
Math 295 - Spring 2020
Solutions to Homework 15

1. By Lemma 26.4, because B is compact and disjoint from A, we know that for each
a ∈ A, there are disjoint open sets Ua, Va such that a ∈ Ua and B ⊂ Va. Consider the
collection of sets

{Ua | a ∈ A}.

This is an open cover of A, and therefore there is a finite subcover

{Ua1 , Ua2 , . . . , Uan}.

Let U =
⋃n
i=1 Uai and V =

⋂n
i=1 Vai . Both sets are open, since they are a finite

union and a finite intersection of open sets, respectively. Furthermore, B ⊂ Vai for all
i = 1, . . . , n, so B ⊂ V , and A ⊂ U . Finally, U and V are disjoint. Indeed let x ∈ V .
Then x ∈ Vai for all i = 1, . . . , n, so x 6∈ Uaj for any i = 1, . . . , n, and therefore x 6∈ U .

2. (a) Every metric space is Hausdorff, so a compact set A in X is closed.

We now show that if A is compact, then A is bounded. We have that the collection
of open set

A = {Bd(a, 1) | a ∈ A}

covers A, and since A is compact, there is a finite subcover

{Bd(a1, 1), Bd(a2, 1), . . . , Bd(an, 1)}.

Now let
M = max{d(ai, aj) | 1 ≤ i < j ≤ n},

the largest distance between a pair of elements {ai, aj}. Then we claim that if
x, y ∈ A, then d(x, y) ≤M + 2, so A is bounded. Indeed, there are i, j such that
x ∈ Bd(ai, 1) and y ∈ Bd(aj, 1), and so we have

d(x, y) ≤ d(x, ai) + d(ai, aj) + d(aj, y) < 1 +M + 1 = M + 2.

(b) Let R have the usual topology, with the metric

d(x, y) = min(|x− y|, 1).

By Theorem 20.1, this induces the usual topology on R since d(x, y) = |x − y|
induces the usual topology on R (we proved this in Homework 9 problem 3(a)).
Then R is closed and bounded under the metric d, but we have shown in class
that R is not compact.



3. First we note that if any A ∈ A is empty, then Y is empty and therefore connected.
(The empty set is vacuously connected, since it does not have a separation; it does not
contain two nonempty disjoint open subsets!) We thus from now on assume that all
A ∈ A are nonempty. In that case, since the elements of A are ordered under strict
inclusion, they satisfy the finite intersection property, and by Theorem 26.9 since X is
compact, Y is nonempty.

We follow the suggestion of the hint: Suppose that Y is not connected and has a
separation Y = C ∪D, where C and D are disjoint, nonempty, and open in Y . Since
C = Y −D and D = Y − C, C and D are also closed in Y . By Homework 5 problem
1(a), since Y is closed in X (it is an intersection of closed sets, hence closed), C and
D are also closed in X. Because X is compact, this implies that C and D are compact
in X. Now because C and D are disjoint, by problem 1 of this homework, there are
U, V open in X and disjoint such that C ⊂ U and D ⊂ V .

We now consider the collection

C = {A− (U ∪ V ) | A ∈ A}.

This collection is not ordered under strict inclusion as I claimed in class (sorry!) so
the argument has to be modified a little bit. We still wish to show that C contains
nonempty closed sets and that it satisfies the finite intersection property. Suppose first
for a contradiction that A − (U ∪ V ) is empty for some A ∈ A. Since U and V are
disjoint and open, if A − (U ∪ V ) = ∅ then A ⊂ U ∪ V , and A ∩ U , A ∩ V are two
disjoint sets open in A such that A = (A∩U)∪ (A∩ V ). Because A is connected, this
forces A ⊂ U or A ⊂ V . Without loss of generality, say A ⊂ U . But then, Y ⊂ U ,
which is a contradiction since D is nonempty and therefore V intersects Y nontrivially.
Therefore A− (U ∪ V ) is nonempty for all A ∈ A.

Now A− (U ∪ V ) is closed for each A ∈ A since A is closed in X, and X − (U ∪ V ) is
closed in X, and therefore A− (U ∪ V ) = A∩ (X − (U ∪ V )) is the intersection of two
closed sets. Finally, let

{A1 − (U ∪ V ), A2 − (U ∪ V ), . . . , An − (U ∪ V )}

be any finite subcollection of C, ordered without loss of generality so that A1 ) A2 )
· · · ) An. We have that

n⋂
i=1

(Ai − (U ∪ V )) =

(
n⋂
i=1

Ai

)
− (U ∪ V ) = An − (U ∪ V ) 6= ∅,

since An ∈ A. Therefore the collection C is, as claimed, a collection of nonempty closed
sets of X that satisfies the finite intersection property, and therefore⋂

A∈A

(A− (U ∪ V ))



is nonempty because X is compact.

We now have obtained a contradiction, because as in the finite intersection case we
have ⋂

A∈A

(A− (U ∪ V )) =

(⋂
A∈A

A

)
− (U ∪ V ) = Y − (U ∪ V ).

But since Y = C ∪D ⊂ U ∪ V , this should be empty, which is the contradiction.

