Math 295 - Spring 2020 Solutions to Homework 15

1. By Lemma 26.4, because B is compact and disjoint from A, we know that for each $a \in A$, there are disjoint open sets U_a , V_a such that $a \in U_a$ and $B \subset V_a$. Consider the collection of sets

$$\{U_a \mid a \in A\}.$$

This is an open cover of A, and therefore there is a finite subcover

$$\{U_{a_1}, U_{a_2}, \ldots, U_{a_n}\}.$$

Let $U = \bigcup_{i=1}^{n} U_{a_i}$ and $V = \bigcap_{i=1}^{n} V_{a_i}$. Both sets are open, since they are a finite union and a finite intersection of open sets, respectively. Furthermore, $B \subset V_{a_i}$ for all $i = 1, \ldots, n$, so $B \subset V$, and $A \subset U$. Finally, U and V are disjoint. Indeed let $x \in V$. Then $x \in V_{a_i}$ for all $i = 1, \ldots, n$, so $x \notin U_{a_i}$ for any $i = 1, \ldots, n$, and therefore $x \notin U$.

2. (a) Every metric space is Hausdorff, so a compact set A in X is closed.

We now show that if A is compact, then A is bounded. We have that the collection of open set

$$\mathcal{A} = \{ B_d(a, 1) \mid a \in A \}$$

covers A, and since A is compact, there is a finite subcover

$$\{B_d(a_1,1), B_d(a_2,1), \ldots, B_d(a_n,1)\}.$$

Now let

$$M = \max\{d(a_i, a_j) \mid 1 \le i < j \le n\},\$$

the largest distance between a pair of elements $\{a_i, a_j\}$. Then we claim that if $x, y \in A$, then $d(x, y) \leq M + 2$, so A is bounded. Indeed, there are i, j such that $x \in B_d(a_i, 1)$ and $y \in B_d(a_j, 1)$, and so we have

$$d(x,y) \le d(x,a_i) + d(a_i,a_j) + d(a_j,y) < 1 + M + 1 = M + 2.$$

(b) Let \mathbb{R} have the usual topology, with the metric

$$\overline{d}(x,y) = \min(|x-y|,1).$$

By Theorem 20.1, this induces the usual topology on \mathbb{R} since d(x, y) = |x - y| induces the usual topology on \mathbb{R} (we proved this in Homework 9 problem 3(a)). Then \mathbb{R} is closed and bounded under the metric \overline{d} , but we have shown in class that \mathbb{R} is not compact.

3. First we note that if any $A \in \mathcal{A}$ is empty, then Y is empty and therefore connected. (The empty set is vacuously connected, since it does not have a separation; it does not contain two nonempty disjoint open subsets!) We thus from now on assume that all $A \in \mathcal{A}$ are nonempty. In that case, since the elements of \mathcal{A} are ordered under strict inclusion, they satisfy the finite intersection property, and by Theorem 26.9 since X is compact, Y is nonempty.

We follow the suggestion of the hint: Suppose that Y is not connected and has a separation $Y = C \cup D$, where C and D are disjoint, nonempty, and open in Y. Since C = Y - D and D = Y - C, C and D are also closed in Y. By Homework 5 problem 1(a), since Y is closed in X (it is an intersection of closed sets, hence closed), C and D are also closed in X. Because X is compact, this implies that C and D are compact in X. Now because C and D are disjoint, by problem 1 of this homework, there are U, V open in X and disjoint such that $C \subset U$ and $D \subset V$.

We now consider the collection

$$\mathcal{C} = \{ A - (U \cup V) \mid A \in \mathcal{A} \}.$$

This collection is not ordered under strict inclusion as I claimed in class (sorry!) so the argument has to be modified a little bit. We still wish to show that C contains nonempty closed sets and that it satisfies the finite intersection property. Suppose first for a contradiction that $A - (U \cup V)$ is empty for some $A \in \mathcal{A}$. Since U and V are disjoint and open, if $A - (U \cup V) = \emptyset$ then $A \subset U \cup V$, and $A \cap U$, $A \cap V$ are two disjoint sets open in A such that $A = (A \cap U) \cup (A \cap V)$. Because A is connected, this forces $A \subset U$ or $A \subset V$. Without loss of generality, say $A \subset U$. But then, $Y \subset U$, which is a contradiction since D is nonempty and therefore V intersects Y nontrivially. Therefore $A - (U \cup V)$ is nonempty for all $A \in \mathcal{A}$.

