1. (a) Let A_{0} be any subset of $[0,1]$. We wish to show that if A_{0} has an upper bound in $[0,1]$, then it has a least upper bound in $[0,1]$.
First, since $[0,1] \subset \mathbb{R}$, we have that $A_{0} \subset \mathbb{R}$ also, and since A_{0} has an upper bound in $[0,1], A_{0}$ has an upper bound in \mathbb{R}, so by the least upper bound property of \mathbb{R}, we can say that there is $c \in \mathbb{R}$ such that $x \leq c$ for all $x \in A_{0}$ (c is an upper bound for A_{0}) and if $x \leq b$ for all $x \in A_{0}$ for any other $b \in \mathbb{R}$, then $c \leq b$ (so c is the smallest upper bound).
Our goal is now to show that in fact $c \in[0,1]$. This will show that c is a least upper bound for A_{0} in $[0,1]$, since being smaller than any upper bound in \mathbb{R} implies that it is smaller than any upper bound in $[0,1]$ as well.
Now we assumed that A_{0} has an upper bound in $[0,1]$, so there is $a \in[0,1]$ such that $x \leq a$ for all $x \in A_{0}$. Again, since $[0,1] \subset \mathbb{R}, a$ is an upper bound for A_{0} in \mathbb{R} as well, so $c \leq a$.
Since $a \in[0,1]$, we have $c \leq a \leq 1$. In addition, since $0 \leq x \leq c$ for all $x \in A_{0}$, we have that $0 \leq c \leq 1$, so c is a least upper bound in $[0,1]$ and we are done.
(b) This problem is very similar to part (a); to highlight this we leave the text unchanged except where we must to make the proof work.
Let A_{0} be any subset of $[0,1)$. We wish to show that if A_{0} has an upper bound in $[0,1)$, then it has a least upper bound in $[0,1)$.
First, since $[0,1) \subset \mathbb{R}$, we have that $A_{0} \subset \mathbb{R}$ also, and since A_{0} has an upper bound in $[0,1), A_{0}$ has an upper bound in \mathbb{R}, so by the least upper bound property of \mathbb{R}, we can say that there is $c \in \mathbb{R}$ such that $x \leq c$ for all $x \in A_{0}$ (c is an upper bound for A_{0}) and if $x \leq b$ for all $x \in A_{0}$ for any other $b \in \mathbb{R}$, then $c \leq b$ (so c is the smallest upper bound).
Our goal is now to show that in fact $c \in[0,1)$. This will show that c is a least upper bound for A_{0} in $[0,1)$, since being smaller than any upper bound in \mathbb{R} implies that it is smaller than any upper bound in $[0,1)$ as well.
Now we assumed that A_{0} has an upper bound in $[0,1)$, so there is $a \in[0,1)$ such that $x \leq a$ for all $x \in A_{0}$. Again, since $[0,1) \subset \mathbb{R}, a$ is an upper bound for A_{0} in \mathbb{R} as well, so $c \leq a$.
Since $a \in[0,1)$, we have $c \leq a<1$. In addition, since $0 \leq x \leq c$ for all $x \in A_{0}$, we have that $0 \leq c \leq 1$, so c is a least upper bound in $[0,1)$ and we are done.
Note that not all subsets of \mathbb{R} satisfy the least upper bound property!! Take for example the set $A=\{q \in \mathbb{Q}: q \leq 2\}$. This set does not have the least upper bound property. One can construct a subset $A_{0} \subset A$ that is bounded above but that does not have a least upper bound in A, for example the set $A_{0}=\left\{q \in \mathbb{Q}: q^{2}<2\right\}$. A_{0} is bounded above by $2 \in A$, but there is no least upper bound because for every $c \in A$ such that $c \geq x$ for all $x \in A_{0}$, there is some other $b \in A$ such that $b \geq x$ for all
$x \in A_{0}$ but $b \leq c$. The reason this fails is that the "true" least upper bound of A_{0} is $\sqrt{2}$, which exists in \mathbb{R}, but does not exist in A.
2. (a) Suppose that $x+y=x$ for two real numbers x and y. By axiom (4), there is a unique $z \in \mathbb{R}$ such that $x+z=0$. Adding z to both sides of our equation we get $(x+y)+z=x+z$, and applying axioms (1) and (2) to the left hand side, we get $(x+z)+y=x+z$. Replacing $x+z$ with 0 , we get $0+y=0$ and by axioms (2) and (3) we thus get $y=0$.
(b) Recall that -1 is the number such that $1+(-1)=0$, and $-x$ is the number such that $x+(-x)=0$. To show that $(-1) \cdot x=-x$, we therefore must show that $x+(-1) \cdot x=0$.
To prove this we will need the fact that for any $x \in \mathbb{R}, 0 \cdot x=0$. Because that is not an axiom, before we can use this fact we prove it. In part (a) of this question, we showed that if $x+y=x$, then $y=0$. Here we note that x is arbitrary in the statement of (a), so we can choose it to be the x we care about. So to show that $0 \cdot x=0$, we will show that $x+0 \cdot x=x$. But indeed, by (5) $x+0 \cdot x=(1+0) \cdot x=1 \cdot x=x$. (Here we also used (3) to say that $1+0=1$ and $1 \cdot x=x$.)
Now it easily follows that $x+(-1) \cdot x=0$: by (5) $x+(-1) \cdot x=(1+(-1)) \cdot x=$ $0 \cdot x=0$.
3. (a) First assume that $x>y$. Let $z=-x+(-y)$. By (6), $x-x-y>y-x-y$, and using (1), (2) and (4) this simplifies to $-y>-x$, which is what we sought. Assume now that $-x<-y$. Let $z=x+y$. By (6), $-x+x+y<-y+x+y$, and again using (1), (2) and (4), this simplifies to $y<x$.
(b) Suppose that $x>y$ and $z<0$. We first show that if $z<0$, then $-z>0$: Indeed, to the inequality $z<0$ we add $-z$ to each side and by (6) we get $0<-z$. Then by (6) again, we have that $(-z) x>(-z) y$. But by problem 2, part (b), $-z=(-1) \cdot z$, and so by associativity we have $(-1)(z x)>(-1)(z y)$, and applying problem 2, part (b) again, we get $-z x>-z y$. But by part (a) of this problem and (1), this implies $x z<y z$.
4. Only if both A and B are not empty: If, for example, A is empty and B is infinite, then $A \times B$ is empty and therefore finite, but B is infinite. (This is enough to completely answer the question correctly.)

But for fun, let's assume further that A and B are nonempty, and show that $A \times B$ is finite implies that A and B are finite. (I also accepted this for full credit.)
We show that A is finite; the proof that B is finite is identical. Since B is nonempty, let $b \in B$. Consider then the set $A \times\{b\} \subset A \times B$. Since it is a subset of a finite set, it is finite, and therefore in bijection with $\{1,2, \ldots, n\}$ for some positive integer n. At the same time, $A \times\{b\}$ is in bijection with A, via the map sending a pair (a, b) to a. This is injective since $a_{1}=a_{2}$ implies that $\left(a_{1}, b\right)=\left(a_{2}, b\right)$, and it is surjective since
(a, b) maps to a for all $a \in A$. Since a composition of bijections is a bijection, A is also in bijection with $\{1,2, \ldots, n\}$, so A is finite.