Extra problem for graduate credit:

1. (a) Let first x ∈ A. Then for each n ∈ Z+, there is an ∈ A such that an ∈ Bd(x,
1
n
),

since Bd(x,
1
n
) is a neighborhood of x. Therefore we have that d(x,A) < 1

n
for all

n ∈ Z+, but certainly d(x,A) ≥ 0 since the value d(x, a) is bounded below by 0
for all a ∈ A, and so it follows that d(x,A) = 0.

Conversely, suppose that d(x,A) = 0. This means that for all ε > 0, there is a ∈ A
with d(x, a) < ε (if that were not the case, ε would be a greater lower bound for
{d(x, a) | a ∈ A}, and 0 could not be the greatest lower bound). Therefore for all
ε > 0 there is a ∈ A with a ∈ Bd(x, ε). By the characterization of open sets in
a metric space, every neighborhood of x contains a ball Bd(x, ε) for some ε > 0,
and therefore every neighborhood of x contains a point of A and x ∈ A.

(b) As stated on page 175 of Munkres, the function d(x, ·) : A→ R sending a to d(x, a)
is continuous. By the Extreme value theorem, since A is compact, this function
attains a minimum value on A: There is a0 ∈ A such that d(x, a0) ≤ d(x, a) for
all a ∈ A. Furthermore, since a0 ∈ A, there is no other value r ∈ R such that
r ≤ d(x, a) for all a ∈ A but r > d(x, a0) (i.e. d(x, a0) is the greatest number that
is a lower bound for the set {d(x, a) | a ∈ A}). It follows that

d(x, a0) = inf{d(x, a) | a ∈ A} = d(x,A).

(c) We do the easy implication first: If x is in the union of the open balls Bd(a, ε),
then there is a ∈ A such that x ∈ Bd(a, ε). Therefore we have that d(x, a) < ε for
this a, and therefore d(x,A) < ε since d(x,A) ≤ d(x, a) for all a ∈ A. Therefore
x ∈ U(A, ε).

Let now x ∈ U(A, ε), i.e. d(x,A) < ε. By definition of the greatest lower bound,
for every r ∈ R such that r > d(x,A), there is a ∈ A such that d(x, a) < r (if there
was a value of r without that property, then this value of r would be the greatest
lower bound, since it would be a lower bound for the set {d(x, a) | a ∈ A}, and
it would be greater than d(x,A)). Now fix r such that d(x,A) < r < ε (since
d(x,A) < ε, there certainly exists such a real number r), then by our reasoning
above there is a ∈ A such that d(x, a) < r. This means that x ∈ Bd(a, r) ⊂
Bd(a, ε), and therefore x is in the union of the open balls Bd(a, ε).



(d) By the characterization of open sets in a metric space, for each x ∈ U , there is
εx > 0 such that Bd(x, εx) ⊂ U . For each a ∈ A ⊂ U , let ra = εa

2
. Now the

collection of sets
A = {Bd(a, ra) | a ∈ A}

is an open cover of A. Since A is compact, there is a finite subcover, say

{Bd(a1, ra1), Bd(a2, ra2), . . . , Bd(an, ran)}.

Let ε = minni=1{rai}. We claim that for all a ∈ A, Bd(a, ε) ⊂ U , and therefore U
contains an ε-neighborhood of A, as claimed.

Let a ∈ A and y be such that y ∈ Bd(a, ε). In particular, d(y, a) < ε. There is
j such that a ∈ Bd(aj, raj), so d(a, aj) < raj . Using the Triangle Inequality, we
have

d(y, aj) ≤ d(y, a) + d(a, aj) < ε+ raj ≤ 2raj ,

since ε = minni=1{rai}. It follows that y ∈ Bd(aj, 2raj). But recall that raj was
chosen so that Bd(aj, 2raj) ⊂ U , so y ∈ U . It follows that Bd(a, ε) ⊂ U for all
a ∈ A, and we are done.

(e) Consider R × R with the metric d(x1 × y1, x2 × y2) = max(|x2 − x1|, |y2 − y1|).
d induces the usual topology on R × R, by Homework 10, problem 1. We claim
that R× {0} is closed in R× R. Indeed, {0} is closed in R since R is Hausdorff,
R is closed, and a product of closed sets is closed in the product topology.

Consider the open set U = {x × y | |y| < 1
x2+1
}, then R × {0} ⊂ U , but there is

no ε-neighborhood of R × {0} in U . Indeed, for any ε > 0, there is M ∈ R such
that 1

M2+1
< ε. Then for x > M , we have 1

x2+1
< 1

M2+1
< ε. In that case, the

point x× 1
M2+1

belongs to the ε-neighborhood of R× {0}, since

d(x× 0, x× 1

M2 + 1
) = max

(
|0|,
∣∣∣∣ 1

M2 + 1

∣∣∣∣) =
1

M2 + 1
< ε,

but x× 1
M2+1

does not belong to U since

| 1

M2 + 1
| > 1

x2 + 1
.

Therefore there is no ε-neighborhood of R× {0} in U .