Now $A - (U \cup V)$ is closed for each $A \in \mathcal{A}$ since A is closed in X, and $X - (U \cup V)$ is closed in X, and therefore $A - (U \cup V) = A \cap (X - (U \cup V))$ is the intersection of two closed sets. Finally, let

$$\{A_1 - (U \cup V), A_2 - (U \cup V), \dots, A_n - (U \cup V)\}$$

be any finite subcollection of \mathcal{C} , ordered without loss of generality so that $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n$. We have that

$$\bigcap_{i=1}^{n} (A_i - (U \cup V)) = \left(\bigcap_{i=1}^{n} A_i\right) - (U \cup V) = A_n - (U \cup V) \neq \emptyset,$$

since $A_n \in \mathcal{A}$. Therefore the collection \mathcal{C} is, as claimed, a collection of nonempty closed sets of X that satisfies the finite intersection property, and therefore

$$\bigcap_{A \in \mathcal{A}} (A - (U \cup V))$$

is nonempty because X is compact.

We now have obtained a contradiction, because as in the finite intersection case we have

$$\bigcap_{A \in \mathcal{A}} (A - (U \cup V)) = \left(\bigcap_{A \in \mathcal{A}} A\right) - (U \cup V) = Y - (U \cup V).$$

But since $Y = C \cup D \subset U \cup V$, this should be empty, which is the contradiction.

Extra problem for graduate credit:

(a) Let first x ∈ A. Then for each n ∈ Z₊, there is a_n ∈ A such that a_n ∈ B_d(x, 1/n), since B_d(x, 1/n) is a neighborhood of x. Therefore we have that d(x, A) < 1/n for all n ∈ Z₊, but certainly d(x, A) ≥ 0 since the value d(x, a) is bounded below by 0 for all a ∈ A, and so it follows that d(x, A) = 0.

Conversely, suppose that d(x, A) = 0. This means that for all $\epsilon > 0$, there is $a \in A$ with $d(x, a) < \epsilon$ (if that were not the case, ϵ would be a greater lower bound for $\{d(x, a) \mid a \in A\}$, and 0 could not be the greatest lower bound). Therefore for all $\epsilon > 0$ there is $a \in A$ with $a \in B_d(x, \epsilon)$. By the characterization of open sets in a metric space, every neighborhood of x contains a ball $B_d(x, \epsilon)$ for some $\epsilon > 0$, and therefore every neighborhood of x contains a point of A and $x \in \overline{A}$.

(b) As stated on page 175 of Munkres, the function $d(x, \cdot) \colon A \to \mathbb{R}$ sending a to d(x, a) is continuous. By the Extreme value theorem, since A is compact, this function attains a minimum value on A: There is $a_0 \in A$ such that $d(x, a_0) \leq d(x, a)$ for all $a \in A$. Furthermore, since $a_0 \in A$, there is no other value $r \in \mathbb{R}$ such that $r \leq d(x, a)$ for all $a \in A$ but $r > d(x, a_0)$ (i.e. $d(x, a_0)$ is the greatest number that is a lower bound for the set $\{d(x, a) \mid a \in A\}$). It follows that

$$d(x, a_0) = \inf\{d(x, a) \mid a \in A\} = d(x, A).$$

(c) We do the easy implication first: If x is in the union of the open balls $B_d(a, \epsilon)$, then there is $a \in A$ such that $x \in B_d(a, \epsilon)$. Therefore we have that $d(x, a) < \epsilon$ for this a, and therefore $d(x, A) < \epsilon$ since $d(x, A) \le d(x, a)$ for all $a \in A$. Therefore $x \in U(A, \epsilon)$.

