
Math 295 - Spring 2020
Solutions to Homework 12

1. Fix ε > 0, and consider the open ball Bd(x, ε). Since this is a neighborhood of x and
xn → x, there is N such that if n ≥ N , then xn ∈ Bd(x, ε). Therefore, if n ≥ N ,
d(xn, x) < ε, and we are done.

2. (a) i. |9|3 = 3−2 = 1
9

ii. |6|5 = 5−0 = 1

iii. d2(16, 32) = |16− 32|2 = | − 16|2 = 2−4 = 1
16

iv. d3(11, 2) = |11− 2|3 = |9|3 = 1
9

(b) We show the three axioms:

1. Nonnegativity: Since p > 0, p−a > 0 for all a ≥ 0. This also shows that
dp(x, y) = 0 if and only if x = y, since p−a is never zero.

2. Symmetry: Note that for all x, y ∈ Z, x − y = −(y − x). Since −1 is not
divisible by p, the largest power of p that divides x − y is the same as the
largest power of p that divides y − x.

3. Triangle inequality: Let x, y, z ∈ Z, and for simplicity, let a = x − z and
b = z − y. Then we have that dp(x, z) = |a|p, dp(z, y) = |b|p, and dp(x, y) =
|(x− z) + (z − y)|p = |a+ b|p, so we must show that for all a, b ∈ Z,

|a+ b|p ≤ |a|p + |b|p.

Note that if any of these three numbers is 0, the claim follows immediately,
so we assume a, b, a+ b 6= 0.
Suppose that |a|p = p−α, so a = pαm1, and |b|p = p−β, so b = pβm2, where
p does not divide m1 or m2. Suppose without loss of generality that α ≤ β.
Then we have

a+ b = pαm1 + pβm2 = pα(m1 + pβ−αm2).

Since m1 + pβ−αm2 is an integer, α is less than or equal to the largest power
of p that divides a+ b. (It will be exactly equal to the largest power of p that
divides a + b if β > α, in which case m1 + pβ−αm2 is not divisible by p; if
β = α then perhaps m1 + pβ−αm2 = m1 +m2 is divisible by p, so perhaps α
is strictly less than the exact power of p that divides a+ b.)
In any case, this means that |a|p = p−α ≥ |a+ b|p, from which it follows that
|a+ b|p ≤ |a|p + |b|p since |b|p ≥ 0.

3. By Lemma 20.2, it suffices to show that for all x ∈ R and each ε > 0, there is δ > 0
such that Bd1(x, δ) ⊂ Bd2(x, ε). Note that since d1 is the discrete metric, which induces
the discrete topology, we have that {x} = Bd1(x,

1
2
) is open for all x ∈ R. Therefore

for all x ∈ R and ε > 0, Bd1(x,
1
2
) ⊂ Bd2(x, ε).



4. If X is finite, then the finite complement topology is the discrete topology (since every
set has finite complement). On a finite set, the discrete topology is metrizable; it is
given in fact by any metric, or in particular by the discrete metric.

If X is infinite, then it is not metrizable. We know that every metric space is Hausdorff.
Therefore, any space that is not Hausdorff cannot be metrizable. If X is infinite, then it
is not Hausdorff in the finite complement topology. Indeed suppose for a contradiction
that x 6= y ∈ X and x ∈ U , y ∈ V with U, V open and disjoint. Since X is infinite
and V has a finite complement, V is infinite. However, at the same time V is a subset
of the complement of U , which is finite. Since every subset of a finite set is finite, we
have a contradiction.

5. Let X = U ∪ V be a separation of X. Note this implies that U is the complement of
V in X and V is the complement of U in X. Then since U is open, V is closed; since
V is open, U is closed. Therefore X = U ∪V is a separation of X into two closed sets.
Conversely, if X = A ∪ B for A,B nonempty closed and disjoint, then A and B are
open since their complement is closed, and X = A ∪B is a separation of X.

6. Throughout, fix x ∈ X − A and y ∈ Y −B.

First, we claim that for y′ ∈ Y −B, then

Ty′ = x× Y ∪X × y′

is connected. Indeed x × Y is homeomorphic to Y , and therefore connected since Y
is connected, and X × y′ is homeomorphic to X, and therefore connected since X is
connected. In addition, x× y′ ∈ x× Y ∩X × y′, so by Theorem 23.3, Ty′ is connected.

Similarly, for x′ ∈ X − A, Tx′ = x′ × Y ∪X × y is connected.

Now consider the set
C =

⋃
y′∈Y−B

Ty′ .

We claim that C is connected. By Theorem 23.3, it suffices to show that the intersec-
tion is nonempty, since each Ty′ is connected. The whole line x × Y belongs to this
intersection, so it is indeed nonempty. Similarly,

D =
⋃

x′∈X−A

Tx′

is connected since X × y belongs to the intersection of the sets.

Now we claim that C ∪ D is connected, and C ∪ D = (X × Y ) − (A × B), which
completes the proof.

First, C and D are connected, so it suffices to show that their intersection is nonempty;
this follows since x× y ∈ C ∩D.



Finally, we prove the equality of sets. We begin by showing that (X ×Y )− (A×B) ⊂
C ∪D. Let x′ × y′ ∈ (X × Y )− (A× B). Then either x′ ∈ X − A, or y′ ∈ Y − B. If
x′ ∈ X − A, then x′ × y′ ∈ D; and if y′ ∈ Y −B, then x′ × y′ ∈ C.

We now prove the reverse inclusion. If x′ × y′ ∈ C ∪ D, then either x′ × y′ ∈ C or
x′×y′ ∈ D. If x′×y′ ∈ C, then either x′ = x ∈ X−A, so x′×y′ ∈ (X×Y )− (A×B),
or y′ ∈ Y − B, in which case x′ × y′ ∈ (X × Y ) − (A × B) also. If x′ × y′ ∈ D, then
either y′ = y ∈ Y −B, or x′ ∈ X −A, and again x′ × y′ ∈ (X × Y )− (A×B), and we
are done.

7. Let A be a proper subset of X with empty boundary. We claim that X = A∪ (X − A)
is then a separation of X, which is a contradiction since X is connected.

Indeed, by assumption the two sets are disjoint. Furthermore, if x ∈ X, then either
x ∈ A ⊂ A or x ∈ X −A ⊂ (X − A), so X = A ∪ (X − A). We note that this implies
that A is the complement of (X − A).

Then we know that (X − A) is closed, which implies that A is open, and similarly
(X − A) is open because A is closed. Finally, since A is a proper subset, A 6= ∅
implies that A is nonempty, and A 6= X implies that X − A is not empty so (X − A)
is not empty either.


