Math 295 - Spring 2020
Solutions to Homework 11

1. Suppose first that X is connected in the \mathcal{T}^{\prime} topology. Then X is connected in the \mathcal{T} topology as well. Indeed, suppose for a contradiction that there are $U, V \in \mathcal{T}$ that form a separation of X in the \mathcal{T} topology. Then since $\mathcal{T} \subset \mathcal{T}^{\prime}, U, V \in \mathcal{T}^{\prime}$ as well, and they form a separation of X in the \mathcal{T}^{\prime} topology.
However, if X is connected in the \mathcal{T} topology, then X may or may not be connected in the \mathcal{T}^{\prime} topology. For example, let $X=\mathbb{R}, \mathcal{T}$ be the trivial topology and \mathcal{T}^{\prime} be the usual topology. Then X is connected in both topologies. (We will show that \mathbb{R} is connected in the usual topology next week, and every space with the trivial topology is connected, as we showed in class.)
But if $X=\mathbb{R}, \mathcal{T}$ is the trivial topology and \mathcal{T}^{\prime} is the discrete topology, then X is connected in the \mathcal{T} topology but not in the \mathcal{T}^{\prime} topology. (See problem 3. of this homework set for a proof that the discrete topology is disconnected if X has more than one element.)
2. For each n, let

$$
B_{n}=\bigcup_{i=1}^{n} A_{i}
$$

Then we claim that each B_{n} is connected, that $\bigcap B_{n}$ is nonempty, and $\bigcup A_{n}=\bigcup B_{n}$. This is enough to show that $\bigcup A_{n}$ is connected. Indeed, granting the two claims on the $B_{n} \mathrm{~s}$, we can apply Theorem 23.3 to get that $\bigcup B_{n}$ is connected.
We show that each B_{n} is connected by induction. First, we have that $B_{1}=A_{1}$, so B_{1} is connected by assumption. Suppose now that B_{n-1} is connected. Then $B_{n}=$ $B_{n-1} \cup A_{n}$, where both B_{n-1} and A_{n} are connected and $B_{n-1} \cap A_{n} \neq \varnothing$ because $B_{n-1} \cap A_{n} \supset A_{n-1} \cap A_{n} \neq \varnothing$. Therefore B_{n} is connected by Theorem 23.3.
Next we show that $\bigcap B_{n}$ is nonempty: We have that $A_{1} \subset B_{n}$ for each n, and $A_{1} \neq \varnothing$ since $A_{1} \cap A_{2} \neq \varnothing$. Therefore $A_{1} \subset \bigcap B_{n}$ and $\bigcap B_{n}$ is nonempty.
Finally, we have that $\bigcup A_{n}=\bigcup B_{n}$: If $a \in \bigcup A_{n}$, then $a \in A_{n}$ for some n, and therefore $a \in B_{n} \subset \bigcup B_{n}$. Conversely, if $b \in \bigcup B_{n}$, then $b \in B_{n}$ for some n, and therefore $b \in A_{i}$ for some $1 \leq i \leq n$, so $b \in \bigcup A_{n}$.
3. Let X have the discrete topology. Let A be a connected subspace of X. If $p \neq q \in A$, then $\{p\}=A \cap\{p\}$ is open in A, and $A-\{p\}$ is nonempty and open in A since $A-\{p\}=A \cap(X-\{p\})$, and of course $X-\{p\}$ is open in the discrete topology. Then $\{p\}$ and $A-\{p\}$ form a separation of A, since $\{p\}$ and $A-\{p\}$ are disjoint and their union is A. Therefore, any subspace of X with at least two distinct points has a separation. However, any subspace of X with only one point inherits the trivial topology as its subspace topology, and is therefore connected. As a result, the connected subspaces of X are exactly the one-point sets. (The status of \varnothing as a connected subspace is
uncertain. Some people say yes, vacuously, in which case here I guess it should be added to the list of connected subspaces of X.)

The converse is not true. Consider $\mathbb{Q} \subset \mathbb{R}$. Then \mathbb{Q} is totally disconnected, as we showed in class on March 23. (Basically, if $p<q \in Y \subset \mathbb{Q}$, then let a be an irrational number with $p<a<q$, then $Y \cap(-\infty, a)$ and $Y \cap(a, \infty)$ form a separation of Y, so the only connected sets are the one-point sets.) However, the one-point sets are not open in \mathbb{Q}, so \mathbb{Q} does not have the discrete topology. Indeed, let V be open in \mathbb{Q} and $p \in V$. We show that there is $q \neq p \in V$ so if V is open V cannot be a one-point set. Since V is open in \mathbb{Q}, there is U open in \mathbb{R} such that $V=\mathbb{Q} \cap U$. Since U is open in \mathbb{R}, whose topology has a basis given by the open intervals, and $p \in U$, there is therefore $(a, b) \subset \mathbb{R}$ such that $p \in(a, b) \subset U$. Therefore, of course, $\mathbb{Q} \cap(a, b) \subset V$, and so to complete the proof it suffices to show that if $p \in(a, b)$, there is another rational number $q \neq p$ with $q \in(a, b)$. For this, we use the fact that any interval in the real numbers contains a rational number. Therefore the interval (a, p) contains a rational number q, which is necessarily different from p, and $q \in(a, b)$.

Extra problem for graduate credit:

1. By symmetry, it is enough to show that $Y \cup A$ is connected, the proof for $Y \cup B$ is identical. Suppose for a contradiction that C and D are a separation of $Y \cup A$. Since Y is connected and $Y \subset Y \cup A$, then either $Y \subset C$ or $Y \subset D$. Without loss of generality, suppose that $Y \subset C$. Then we claim that D and $B \cup C$ form a separation of X. This will be a contradiction to the assumption that X is connected, and therefore will show that $Y \cup A$ must be connected.
First, D and $B \cup C$ are nonempty, since C and D are a separation of a space (and therefore nonempty). Furthermore, they are disjoint. That is because C and D are disjoint, and D and B are disjoint (indeed, $D \subset Y \cup A$, and Y, A and B are all pairwise disjoint).
We also have that $X=D \cup(B \cup C)$, since any $x \in X$ either belongs to Y, in which case it belongs to C, or it belongs to $X-Y$, in which case it must belong either to A (and therefore to C or D) or to B.
It therefore only remains to show that D and $B \cup C$ are open in X. First, we have that D is open in $Y \cup A$, so there is $U \subset X$ such that $D=U \cap(Y \cup A)$. However, since $D \cap Y=\varnothing($ since $Y \subset C), D=U \cap A$, and D is open in X because both U and A are open in X.

We now wish to show that $B \cup C$ is open. First, we have that C is open in $Y \cup A$, so there is $U \subset X$ open such that $C=U \cap(Y \cup A)$. Notice then that $U-C \subset B$ (everything extra that is in U but not in C has to be in B). Furthermore, B is open in $X-Y$, so there is $V \subset X$ open such that $B=(X-Y) \cap V$. Here notice that $V-B \subset Y$ (everything extra that is in V but not in B has to be in Y). We claim thus that $U \cup V=B \cup C$. Since $C \subset U$ and $B \subset V$, it follows that $B \cup C \subset U \cup V$. Conversely, let $u \in U$. Then either $u \in C$, so $u \in B \cup C$, or otherwise $u \in B$ since
$U-C \subset B$, in which case again $u \in B \cup C$. If $v \in V$, then either $v \in B$, or $v \in Y \subset C$, so either way $v \in B \cup C$. Since both U and V are open in $X, U \cup V$ is open in X and we are done.

