Math 295 - Spring 2020
Solutions to Homework 12

1. Fix $\epsilon>0$, and consider the open ball $B_{d}(x, \epsilon)$. Since this is a neighborhood of x and $x_{n} \rightarrow x$, there is N such that if $n \geq N$, then $x_{n} \in B_{d}(x, \epsilon)$. Therefore, if $n \geq N$, $d\left(x_{n}, x\right)<\epsilon$, and we are done.
2. (a) i. $|9|_{3}=3^{-2}=\frac{1}{9}$
ii. $|6|_{5}=5^{-0}=1$
iii. $d_{2}(16,32)=|16-32|_{2}=|-16|_{2}=2^{-4}=\frac{1}{16}$
iv. $d_{3}(11,2)=|11-2|_{3}=|9|_{3}=\frac{1}{9}$
(b) We show the three axioms:
3. Nonnegativity: Since $p>0, p^{-a}>0$ for all $a \geq 0$. This also shows that $d_{p}(x, y)=0$ if and only if $x=y$, since p^{-a} is never zero.
4. Symmetry: Note that for all $x, y \in \mathbb{Z}, x-y=-(y-x)$. Since -1 is not divisible by p, the largest power of p that divides $x-y$ is the same as the largest power of p that divides $y-x$.
5. Triangle inequality: Let $x, y, z \in \mathbb{Z}$, and for simplicity, let $a=x-z$ and $b=z-y$. Then we have that $d_{p}(x, z)=|a|_{p}, d_{p}(z, y)=|b|_{p}$, and $d_{p}(x, y)=$ $|(x-z)+(z-y)|_{p}=|a+b|_{p}$, so we must show that for all $a, b \in \mathbb{Z}$,

$$
|a+b|_{p} \leq|a|_{p}+|b|_{p}
$$

Note that if any of these three numbers is 0 , the claim follows immediately, so we assume $a, b, a+b \neq 0$.
Suppose that $|a|_{p}=p^{-\alpha}$, so $a=p^{\alpha} m_{1}$, and $|b|_{p}=p^{-\beta}$, so $b=p^{\beta} m_{2}$, where p does not divide m_{1} or m_{2}. Suppose without loss of generality that $\alpha \leq \beta$. Then we have

$$
a+b=p^{\alpha} m_{1}+p^{\beta} m_{2}=p^{\alpha}\left(m_{1}+p^{\beta-\alpha} m_{2}\right) .
$$

Since $m_{1}+p^{\beta-\alpha} m_{2}$ is an integer, α is less than or equal to the largest power of p that divides $a+b$. (It will be exactly equal to the largest power of p that divides $a+b$ if $\beta>\alpha$, in which case $m_{1}+p^{\beta-\alpha} m_{2}$ is not divisible by p; if $\beta=\alpha$ then perhaps $m_{1}+p^{\beta-\alpha} m_{2}=m_{1}+m_{2}$ is divisible by p, so perhaps α is strictly less than the exact power of p that divides $a+b$.)
In any case, this means that $|a|_{p}=p^{-\alpha} \geq|a+b|_{p}$, from which it follows that $|a+b|_{p} \leq|a|_{p}+|b|_{p}$ since $|b|_{p} \geq 0$.
3. By Lemma 20.2, it suffices to show that for all $x \in \mathbb{R}$ and each $\epsilon>0$, there is $\delta>0$ such that $B_{d_{1}}(x, \delta) \subset B_{d_{2}}(x, \epsilon)$. Note that since d_{1} is the discrete metric, which induces the discrete topology, we have that $\{x\}=B_{d_{1}}\left(x, \frac{1}{2}\right)$ is open for all $x \in \mathbb{R}$. Therefore for all $x \in \mathbb{R}$ and $\epsilon>0, B_{d_{1}}\left(x, \frac{1}{2}\right) \subset B_{d_{2}}(x, \epsilon)$.
4. If X is finite, then the finite complement topology is the discrete topology (since every set has finite complement). On a finite set, the discrete topology is metrizable; it is given in fact by any metric, or in particular by the discrete metric.
If X is infinite, then it is not metrizable. We know that every metric space is Hausdorff. Therefore, any space that is not Hausdorff cannot be metrizable. If X is infinite, then it is not Hausdorff in the finite complement topology. Indeed suppose for a contradiction that $x \neq y \in X$ and $x \in U, y \in V$ with U, V open and disjoint. Since X is infinite and V has a finite complement, V is infinite. However, at the same time V is a subset of the complement of U, which is finite. Since every subset of a finite set is finite, we have a contradiction.
5. Let $X=U \cup V$ be a separation of X. Note this implies that U is the complement of V in X and V is the complement of U in X. Then since U is open, V is closed; since V is open, U is closed. Therefore $X=U \cup V$ is a separation of X into two closed sets. Conversely, if $X=A \cup B$ for A, B nonempty closed and disjoint, then A and B are open since their complement is closed, and $X=A \cup B$ is a separation of X.
6. Throughout, fix $x \in X-A$ and $y \in Y-B$.

