Math 295 - Spring 2020 Homework 12 Review Homework for Exam 2

This homework is due on Wednesday, April 8.

- 1. Let X be a metric space, and suppose that the sequence $\{x_n\}_{n=1}^{\infty} \subset X$ converges to the point $x \in X$. Show that for all $\epsilon > 0$, there is N such that if $n \ge N$, then $d(x_n, x) < \epsilon$. (To put it more colloquially, show that $d(x_n, x) \to 0$ as $n \to \infty$.)
- 2. Let $X = \mathbb{Z}$, and let p be a prime number. We define the *p*-adic norm on \mathbb{Z} to be

 $|x|_p = \begin{cases} 0 & \text{if } x = 0, \text{ and} \\ p^{-a} & \text{if } x = p^a m, \text{ where } p \text{ does not divide } m. \end{cases}$

(In other words, when $x \neq 0$, *a* is the highest power of *p* that divides *x*.) We can then define the *p*-adic metric $d_p: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ to be given by

$$d_p(x,y) = |x-y|_p.$$

(a) Compute the following:

i.
$$|9|_3$$

ii. $d_2(16, 32)$
ii. $d_3(11, 2)$

- (b) Prove that d_p is a metric on \mathbb{Z} for any prime p.
- 3. Consider the following two metrics on \mathbb{R} :

$$d_1 \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$d_1(x, y) = \begin{cases} 0 & \text{if } x = y, \text{ and} \\ 1 & \text{otherwise;} \end{cases}$$

and

$$d_2 \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$d_2(x, y) = |x - y|.$$

If \mathcal{T}_1 is the topology induced by d_1 on \mathbb{R} and \mathcal{T}_2 is the topology induced by d_2 on \mathbb{R} , show that $\mathcal{T}_2 \subset \mathcal{T}_1$.

4. Let X be a set with the finite complement topology (see Example 3 on page 77 of the book for a refresher on its definition). Is X metrizable?

- 5. Show that there is a separation of X if and only if there are two sets A, B in X such that A and B are nonempty, disjoint and closed, and $X = A \cup B$. In other words, show that X can be separated by two open sets if and only if it can be separated by two closed sets.
- 6. Let A be a proper subset of X ($A \subset X$ but $A \neq \emptyset$ and $A \neq X$) and let B be a proper subset of Y. If X and Y are connected, show that

$$(X \times Y) - (A \times B)$$

is connected.

7. Let X be a connected space. Show that the only sets with empty boundary are X and \emptyset , where we recall from Homework 8 that if $A \subset X$, its *boundary* Bd A is defined to be

$$\operatorname{Bd} A = \overline{A} \cap (X - A).$$