Math 295 - Spring 2020 Solutions to Homework 2

1. (a) Let A_0 be any subset of [0, 1]. We wish to show that if A_0 has an upper bound in [0, 1], then it has a least upper bound in [0, 1].

First, since $[0,1] \subset \mathbb{R}$, we have that $A_0 \subset \mathbb{R}$ also, and since A_0 has an upper bound in [0,1], A_0 has an upper bound in \mathbb{R} , so by the least upper bound property of \mathbb{R} , we can say that there is $c \in \mathbb{R}$ such that $x \leq c$ for all $x \in A_0$ (c is an upper bound for A_0) and if $x \leq b$ for all $x \in A_0$ for any other $b \in \mathbb{R}$, then $c \leq b$ (so c is the smallest upper bound).

Our goal is now to show that in fact $c \in [0, 1]$. This will show that c is a least upper bound for A_0 in [0, 1], since being smaller than any upper bound in \mathbb{R} implies that it is smaller than any upper bound in [0, 1] as well.

Now we assumed that A_0 has an upper bound in [0, 1], so there is $a \in [0, 1]$ such that $x \leq a$ for all $x \in A_0$. Again, since $[0, 1] \subset \mathbb{R}$, a is an upper bound for A_0 in \mathbb{R} as well, so $c \leq a$.

Since $a \in [0, 1]$, we have $c \le a \le 1$. In addition, since $0 \le x \le c$ for all $x \in A_0$, we have that $0 \le c \le 1$, so c is a least upper bound in [0, 1] and we are done.

(b) This problem is very similar to part (a); to highlight this we leave the text unchanged except where we must to make the proof work.

Let A_0 be any subset of [0, 1). We wish to show that if A_0 has an upper bound in [0, 1), then it has a least upper bound in [0, 1).

First, since $[0,1) \subset \mathbb{R}$, we have that $A_0 \subset \mathbb{R}$ also, and since A_0 has an upper bound in [0,1), A_0 has an upper bound in \mathbb{R} , so by the least upper bound property of \mathbb{R} , we can say that there is $c \in \mathbb{R}$ such that $x \leq c$ for all $x \in A_0$ (c is an upper bound for A_0) and if $x \leq b$ for all $x \in A_0$ for any other $b \in \mathbb{R}$, then $c \leq b$ (so c is the smallest upper bound).

Our goal is now to show that in fact $c \in [0, 1)$. This will show that c is a least upper bound for A_0 in [0, 1), since being smaller than any upper bound in \mathbb{R} implies that it is smaller than any upper bound in [0, 1) as well.

Now we assumed that A_0 has an upper bound in [0, 1), so there is $a \in [0, 1)$ such that $x \leq a$ for all $x \in A_0$. Again, since $[0, 1) \subset \mathbb{R}$, a is an upper bound for A_0 in \mathbb{R} as well, so $c \leq a$.

Since $a \in [0, 1)$, we have $c \leq a < 1$. In addition, since $0 \leq x \leq c$ for all $x \in A_0$, we have that $0 \leq c \leq 1$, so c is a least upper bound in [0, 1) and we are done.

Note that **not all subsets of** \mathbb{R} satisfy the least upper bound property!! Take for example the set $A = \{q \in \mathbb{Q} : q \leq 2\}$. This set does not have the least upper bound property. One can construct a subset $A_0 \subset A$ that is bounded above but that does not have a least upper bound in A, for example the set $A_0 = \{q \in \mathbb{Q} : q^2 < 2\}$. A_0 is bounded above by $2 \in A$, but there is no least upper bound because for every $c \in A$ such that $c \geq x$ for all $x \in A_0$, there is some other $b \in A$ such that $b \geq x$ for all $x \in A_0$ but $b \leq c$. The reason this fails is that the "true" least upper bound of A_0 is $\sqrt{2}$, which exists in \mathbb{R} , but does not exist in A.

- 2. (a) Suppose that x + y = x for two real numbers x and y. By axiom (4), there is a unique $z \in \mathbb{R}$ such that x + z = 0. Adding z to both sides of our equation we get (x + y) + z = x + z, and applying axioms (1) and (2) to the left hand side, we get (x + z) + y = x + z. Replacing x + z with 0, we get 0 + y = 0 and by axioms (2) and (3) we thus get y = 0.
 - (b) Recall that -1 is the number such that 1 + (-1) = 0, and -x is the number such that x + (-x) = 0. To show that $(-1) \cdot x = -x$, we therefore must show that $x + (-1) \cdot x = 0$.

To prove this we will need the fact that for any $x \in \mathbb{R}$, $0 \cdot x = 0$. Because that is not an axiom, before we can use this fact we prove it. In part (a) of this question, we showed that if x + y = x, then y = 0. Here we note that x is arbitrary in the statement of (a), so we can choose it to be the x we care about. So to show that $0 \cdot x = 0$, we will show that $x + 0 \cdot x = x$. But indeed, by (5) $x + 0 \cdot x = (1 + 0) \cdot x = 1 \cdot x = x$. (Here we also used (3) to say that 1 + 0 = 1and $1 \cdot x = x$.)

Now it easily follows that $x + (-1) \cdot x = 0$: by (5) $x + (-1) \cdot x = (1 + (-1)) \cdot x = 0 \cdot x = 0$.

- 3. (a) First assume that x > y. Let z = -x + (-y). By (6), x x y > y x y, and using (1), (2) and (4) this simplifies to -y > -x, which is what we sought. Assume now that -x < -y. Let z = x + y. By (6), -x + x + y < -y + x + y, and again using (1), (2) and (4), this simplifies to y < x.
 - (b) Suppose that x > y and z < 0. We first show that if z < 0, then -z > 0: Indeed, to the inequality z < 0 we add -z to each side and by (6) we get 0 < -z. Then by (6) again, we have that (-z)x > (-z)y. But by problem 2, part (b), $-z = (-1) \cdot z$, and so by associativity we have (-1)(zx) > (-1)(zy), and applying problem 2, part (b) again, we get -zx > -zy. But by part (a) of this problem and (1), this implies xz < yz.
- 4. Only if both A and B are not empty: If, for example, A is empty and B is infinite, then $A \times B$ is empty and therefore finite, but B is infinite. (This is enough to completely answer the question correctly.)

But for fun, let's assume further that A and B are nonempty, and show that $A \times B$ is finite implies that A and B are finite. (I also accepted this for full credit.)

We show that A is finite; the proof that B is finite is identical. Since B is nonempty, let $b \in B$. Consider then the set $A \times \{b\} \subset A \times B$. Since it is a subset of a finite set, it is finite, and therefore in bijection with $\{1, 2, \ldots, n\}$ for some positive integer n. At the same time, $A \times \{b\}$ is in bijection with A, via the map sending a pair (a, b) to a. This is injective since $a_1 = a_2$ implies that $(a_1, b) = (a_2, b)$, and it is surjective since (a, b) maps to a for all $a \in A$. Since a composition of bijections is a bijection, A is also in bijection with $\{1, 2, ..., n\}$, so A is finite.