Math 295 - Spring 2020 Homework 11

This homework is due on Wednesday, April 1. All problems are adapted from Munkres's *Topology*.

- 1. Let $\mathcal{T}, \mathcal{T}'$ be two topologies on the set X. If $\mathcal{T}' \supset \mathcal{T}$, what does connectedness of X in the \mathcal{T} topology imply about connectedness in the \mathcal{T}' topology? Conversely, what does connectedness of X in the \mathcal{T}' topology imply about connectedness in the \mathcal{T} topology?
- 2. Let $\{A_n\}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup A_n$ is connected.
- 3. A space is totally disconnected if its only connected subspaces are one-point sets. Show that if X has the discrete topology, then X is totally disconnected. Does the converse hold?

Extra problem for graduate credit:

1. Let $Y \subset X$ with X and Y connected, Y a subspace of X. Show that if A and B form a separation of X - Y, then $Y \cup A$ and $Y \cup B$ are connected.