Math 295 - Spring 2020
Solutions to Homework 13

1. (a) Yes, $X \times Y$ is path connected. The idea is the following, and a formal proof follows: Let $x \times y, x^{\prime} \times y^{\prime} \in X \times Y$. To make a path between these, we first make a path between $x \times y$ and $x^{\prime} \times y$ in $X \times y$. This path exists because $X \times y$ is homeomorphic to X, and therefore path connected as well. Once we are at $x^{\prime} \times y$, we can follow a path from $x^{\prime} \times y$ to $x^{\prime} \times y^{\prime}$ in $x^{\prime} \times Y$, which is also path connected. This gives a path from $x \times y$ to $x^{\prime} \times y^{\prime}$.
We now formalize this proof: Let $x, x^{\prime} \in X$ and $y \in Y$. We show the existence of a path γ from $x \times y$ to $x^{\prime} \times y$ in $X \times Y$. Let $\tilde{\gamma}:[a, b] \rightarrow X$ be a path from x to x^{\prime}. This exists since X is path connected. Let $\phi: X \rightarrow X \times y$ be the map sending $x \mapsto x \times y$. We have shown in class that this is a homeomorphism, and so in particular it is continuous. Finally, let $\psi: X \times y \rightarrow X \times Y$ be the inclusion map, which is continuous by Theorem 18.2(b). We have thus that the composition $\psi \circ \phi \circ \tilde{\gamma}:[a, b] \rightarrow X \times Y$ is continuous, and a path from $\psi(\phi(\tilde{\gamma}(a)))=\psi(\phi(x))=$ $x \times y$ to $\psi(\phi(\tilde{\gamma}(b)))=\psi\left(\phi\left(x^{\prime}\right)\right)=x^{\prime} \times y$. Therefore $\gamma=\psi \circ \phi \circ \tilde{\gamma}$ is a path from $x \times y$ to $x^{\prime} \times y$.
Since the situation is completely symmetric, we can use the argument above to show that for $x^{\prime} \in X$ and $y, y^{\prime} \in Y$, there is also a path $\gamma^{\prime}:\left[a^{\prime}, b^{\prime}\right] \rightarrow X \times Y$ from $x^{\prime} \times y$ to $x^{\prime} \times y^{\prime}$.
Given the existence of these two paths, we now prove the existence of a path from $x \times y$ to $x^{\prime} \times y^{\prime}$. Recall that we have a path $\gamma:[a, b] \rightarrow X \times Y$ which goes from $x \times y$ to $x^{\prime} \times y$, and a path $\gamma^{\prime}:\left[a^{\prime}, b^{\prime}\right] \rightarrow X \times Y$ from $x^{\prime} \times y$ to $x^{\prime} \times y^{\prime}$. What we want to do is "follow one path then the other," or concatenate these paths.
Let c be a real number strictly greater than b. Then we have shown already that the interval $\left[a^{\prime}, b^{\prime}\right]$ is homeomorphic to the interval $[b, c]$. (Technically, we showed that every closed interval is homeomorphic to $[0,1]$, but since being homeomorphic is an equivalence relation, this means that every closed interval is homeomorphic to every other closed interval in \mathbb{R}.) In addition, in our proof we gave an orderpreserving homeomorphism, which implies that we can further assume that this homeomorphism sends a^{\prime} to b and b^{\prime} to c. If $\phi:[b, c] \rightarrow\left[a^{\prime}, b^{\prime}\right]$ is one such orderpreserving homeomorphism, by composing $\gamma^{\prime} \circ \phi$, we obtain a path $\gamma^{\prime \prime}:[b, c] \rightarrow$ $X \times Y$, still from $x^{\prime} \times y$ to $x^{\prime} \times y^{\prime}$.
Now let $\eta:[a, c] \rightarrow X \times Y$ be given by the rule

$$
\eta(t)= \begin{cases}\gamma(t) & \text { if } a \leq t \leq b, \text { and } \\ \gamma^{\prime \prime}(t) & \text { if } b \leq t \leq c\end{cases}
$$

