1. Suppose for a contradiction that they are homeomorphic, and let $f:(0,1] \rightarrow(0,1)$ be a homeomorphism. Let $a \in(0,1)$ be such that $f(1)=a$. Then because f is a bijection, $f^{-1}(a)=1$ (no other point maps to a).
By restriction of the domain (Theorem 18.2(d)), the function $\left.f\right|_{(0,1)}:(0,1) \rightarrow(0,1)$ is also continuous. We also have that the image set of $\left.f\right|_{(0,1)}$ is contained in the set $(0, a) \cup(a, 1)$, since now that 1 has been removed from the domain, nothing maps to the value a. By restriction of the range (Theorem 18.2(e)), $\left.f\right|_{(0,1)}:(0,1) \rightarrow(0, a) \cup(a, 1)$ is also continuous. In addition, it is surjective (in fact, it is bijective). But we know that the image of a connected set under a continuous map is connected, and therefore we get a contradiction since $(0, a) \cup(a, 1)$ is not connected.
Therefore $(0,1]$ and $(0,1)$ are not homeomorphic.
2. Let $Y \subset X$ be a nonempty subspace, and suppose that it is covered by an arbitrary collection \mathcal{A} of sets open in X. Let $A \in \mathcal{A}$ be any nonempty element of this collection. Since A is open and nonempty, its complement $X-A$ is finite. Since $Y-A \subset X-A$, $Y-A$ is also finite, say $Y-A=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. For each i, let $A_{i} \in \mathcal{A}$ be such that $y_{i} \in A_{i}$. Then the finite subcollection $\left\{A, A_{1}, \ldots, A_{n}\right\}$ covers Y, and Y is compact.
3. (a) If X is compact in the \mathcal{T}^{\prime} topology, then it is compact in the \mathcal{T} topology. Indeed, let \mathcal{A} be a collection of sets that belong to \mathcal{T} and that cover X. Then they also belong to \mathcal{T}^{\prime}, and since X is compact in this topology, there is a finite subcover. Therefore X is compact in the \mathcal{T} topology.
However, if X is compact in the \mathcal{T} topology, X may or may not be compact in the \mathcal{T}^{\prime} topology. We give two examples: First let $X=\mathbb{R}, \mathcal{T}^{\prime}$ be the usual topology and \mathcal{T} be the trivial topology. Since the trivial topology is contained in every topology, $\mathcal{T}^{\prime} \supset \mathcal{T}$. Then X is compact in the \mathcal{T} topology (every space is compact in the trivial topology) but it is not compact in the \mathcal{T}^{\prime} topology (we showed this in class).
However, if $X=\mathbb{R}$ still but now \mathcal{T}^{\prime} is the finite complement topology, and again \mathcal{T} is the trivial topology. Since the trivial topology is contained in every topology, once again $\mathcal{T}^{\prime} \supset \mathcal{T}$. This time X is compact in both topologies, by problem 2 of this homework.
(b) Let \mathcal{T} and \mathcal{T}^{\prime} be two topologies on X such that X is compact and Hausdorff in both topologies. Furthermore, suppose that $\mathcal{T}^{\prime} \supsetneq \mathcal{T}$. We will derive a contradiction. Note that this will complete the proof: by symmetry, this will show that if we suppose that $\mathcal{T}^{\prime} \subsetneq \mathcal{T}$, we also get a contradiction. If both strict inclusions lead to contradictions, then it follows that it must be the case that $\mathcal{T}^{\prime}=\mathcal{T}$ or \mathcal{T} and \mathcal{T}^{\prime} are not comparable.
We thus proceed with our work. Let $U \in \mathcal{T}^{\prime}-\mathcal{T}$. Then the set $A=X-U$ is closed in \mathcal{T}^{\prime} but not in \mathcal{T}. Since X is compact in the \mathcal{T}^{\prime} topology, A is compact
in the \mathcal{T}^{\prime} topology. By part (a) of this problem, A is then also compact in the \mathcal{T} topology. Since X is Hausdorff in the \mathcal{T} topology, A is therefore closed in X. This is the contradiction.
4. Let Y_{1}, \ldots, Y_{n} be compact, and suppose that they are all contained in a topological space X. Let \mathcal{A} be a collection of sets open in X, such that \mathcal{A} covers $\bigcup_{i=1}^{n} Y_{i}$. Then for each i, \mathcal{A} covers Y_{i}, and therefore there is a finite subcollection of elements of \mathcal{A} that cover Y_{i} :

$$
Y_{i} \subset \bigcup_{j=1}^{m_{i}} A_{i, j}
$$

Now consider the set

$$
\left\{A_{1,1}, \ldots, A_{1, m_{1}}, A_{2,1}, \ldots, A_{2, m_{2}}, \ldots, A_{n, m_{n}}\right\}
$$

This is a finite collection of elements, since it is the union of finitely many finite collections. Furthermore, it covers $\bigcup_{i=1}^{n} Y_{i}$, and therefore $\bigcup_{i=1}^{n} Y_{i}$ is compact.

