Math 295 - Spring 2020
Solutions to Homework 15

1. By Lemma 26.4, because B is compact and disjoint from A, we know that for each $a \in A$, there are disjoint open sets U_{a}, V_{a} such that $a \in U_{a}$ and $B \subset V_{a}$. Consider the collection of sets

$$
\left\{U_{a} \mid a \in A\right\}
$$

This is an open cover of A, and therefore there is a finite subcover

$$
\left\{U_{a_{1}}, U_{a_{2}}, \ldots, U_{a_{n}}\right\}
$$

Let $U=\bigcup_{i=1}^{n} U_{a_{i}}$ and $V=\bigcap_{i=1}^{n} V_{a_{i}}$. Both sets are open, since they are a finite union and a finite intersection of open sets, respectively. Furthermore, $B \subset V_{a_{i}}$ for all $i=1, \ldots, n$, so $B \subset V$, and $A \subset U$. Finally, U and V are disjoint. Indeed let $x \in V$. Then $x \in V_{a_{i}}$ for all $i=1, \ldots, n$, so $x \notin U_{a_{j}}$ for any $i=1, \ldots, n$, and therefore $x \notin U$.
2. (a) Every metric space is Hausdorff, so a compact set A in X is closed.

We now show that if A is compact, then A is bounded. We have that the collection of open set

$$
\mathcal{A}=\left\{B_{d}(a, 1) \mid a \in A\right\}
$$

covers A, and since A is compact, there is a finite subcover

$$
\left\{B_{d}\left(a_{1}, 1\right), B_{d}\left(a_{2}, 1\right), \ldots, B_{d}\left(a_{n}, 1\right)\right\}
$$

Now let

$$
M=\max \left\{d\left(a_{i}, a_{j}\right) \mid 1 \leq i<j \leq n\right\}
$$

the largest distance between a pair of elements $\left\{a_{i}, a_{j}\right\}$. Then we claim that if $x, y \in A$, then $d(x, y) \leq M+2$, so A is bounded. Indeed, there are i, j such that $x \in B_{d}\left(a_{i}, 1\right)$ and $y \in B_{d}\left(a_{j}, 1\right)$, and so we have

$$
d(x, y) \leq d\left(x, a_{i}\right)+d\left(a_{i}, a_{j}\right)+d\left(a_{j}, y\right)<1+M+1=M+2 .
$$

(b) Let \mathbb{R} have the usual topology, with the metric

$$
\bar{d}(x, y)=\min (|x-y|, 1)
$$

By Theorem 20.1, this induces the usual topology on \mathbb{R} since $d(x, y)=|x-y|$ induces the usual topology on \mathbb{R} (we proved this in Homework 9 problem 3(a)). Then \mathbb{R} is closed and bounded under the metric \bar{d}, but we have shown in class that \mathbb{R} is not compact.
3. First we note that if any $A \in \mathcal{A}$ is empty, then Y is empty and therefore connected. (The empty set is vacuously connected, since it does not have a separation; it does not contain two nonempty disjoint open subsets!) We thus from now on assume that all $A \in \mathcal{A}$ are nonempty. In that case, since the elements of \mathcal{A} are ordered under strict inclusion, they satisfy the finite intersection property, and by Theorem 26.9 since X is compact, Y is nonempty.
We follow the suggestion of the hint: Suppose that Y is not connected and has a separation $Y=C \cup D$, where C and D are disjoint, nonempty, and open in Y. Since $C=Y-D$ and $D=Y-C, C$ and D are also closed in Y. By Homework 5 problem 1(a), since Y is closed in X (it is an intersection of closed sets, hence closed), C and D are also closed in X. Because X is compact, this implies that C and D are compact in X. Now because C and D are disjoint, by problem 1 of this homework, there are U, V open in X and disjoint such that $C \subset U$ and $D \subset V$.
We now consider the collection

$$
\mathcal{C}=\{A-(U \cup V) \mid A \in \mathcal{A}\} .
$$

This collection is not ordered under strict inclusion as I claimed in class (sorry!) so the argument has to be modified a little bit. We still wish to show that \mathcal{C} contains nonempty closed sets and that it satisfies the finite intersection property. Suppose first for a contradiction that $A-(U \cup V)$ is empty for some $A \in \mathcal{A}$. Since U and V are disjoint and open, if $A-(U \cup V)=\varnothing$ then $A \subset U \cup V$, and $A \cap U, A \cap V$ are two disjoint sets open in A such that $A=(A \cap U) \cup(A \cap V)$. Because A is connected, this forces $A \subset U$ or $A \subset V$. Without loss of generality, say $A \subset U$. But then, $Y \subset U$, which is a contradiction since D is nonempty and therefore V intersects Y nontrivially. Therefore $A-(U \cup V)$ is nonempty for all $A \in \mathcal{A}$.
Now $A-(U \cup V)$ is closed for each $A \in \mathcal{A}$ since A is closed in X, and $X-(U \cup V)$ is closed in X, and therefore $A-(U \cup V)=A \cap(X-(U \cup V))$ is the intersection of two closed sets. Finally, let