By the Pasting Lemma (Theorem 18.3), η is a continuous function. Indeed, if $A=[a, b]$ and $B=[b, c]$, then $X=[a, c]$ is indeed the union of the two closed subspaces A and B, γ and $\gamma^{\prime \prime}$ are continuous, and they agree on $A \cap B=\{b\}$:
$\gamma(b)=x^{\prime} \times y=\gamma^{\prime \prime}(b)$. Therefore, η is a path in $X \times Y$ from $x \times y$ to $x^{\prime} \times y^{\prime}$, and $X \times Y$ is path connected.
(b) No, \bar{A} is not necessarily path connected. Let

$$
A=\left\{\left.x \times \sin \left(\frac{1}{x}\right) \right\rvert\, x>0\right\} \subset \mathbb{R}^{2}
$$

Then A is path connected, but as shown in the book on page 157, in Example 7 of Section 24, \bar{A} is not path connected. (A is denoted S in the book, it is the topologist's sine curve which we discussed in class.)
To show that A is path connected, let $x \times \sin \left(\frac{1}{x}\right)$ and $x^{\prime} \times \sin \left(\frac{1}{x^{\prime}}\right)$ be two elements of A. Then the map $\gamma:\left[x, x^{\prime}\right] \rightarrow A$ given by $\gamma(t)=t \times \sin \left(\frac{1}{t}\right)$ is a path from $x \times \sin \left(\frac{1}{x}\right)$ to $x^{\prime} \times \sin \left(\frac{1}{x^{\prime}}\right)$, since it is the Cartesian product of two continuous maps (this is Theorem 18.4).
The proof that \bar{A} is not path connected is on page 157 of the book, in Example 7 , and we do not repeat it here.
(c) Yes, $f(X)$ is path connected. Let $c, d \in f(X)$, then there is $x \in X$ such that $f(x)=c$ and $y \in X$ such that $f(y)=d$. Let $\gamma:[a, b] \rightarrow X$ be a path from x to y. I claim that $f \circ \gamma:[a, b] \rightarrow Y$ is a path from c to d.
Indeed, we have that $(f \circ \gamma)(a)=f(\gamma(a))=f(x)=c$, and $(f \circ \gamma)(b)=f(\gamma(b))=$ $f(y)=d$. Furthermore, both f and γ are continuous, and therefore their composition $f \circ \gamma$ is continuous.
(d) Yes, $\bigcup A_{\alpha}$ is path connected. The idea of the proof is the following, and a formal proof follows: Let $x, y \in \bigcup A_{\alpha}$. Note that then there is δ such that $x \in A_{\delta}$ and ε such that $y \in A_{\varepsilon}$. Then if $z \in \bigcap A_{\alpha}$, in particular $z \in A_{\delta}$ and $z \in A_{\varepsilon}$. We can then get a path from x to y by first taking a path from x to z in A_{δ} (which exists since A_{δ} is path connected) and then a path from z to y in A_{ε}, which overall gives a path from x to y in $\bigcup A_{\alpha}$.
We now formalize this proof. With notation as above, let $\gamma:[a, b] \rightarrow A_{\delta}$ be a path from x to z in A_{δ}. Then by expanding the range (Theorem 18.2(e)), we have that $\gamma:[a, b] \rightarrow \bigcup A_{\alpha}$ is also continuous (we abuse notation here and keep the name γ for this new function) and therefore a path from x to z in $\bigcup A_{\alpha}$.
Similarly, let $\gamma^{\prime}:[b, c] \rightarrow A_{\varepsilon}$ be a path from z to y in A_{ε}. We note that we may assume that the domain is the interval $[b, c]$ since all closed intervals are homeomorphic via an order-preserving homeomorphism. Again, by expanding the range, we obtain a path $\gamma^{\prime}:[b, c] \rightarrow \bigcup A_{\alpha}$ from z to y.
Now we once again concatenate the paths to obtain $\eta:[a, c] \rightarrow \bigcup A_{\alpha}$ given by

$$
\eta(t)= \begin{cases}\gamma(t) & \text { if } a \leq t \leq b, \text { and } \\ \gamma^{\prime}(t) & \text { if } b \leq t c\end{cases}
$$

This is continuous by the Pasting Lemma, and therefore a path from x to y in $\bigcup A_{\alpha}$.