Extra problem for graduate credit:

1. As suggested, we first show that if A is closed in X with empty interior, and U is any nonempty open of X, then there is a nonempty open set V such that $\bar{V} \subset U$ and $A \cap \bar{V}=\varnothing$.

To do this, we first remark that it cannot be the case that $U \subset A$, since A has empty interior and U is not empty. Therefore, there is $x \in X$ such that $x \in U-A$. We now note that since X is compact and $A \cup(X-U)$ is closed (this is a union of two closed sets), $A \cup(X-U)$ is compact. Since X is Hausdorff and $x \notin A \cup(X-U)$, there are open sets V, W in X such that $V \cap W=\varnothing, x \in V$ and $A \cup(X-U) \subset W$.
We claim that V as described above is the open set we sought. Indeed V is nonempty and open. Suppose that $a \in A$, we show that $a \notin \bar{V}$, which will prove the last claim. Indeed, if $a \in A$, then $a \in W$ which is an open set, and $W \cap V=\varnothing$. Therefore there is a neighborhood of a that does not intersect V, and $a \notin \bar{V}$.
Finally, we show that $\bar{V} \subset U$. Indeed, let $x \in X-U$, in the same manner as just above, we can show that $x \notin \bar{V}$, since $x \in W$ which does not intersect V.
We now proceed to Step 2. Suppose by contradiction that $\bigcup_{n=1}^{\infty} A_{n}$ does not have empty interior. Then there is U nonempty and open such that $U \subset \bigcup_{n=1}^{\infty} A_{n}$, and consider A_{1} which is closed with empty interior by hypothesis. Then by Step 1 there is a nonempty open set V_{1} with $\bar{V}_{1} \subset U \subset \bigcup_{n=1}^{\infty} A_{n}$ such that $A_{1} \cap \bar{V}_{1}=\varnothing$.
Now let $U=V_{1}$, which is nonempty and open, and consider $A=A_{1} \cup A_{2}$. A is the union of two closed sets, and therefore it is closed. We must show that its interior is empty. Let W be open in X such that $W \subset A$. Then $W \cap\left(X-A_{2}\right)$ is an open set, since $X-A_{2}$ is open, and $W \cap\left(X-A_{2}\right) \subset A_{1}$. Since A_{1} has empty interior by hypothesis, $W \cap\left(X-A_{2}\right)$ is empty, but this implies $W \subset A_{2}$, which is a contradiction
since A_{2} also has empty interior. We note for the future that we have proved that a finite union of closed sets with empty interior has empty interior.
Going back to our set up though, we have $U=V_{1}$, which is nonempty and open, and $A=A_{1} \cup A_{2}$, which is closed with empty interior. Therefore there is V_{2} nonempty and open with $\bar{V}_{2} \subset V_{1}$ and $A \cap \bar{V}_{2}=\varnothing$.

We continue like this: At every step we can find V_{n} nonempty and open such that

$$
\left(\bigcup_{i=1}^{n} A_{n}\right) \cap \bar{V}_{n}=\varnothing,
$$

and

$$
\bigcup_{n=1}^{\infty} A_{n} \supset \bar{V}_{1} \supset \bar{V}_{2} \supset \bar{V}_{3} \supset \cdots \supset \bar{V}_{n-1} \supset V_{n}
$$

because $\bigcup_{i=1}^{n} A_{n}$ is closed with empty interior.
Continuing in this way, we have a nested sequence

$$
\bar{V}_{1} \supset \bar{V}_{2} \supset \bar{V}_{3} \supset \cdots \supset \bar{V}_{n} \supset \cdots
$$

of nonempty closed sets in X. By Th eorem 26.9 there is a point in their intersection since X is compact. In other words, there is $x \in X$ such that $x \in \bar{V}_{n}$ for each n. In particular, this means that $x \notin A_{n}$ for any n, so $x \notin \bigcup_{n=1}^{\infty} A_{n}$. At the same time, since each $\bar{V}_{n} \subset \bigcup_{n=1}^{\infty} A_{n}$, certainly $x \in \bigcap_{n=1}^{\infty} \bar{V}_{n} \subset \bigcup_{n=1}^{\infty} A_{n}$, which is a contradiction.

