2}$.
- If $x_{1}=x<x_{2}$, then $y_{1}<y$ and let $b \in \mathbb{R}$ be such that $y_{1}<y<b$. Then the basis element $B^{\prime}=\{x\} \times\left(y_{1}, b\right)$ is such that $x \times y \in B^{\prime}$, and also $B^{\prime} \subset B$, since for all $x \times w \in B^{\prime}$, we have $x_{1}=x<x_{2}$ and $y_{1}<w$, so $x_{1} \times y_{1}<x \times w<x_{2} \times y_{2}$.
- If $x_{1}<x=x_{2}$, then $y<y_{2}$ and let $a \in \mathbb{R}$ be such that $a<y<y_{2}$. Then the basis element $B^{\prime}=\{x\} \times\left(a, y_{2}\right)$ is such that $x \times y \in B^{\prime}$, and also $B^{\prime} \subset B$, since for all $x \times w \in B^{\prime}$, we have $x_{1}<x=x_{2}$ and $w<y_{2}$, so $x_{1} \times y_{1}<x \times w<x_{2} \times y_{2}$.
- Finally, if $x_{1}=x=x_{2}$, then $y_{1}<y<y_{2}$, and the basis element $B^{\prime}=\{x\} \times\left(y_{1}, y_{2}\right)$ is in fact equal to B, so $x \times y \in B^{\prime} \subset B$.

Using Lemma 13.3 again, we now show that $\mathcal{T}^{\prime} \subset \mathcal{T}$ by showing that for every $x \times y \in \mathbb{R}$ and every $B^{\prime} \in \mathcal{B}^{\prime}$ with $x \in B^{\prime}$, there is $B \in \mathcal{B}$ such that $x \in B \subset B^{\prime}$. Thankfully this is simpler: Let $x \times y \in \mathbb{R}$ belong to a basis element $B^{\prime} \in \mathcal{B}^{\prime}$, say $B^{\prime}=\{x\} \times(a, b)$. Then in fact if $B=(x \times a, x \times b)$, then $B=B^{\prime}$, so $x \in B \subset B^{\prime}$, and we are done!

Extra problems for graduate credit:

1. For this we use Lemma 13.2: Let

$$
\mathcal{C}=\{(a, b) \times(c, d) \mid a<b \text { and } c<d, \text { and } a, b, c, d \text { are rational numbers }\}
$$

be the collection of sets we are interested in. Then \mathcal{C} is a basis for the standard topology on \mathbb{R}^{2} if for every open set $W \subset \mathbb{R}^{2}$ and each $x \times y \in W$, there is $C \in \mathcal{C}$ such that $x \times y \subset C \subset W$. So let W be open in \mathbb{R}^{2}, so that by the definition of the standard topology on \mathbb{R}^{2} and Theorem 15.1, there is an indexing set J and real numbers $a_{\alpha}, b_{\alpha}, c_{\alpha}, d_{\alpha}$ for each $\alpha \in J$ such that

$$
W=\bigcup_{\alpha \in J}\left(a_{\alpha}, b_{\alpha}\right) \times\left(c_{\alpha}, d_{\alpha}\right) .
$$

Now let $x \times y \in W$, from which it follows that there is $\alpha \in J$ such that $a_{\alpha}<x<b_{\alpha}$ and $c_{\alpha}<y<d_{\alpha}$. Now no matter what $a_{\alpha}, b_{\alpha}, c_{\alpha}, d_{\alpha}, x$ and y are, there are rational numbers a, b, c and d such that $a_{\alpha}<a<x, x<b<b_{\alpha}, c_{\alpha}<c<y$ and $y<d<d_{\alpha}$. Therefore the set $C=(a, b) \times(c, d) \in \mathcal{C}$ is such that

$$
x \times y \in C \subset\left(a_{\alpha}, b_{\alpha}\right) \times\left(c_{\alpha}, d_{\alpha}\right) \subset W
$$

and \mathcal{C} is a basis for the standard topology on \mathbb{R}^{2}.
2. By Theorem 15.1, a basis for the topology on $\mathbb{R}_{\ell} \times \mathbb{R}$ is given by

$$
\mathcal{B}=\{[a, b) \times(c, d) \mid a<b, c<d\} .
$$

Therefore by Lemma 16.1,

$$
\mathcal{B}_{L}=\{([a, b) \times(c, d)) \cap L \mid a<b, c<d\}
$$

is a basis for the subspace topology on L. What do these basis elements look like? Well, a set like $[a, b) \times(c, d))$ in \mathbb{R}^{2} looks like the interior of a rectangle with just the left side included in the set (the other sides are not in the set). Now imagining a line that is not vertical intersecting this rectangle, we see that the line will intersect the rectangle either in an "open interval" (i.e. pairs $x \times y \in L$ with $a_{0}<x<b_{0}$) or in a "half-open interval" which is closed on the left (i.e. pairs $x \times y \in L$ with $a_{0} \leq x<b_{0}$).
(The second case is if L goes through the left side of the rectangle.) If L is vertical, then L intersects a basis element in an open interval $x \times y \in L$ such that $c<y<d$.

Therefore if L is vertical, then the topology on L is just the same as the usual topology on \mathbb{R}, if we imagine L to be just a vertical copy of \mathbb{R} in \mathbb{R}^{2}. If L is not vertical, in fact the half-open intervals form a basis for the topology on L. (The proof is similar to the proof that the topology on \mathbb{R}_{ℓ} is finer than the topology on \mathbb{R}, see Lemma 13.4.) In this case, the topology on L is the same as the topology on \mathbb{R}_{ℓ}, if we imagine L to be a copy of \mathbb{R} sitting in a crooked way inside of \mathbb{R}^{2}. (Soon we will say that if L is vertical, then L is homeomorphic to \mathbb{R} and otherwise L is homeomorphic to $\mathbb{R}_{\ell .}$.)
The situation for $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ is similar, except that a basis for the subspace topology on L is

$$
\mathcal{B}_{L}^{\prime}=\{([a, b) \times[c, d)) \cap L \mid a<b, c<d\} .
$$

This time the sets $[a, b) \times[c, d)$ are the interior of a rectangle with the left and bottom sides included. Now if L is vertical, horizontal, or increasing, then L intersects such a rectangle in a half-open interval, and this basis generates a topology just like the topology on \mathbb{R}_{ℓ}. If L is decreasing, then L intersects such a rectangle either in an open interval, a half-open interval, or a closed interval. This basis generates the discrete topology on L. Indeed, if L is increasing, for any $r \in \mathbb{R}$, and a, b such that $a<r<b$, both the sets

$$
\{x \times y \in L \mid r \leq x<b\}
$$

and

$$
\{x \times y \in L \mid a \leq x \leq r\}
$$

are open, and their intersection is a single point with x-coordinate equal to r. Therefore all single points are open in L and L has the discrete topology.