$$
\left\{A_{1}-(U \cup V), A_{2}-(U \cup V), \ldots, A_{n}-(U \cup V)\right\}
$$

be any finite subcollection of \mathcal{C}, ordered without loss of generality so that $A_{1} \supsetneq A_{2} \supsetneq$ $\cdots \supsetneq A_{n}$. We have that

$$
\bigcap_{i=1}^{n}\left(A_{i}-(U \cup V)\right)=\left(\bigcap_{i=1}^{n} A_{i}\right)-(U \cup V)=A_{n}-(U \cup V) \neq \varnothing
$$

since $A_{n} \in \mathcal{A}$. Therefore the collection \mathcal{C} is, as claimed, a collection of nonempty closed sets of X that satisfies the finite intersection property, and therefore

$$
\bigcap_{A \in \mathcal{A}}(A-(U \cup V))
$$

is nonempty because X is compact.
We now have obtained a contradiction, because as in the finite intersection case we have

$$
\bigcap_{A \in \mathcal{A}}(A-(U \cup V))=\left(\bigcap_{A \in \mathcal{A}} A\right)-(U \cup V)=Y-(U \cup V) .
$$

But since $Y=C \cup D \subset U \cup V$, this should be empty, which is the contradiction.
Extra problem for graduate credit:

1. (a) Let first $x \in \bar{A}$. Then for each $n \in \mathbb{Z}_{+}$, there is $a_{n} \in A$ such that $a_{n} \in B_{d}\left(x, \frac{1}{n}\right)$, since $B_{d}\left(x, \frac{1}{n}\right)$ is a neighborhood of x. Therefore we have that $d(x, A)<\frac{1}{n}$ for all $n \in \mathbb{Z}_{+}$, but certainly $d(x, A) \geq 0$ since the value $d(x, a)$ is bounded below by 0 for all $a \in A$, and so it follows that $d(x, A)=0$.
Conversely, suppose that $d(x, A)=0$. This means that for all $\epsilon>0$, there is $a \in A$ with $d(x, a)<\epsilon$ (if that were not the case, ϵ would be a greater lower bound for $\{d(x, a) \mid a \in A\}$, and 0 could not be the greatest lower bound). Therefore for all $\epsilon>0$ there is $a \in A$ with $a \in B_{d}(x, \epsilon)$. By the characterization of open sets in a metric space, every neighborhood of x contains a ball $B_{d}(x, \epsilon)$ for some $\epsilon>0$, and therefore every neighborhood of x contains a point of A and $x \in \bar{A}$.
(b) As stated on page 175 of Munkres, the function $d(x, \cdot): A \rightarrow \mathbb{R}$ sending a to $d(x, a)$ is continuous. By the Extreme value theorem, since A is compact, this function attains a minimum value on A : There is $a_{0} \in A$ such that $d\left(x, a_{0}\right) \leq d(x, a)$ for all $a \in A$. Furthermore, since $a_{0} \in A$, there is no other value $r \in \mathbb{R}$ such that $r \leq d(x, a)$ for all $a \in A$ but $r>d\left(x, a_{0}\right)$ (i.e. $d\left(x, a_{0}\right)$ is the greatest number that is a lower bound for the set $\{d(x, a) \mid a \in A\})$. It follows that