First, we claim that for $y^{\prime} \in Y-B$, then

$$
T_{y^{\prime}}=x \times Y \cup X \times y^{\prime}
$$

is connected. Indeed $x \times Y$ is homeomorphic to Y, and therefore connected since Y is connected, and $X \times y^{\prime}$ is homeomorphic to X, and therefore connected since X is connected. In addition, $x \times y^{\prime} \in x \times Y \cap X \times y^{\prime}$, so by Theorem 23.3, $T_{y^{\prime}}$ is connected. Similarly, for $x^{\prime} \in X-A, T_{x^{\prime}}=x^{\prime} \times Y \cup X \times y$ is connected.

Now consider the set

$$
C=\bigcup_{y^{\prime} \in Y-B} T_{y^{\prime}} .
$$

We claim that C is connected. By Theorem 23.3, it suffices to show that the intersection is nonempty, since each $T_{y^{\prime}}$ is connected. The whole line $x \times Y$ belongs to this intersection, so it is indeed nonempty. Similarly,

$$
D=\bigcup_{x^{\prime} \in X-A} T_{x^{\prime}}
$$

is connected since $X \times y$ belongs to the intersection of the sets.
Now we claim that $C \cup D$ is connected, and $C \cup D=(X \times Y)-(A \times B)$, which completes the proof.
First, C and D are connected, so it suffices to show that their intersection is nonempty; this follows since $x \times y \in C \cap D$.

Finally, we prove the equality of sets. We begin by showing that $(X \times Y)-(A \times B) \subset$ $C \cup D$. Let $x^{\prime} \times y^{\prime} \in(X \times Y)-(A \times B)$. Then either $x^{\prime} \in X-A$, or $y^{\prime} \in Y-B$. If $x^{\prime} \in X-A$, then $x^{\prime} \times y^{\prime} \in D$; and if $y^{\prime} \in Y-B$, then $x^{\prime} \times y^{\prime} \in C$.
We now prove the reverse inclusion. If $x^{\prime} \times y^{\prime} \in C \cup D$, then either $x^{\prime} \times y^{\prime} \in C$ or $x^{\prime} \times y^{\prime} \in D$. If $x^{\prime} \times y^{\prime} \in C$, then either $x^{\prime}=x \in X-A$, so $x^{\prime} \times y^{\prime} \in(X \times Y)-(A \times B)$, or $y^{\prime} \in Y-B$, in which case $x^{\prime} \times y^{\prime} \in(X \times Y)-(A \times B)$ also. If $x^{\prime} \times y^{\prime} \in D$, then either $y^{\prime}=y \in Y-B$, or $x^{\prime} \in X-A$, and again $x^{\prime} \times y^{\prime} \in(X \times Y)-(A \times B)$, and we are done.
7. Let A be a proper subset of X with empty boundary. We claim that $X=\bar{A} \cup \overline{(X-A)}$ is then a separation of X, which is a contradiction since X is connected.

Indeed, by assumption the two sets are disjoint. Furthermore, if $x \in X$, then either $x \in A \subset \bar{A}$ or $x \in X-A \subset \overline{(X-A)}$, so $X=\bar{A} \cup \overline{(X-A)}$. We note that this implies that \bar{A} is the complement of $\overline{(X-A)}$.
Then we know that $\overline{(X-A)}$ is closed, which implies that \bar{A} is open, and similarly $\overline{(X-A)}$ is open because \bar{A} is closed. Finally, since A is a proper subset, $A \neq \varnothing$ implies that \bar{A} is nonempty, and $A \neq X$ implies that $X-A$ is not empty so $\overline{(X-A)}$ is not empty either.

