
Math 295 - Spring 2020
Solutions to Homework 11

1. Suppose first that X is connected in the T ′ topology. Then X is connected in the T
topology as well. Indeed, suppose for a contradiction that there are U, V ∈ T that
form a separation of X in the T topology. Then since T ⊂ T ′, U, V ∈ T ′ as well, and
they form a separation of X in the T ′ topology.

However, if X is connected in the T topology, then X may or may not be connected
in the T ′ topology. For example, let X = R, T be the trivial topology and T ′ be
the usual topology. Then X is connected in both topologies. (We will show that R is
connected in the usual topology next week, and every space with the trivial topology
is connected, as we showed in class.)

But if X = R, T is the trivial topology and T ′ is the discrete topology, then X is
connected in the T topology but not in the T ′ topology. (See problem 3. of this
homework set for a proof that the discrete topology is disconnected if X has more
than one element.)

2. For each n, let

Bn =
n⋃

i=1

Ai.

Then we claim that each Bn is connected, that
⋂
Bn is nonempty, and

⋃
An =

⋃
Bn.

This is enough to show that
⋃

An is connected. Indeed, granting the two claims on
the Bns, we can apply Theorem 23.3 to get that

⋃
Bn is connected.

We show that each Bn is connected by induction. First, we have that B1 = A1, so
B1 is connected by assumption. Suppose now that Bn−1 is connected. Then Bn =
Bn−1 ∪ An, where both Bn−1 and An are connected and Bn−1 ∩ An 6= ∅ because
Bn−1 ∩ An ⊃ An−1 ∩ An 6= ∅. Therefore Bn is connected by Theorem 23.3.

Next we show that
⋂

Bn is nonempty: We have that A1 ⊂ Bn for each n, and A1 6= ∅
since A1 ∩ A2 6= ∅. Therefore A1 ⊂

⋂
Bn and

⋂
Bn is nonempty.

Finally, we have that
⋃

An =
⋃
Bn: If a ∈

⋃
An, then a ∈ An for some n, and therefore

a ∈ Bn ⊂
⋃

Bn. Conversely, if b ∈
⋃
Bn, then b ∈ Bn for some n, and therefore b ∈ Ai

for some 1 ≤ i ≤ n, so b ∈
⋃

An.

3. Let X have the discrete topology. Let A be a connected subspace of X. If p 6= q ∈ A,
then {p} = A ∩ {p} is open in A, and A − {p} is nonempty and open in A since
A−{p} = A∩(X−{p}), and of course X−{p} is open in the discrete topology. Then {p}
and A−{p} form a separation of A, since {p} and A−{p} are disjoint and their union
is A. Therefore, any subspace of X with at least two distinct points has a separation.
However, any subspace of X with only one point inherits the trivial topology as its
subspace topology, and is therefore connected. As a result, the connected subspaces
of X are exactly the one-point sets. (The status of ∅ as a connected subspace is



uncertain. Some people say yes, vacuously, in which case here I guess it should be
added to the list of connected subspaces of X.)

The converse is not true. Consider Q ⊂ R. Then Q is totally disconnected, as we
showed in class on March 23. (Basically, if p < q ∈ Y ⊂ Q, then let a be an irrational
number with p < a < q, then Y ∩ (−∞, a) and Y ∩ (a,∞) form a separation of Y , so
the only connected sets are the one-point sets.) However, the one-point sets are not
open in Q, so Q does not have the discrete topology. Indeed, let V be open in Q and
p ∈ V . We show that there is q 6= p ∈ V so if V is open V cannot be a one-point
set. Since V is open in Q, there is U open in R such that V = Q ∩ U . Since U is
open in R, whose topology has a basis given by the open intervals, and p ∈ U , there is
therefore (a, b) ⊂ R such that p ∈ (a, b) ⊂ U . Therefore, of course, Q∩ (a, b) ⊂ V , and
so to complete the proof it suffices to show that if p ∈ (a, b), there is another rational
number q 6= p with q ∈ (a, b). For this, we use the fact that any interval in the real
numbers contains a rational number. Therefore the interval (a, p) contains a rational
number q, which is necessarily different from p, and q ∈ (a, b).

Extra problem for graduate credit:

1. By symmetry, it is enough to show that Y ∪ A is connected, the proof for Y ∪ B is
identical. Suppose for a contradiction that C and D are a separation of Y ∪A. Since Y
is connected and Y ⊂ Y ∪A, then either Y ⊂ C or Y ⊂ D. Without loss of generality,
suppose that Y ⊂ C. Then we claim that D and B ∪ C form a separation of X. This
will be a contradiction to the assumption that X is connected, and therefore will show
that Y ∪ A must be connected.

First, D and B ∪ C are nonempty, since C and D are a separation of a space (and
therefore nonempty). Furthermore, they are disjoint. That is because C and D are
disjoint, and D and B are disjoint (indeed, D ⊂ Y ∪A, and Y , A and B are all pairwise
disjoint).

We also have that X = D ∪ (B ∪ C), since any x ∈ X either belongs to Y , in which
case it belongs to C, or it belongs to X − Y , in which case it must belong either to A
(and therefore to C or D) or to B.

It therefore only remains to show that D and B ∪ C are open in X. First, we have
that D is open in Y ∪ A, so there is U ⊂ X such that D = U ∩ (Y ∪ A). However,
since D ∩ Y = ∅ (since Y ⊂ C), D = U ∩A, and D is open in X because both U and
A are open in X.

We now wish to show that B ∪ C is open. First, we have that C is open in Y ∪ A,
so there is U ⊂ X open such that C = U ∩ (Y ∪ A). Notice then that U − C ⊂ B
(everything extra that is in U but not in C has to be in B). Furthermore, B is open
in X − Y , so there is V ⊂ X open such that B = (X − Y ) ∩ V . Here notice that
V − B ⊂ Y (everything extra that is in V but not in B has to be in Y ). We claim
thus that U ∪ V = B ∪ C. Since C ⊂ U and B ⊂ V , it follows that B ∪ C ⊂ U ∪ V .
Conversely, let u ∈ U . Then either u ∈ C, so u ∈ B ∪ C, or otherwise u ∈ B since



U−C ⊂ B, in which case again u ∈ B∪C. If v ∈ V , then either v ∈ B, or v ∈ Y ⊂ C,
so either way v ∈ B ∪C. Since both U and V are open in X, U ∪ V is open in X and
we are done.