$$
d\left(x, a_{0}\right)=\inf \{d(x, a) \mid a \in A\}=d(x, A)
$$

(c) We do the easy implication first: If x is in the union of the open balls $B_{d}(a, \epsilon)$, then there is $a \in A$ such that $x \in B_{d}(a, \epsilon)$. Therefore we have that $d(x, a)<\epsilon$ for this a, and therefore $d(x, A)<\epsilon$ since $d(x, A) \leq d(x, a)$ for all $a \in A$. Therefore $x \in U(A, \epsilon)$.
Let now $x \in U(A, \epsilon)$, i.e. $d(x, A)<\epsilon$. By definition of the greatest lower bound, for every $r \in \mathbb{R}$ such that $r>d(x, A)$, there is $a \in A$ such that $d(x, a)<r$ (if there was a value of r without that property, then this value of r would be the greatest lower bound, since it would be a lower bound for the set $\{d(x, a) \mid a \in A\}$, and it would be greater than $d(x, A)$). Now fix r such that $d(x, A)<r<\epsilon$ (since $d(x, A)<\epsilon$, there certainly exists such a real number r), then by our reasoning above there is $a \in A$ such that $d(x, a)<r$. This means that $x \in B_{d}(a, r) \subset$ $B_{d}(a, \epsilon)$, and therefore x is in the union of the open balls $B_{d}(a, \epsilon)$.
(d) By the characterization of open sets in a metric space, for each $x \in U$, there is $\epsilon_{x}>0$ such that $B_{d}\left(x, \epsilon_{x}\right) \subset U$. For each $a \in A \subset U$, let $r_{a}=\frac{\epsilon_{a}}{2}$. Now the collection of sets

$$
\mathcal{A}=\left\{B_{d}\left(a, r_{a}\right) \mid a \in A\right\}
$$

is an open cover of A. Since A is compact, there is a finite subcover, say

$$
\left\{B_{d}\left(a_{1}, r_{a_{1}}\right), B_{d}\left(a_{2}, r_{a_{2}}\right), \ldots, B_{d}\left(a_{n}, r_{a_{n}}\right)\right\} .
$$

Let $\epsilon=\min _{i=1}^{n}\left\{r_{a_{i}}\right\}$. We claim that for all $a \in A, B_{d}(a, \epsilon) \subset U$, and therefore U contains an ϵ-neighborhood of A, as claimed.
Let $a \in A$ and y be such that $y \in B_{d}(a, \epsilon)$. In particular, $d(y, a)<\epsilon$. There is j such that $a \in B_{d}\left(a_{j}, r_{a_{j}}\right)$, so $d\left(a, a_{j}\right)<r_{a_{j}}$. Using the Triangle Inequality, we have

$$
d\left(y, a_{j}\right) \leq d(y, a)+d\left(a, a_{j}\right)<\epsilon+r_{a_{j}} \leq 2 r_{a_{j}},
$$

since $\epsilon=\min _{i=1}^{n}\left\{r_{a_{i}}\right\}$. It follows that $y \in B_{d}\left(a_{j}, 2 r_{a_{j}}\right)$. But recall that $r_{a_{j}}$ was chosen so that $B_{d}\left(a_{j}, 2 r_{a_{j}}\right) \subset U$, so $y \in U$. It follows that $B_{d}(a, \epsilon) \subset U$ for all $a \in A$, and we are done.
(e) Consider $\mathbb{R} \times \mathbb{R}$ with the metric $d\left(x_{1} \times y_{1}, x_{2} \times y_{2}\right)=\max \left(\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|\right)$. d induces the usual topology on $\mathbb{R} \times \mathbb{R}$, by Homework 10, problem 1. We claim that $\mathbb{R} \times\{0\}$ is closed in $\mathbb{R} \times \mathbb{R}$. Indeed, $\{0\}$ is closed in \mathbb{R} since \mathbb{R} is Hausdorff, \mathbb{R} is closed, and a product of closed sets is closed in the product topology.
Consider the open set $U=\left\{x \times y| | y \left\lvert\,<\frac{1}{x^{2}+1}\right.\right\}$, then $\mathbb{R} \times\{0\} \subset U$, but there is no ϵ-neighborhood of $\mathbb{R} \times\{0\}$ in U. Indeed, for any $\epsilon>0$, there is $M \in \mathbb{R}$ such that $\frac{1}{M^{2}+1}<\epsilon$. Then for $x>M$, we have $\frac{1}{x^{2}+1}<\frac{1}{M^{2}+1}<\epsilon$. In that case, the point $x \times \frac{1}{M^{2}+1}$ belongs to the ϵ-neighborhood of $\mathbb{R} \times\{0\}$, since

$$
d\left(x \times 0, x \times \frac{1}{M^{2}+1}\right)=\max \left(|0|,\left|\frac{1}{M^{2}+1}\right|\right)=\frac{1}{M^{2}+1}<\epsilon
$$

but $x \times \frac{1}{M^{2}+1}$ does not belong to U since

$$
\left|\frac{1}{M^{2}+1}\right|>\frac{1}{x^{2}+1}
$$

Therefore there is no ϵ-neighborhood of $\mathbb{R} \times\{0\}$ in U.