Let now $x \in U(A, \epsilon)$, i.e. $d(x, A) < \epsilon$. By definition of the greatest lower bound, for every $r \in \mathbb{R}$ such that r > d(x, A), there is $a \in A$ such that d(x, a) < r (if there was a value of r without that property, then this value of r would be the greatest lower bound, since it would be a lower bound for the set $\{d(x, a) \mid a \in A\}$, and it would be greater than d(x, A)). Now fix r such that $d(x, A) < r < \epsilon$ (since $d(x, A) < \epsilon$, there certainly exists such a real number r), then by our reasoning above there is $a \in A$ such that d(x, a) < r. This means that $x \in B_d(a, r) \subset$ $B_d(a, \epsilon)$, and therefore x is in the union of the open balls $B_d(a, \epsilon)$. (d) By the characterization of open sets in a metric space, for each $x \in U$, there is $\epsilon_x > 0$ such that $B_d(x, \epsilon_x) \subset U$. For each $a \in A \subset U$, let $r_a = \frac{\epsilon_a}{2}$. Now the collection of sets

$$\mathcal{A} = \{ B_d(a, r_a) \mid a \in A \}$$

is an open cover of A. Since A is compact, there is a finite subcover, say

$$\{B_d(a_1, r_{a_1}), B_d(a_2, r_{a_2}), \ldots, B_d(a_n, r_{a_n})\}.$$

Let $\epsilon = \min_{i=1}^{n} \{r_{a_i}\}$. We claim that for all $a \in A$, $B_d(a, \epsilon) \subset U$, and therefore U contains an ϵ -neighborhood of A, as claimed.

Let $a \in A$ and y be such that $y \in B_d(a, \epsilon)$. In particular, $d(y, a) < \epsilon$. There is j such that $a \in B_d(a_j, r_{a_j})$, so $d(a, a_j) < r_{a_j}$. Using the Triangle Inequality, we have

$$d(y, a_j) \le d(y, a) + d(a, a_j) < \epsilon + r_{a_j} \le 2r_{a_j},$$

since $\epsilon = \min_{i=1}^{n} \{r_{a_i}\}$. It follows that $y \in B_d(a_j, 2r_{a_j})$. But recall that r_{a_j} was chosen so that $B_d(a_j, 2r_{a_j}) \subset U$, so $y \in U$. It follows that $B_d(a, \epsilon) \subset U$ for all $a \in A$, and we are done.

(e) Consider ℝ × ℝ with the metric d(x₁ × y₁, x₂ × y₂) = max(|x₂ - x₁|, |y₂ - y₁|). d induces the usual topology on ℝ × ℝ, by Homework 10, problem 1. We claim that ℝ × {0} is closed in ℝ × ℝ. Indeed, {0} is closed in ℝ since ℝ is Hausdorff, ℝ is closed, and a product of closed sets is closed in the product topology.

Consider the open set $U = \{x \times y \mid |y| < \frac{1}{x^2+1}\}$, then $\mathbb{R} \times \{0\} \subset U$, but there is no ϵ -neighborhood of $\mathbb{R} \times \{0\}$ in U. Indeed, for any $\epsilon > 0$, there is $M \in \mathbb{R}$ such that $\frac{1}{M^2+1} < \epsilon$. Then for x > M, we have $\frac{1}{x^2+1} < \frac{1}{M^2+1} < \epsilon$. In that case, the point $x \times \frac{1}{M^2+1}$ belongs to the ϵ -neighborhood of $\mathbb{R} \times \{0\}$, since

$$d(x \times 0, x \times \frac{1}{M^2 + 1}) = \max\left(|0|, \left|\frac{1}{M^2 + 1}\right|\right) = \frac{1}{M^2 + 1} < \epsilon,$$

but $x \times \frac{1}{M^2+1}$ does not belong to U since

$$|\frac{1}{M^2+1}| > \frac{1}{x^2+1}.$$

Therefore there is no ϵ -neighborhood of $\mathbb{R} \times \{0\}$ in U.